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Study of R-D Equations

« Adapt and build framework for studying phase space
structure

* Driven by numerical experiments and the dynamics of
model systems with analytical solutions

— Linear and nonlinear cases




Bottom Line

Systems are dissipative
Relax to equilibrium distribution

— 0-D manifold in «-D space

When there is a sufficient separation of time scales there
are low-dimensional manifolds on the way to equilibrium

Find ways to observe/generate manifolds
— Project onto physical space




Comments

Examples chosen are meant to fit within combustion
research framework

Most interested in chemical behavior

In the combustion community test cases typically have
one spatial dimension

— Standard test examples are one-dimensional flames
with complex chemistry

— Possibly many species

* H,/O, has 10-12, including temperature

* Methane models have ~40, depending on model
Spatial distributions are generally simple




Ozone Combustion

« Example from:
— S. B. Margolis, J. Comp. Phys. 27, 410 (1978).

— S. Singh, J. M. Powers, S. Paolucci, J. Chem. Phys.
117, 1482 (2002).

* 14 reactions, 3 species (O, O,, O3)

— Simplified further in current study: isothermal and
reaction-diffusion system only:
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— Scaled length. Mixed boundary conditions
— Method-of-lines: 100 points for each species
» Solve 300 ODEs




Time development of species
distribution

« Solving the reaction-diffusion equations defines the
species spatial distributions as a function of time:
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Geometric Representation
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More Projections of 1-D Manifold

Two 2-D projections

3-D projection
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Implications of 1-D Manifold

 Time development of all species spatial distributions
follow from a single point along any of their spatial
distributions




Investigate Low-Dimensional Manifolds for
Reaction-Diffusion Equations

« Studied many simple systems, including:
— Nonlinear model
— Ozone combustion
 Two papers:
— “Low-Dimensional Manifolds in Reaction-Diffusion

Equations 1: Fundamental Aspects”, J. Phys. Chem.
A 110, 5235 (2006)

— “Low-Dimensional Manifolds in Reaction-Diffusion
Equations 2: Numerical Analysis and Method
Development”, J. Phys. Chem. A 110, 5257 (2006)




Nonlinear test system with an exact

solution
e System: 5
% - -yl + Dl &();1
&
% =-W,+ &; + D, d.xyf

 Boundary Conditions:

WX=0)= i, Ya(x=0) =¥z, Z(x=1=22(x=1=0

e Studyy>>1,D,;
* Pure chemical kinetics (D; = D, =0, a = y-2) has an
exact manifold (“chemical manifold™):

Yo = y§




Solution Nonlinear Reaction-Diffusion

1
y1(x,0) =y + Z b1,,(0) sin[(m + —)mc] (3.3a)
" 2

and

1
Y,(x,0) = y;1(x) + Z b, (0) sin[(m -+ —)mc] (3.3b)
" 2
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Solution Nonlinear Reaction-Diffusion 2
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Manifold Equation

* Relaxation
* Define manifold in physical space
— Eliminate time

D
_[1+7Z4 1] yl,B

e

sm( )

Yipg = Y, (X = Xﬂ) — Y (X = Xﬂ)




Dimension reduction for nonlinear
model
e So, at longest time, the following hold (1-D manifold):

2
Yio = X Y5
; B
sin(””)
= f(x,)—2— + glx,)—L
sin(* 2]’ sn("7)

y; and y, at different spatial pointsare functions of
y, at one spatial point (xﬁ). Good for all species at
all spatial points.




Develop numerical methods for dimension
reduction

* Dimension reduction represents orders of magnitude
reduction at long time

* Develop a geometric approach
« Adapt two methods
— Maas-Pope ILDM algorithm

e Approximate, but can be implemented for manifolds
of any dimension

— Predictor-Corrector (Davis and Skodje)

» Accurate, but only developed for one-dimensional
manifolds.

 Easily implemented




ILDMSs

e Test ILDM for nonlinear model
— Analytic results
e Develop numerical procedure
e Test on ozone example
— For 1-D manifolds, compare to
predictor-corrector




ILDM Calculation for Model

. J“ le

J= (J’Z' J2 (A4
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J =0 except J= —[1 + (k + E) szDl] (A.52)
Jir]n = 2{15':" +2a Z r:mbln (ASb)
J2=0 (A.5¢)

2 2
P2 =0 except 2= —[y + (k + %) :r‘Dz] (A.5d)
There are two sets of eigenvalues

L 1)? 2

A= —[1 a7 (k + EJ ; D,] (A.62)
I 2

2= —[y +(k+3) :rZDQ] (A.6b)

For one-dimensional manifolds of type 1 (ref 1) the lowest
eigenvalue is Ao'. The right eigenvectors are written as

1 pl2
R:(ﬁ:!] izz) (A7)

It is straightforward to find the eigenvectors. For the algorithm
outlined in section IlI, the following eigenvector is needed for
one-dimensional manifolds of type 1

R\, =0 except Ry =1 (A.8a)
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Error Analysis for nonlinear model

e [LDM can be found analytlcally Error in quadratic term.

= 1(x,) iy + o(x,) ylﬁ
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Error Analysis for nonlinear model (2)

* Relative error depends on interplay between reaction
stiffness (y) and diffusion (the D’s)

e Sum of terms, so may be difficult to pin down
» Generally the errors are greatest when o, is largest
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Error Analysis for nonlinear model (3)

e Error analysis more complicated for 2-D manifolds
o 2-D generally accurate, but not always:

O = W W I
T

Need more accurate method for
2-D manifolds




Numerical Generation of ILDMs: Start
near equilibrium
Dynamics near equilibrium:

O](x,t) = [Oleg(x) + ya1(X,1)
02](X,1) = [O2]leq(X) + Ya(x,1)
O3](x,1) = [Oz]eg(X) + y3(X,t)

For:

0] 0]
= —ka[O5][O .. +D
Y 3[02][O3]+ ... + 2
The following results:
a
22  -ka((Ozleq¥s + [0a],y2)+D” %2




Near equilibrium (cont)

* The linear system which includes terms like this:

Y2 - ks(10gleqys + 03], y2)+D

Yy
&(2

can be solved as an eigenvalue/eigenvector problem
on a grid or with a basis set
— Information often available in computer codes

* One-dimensional manifold extends this away from
equilibrium and into nonlinear region.




Dynamics near Equilibrium: Contrast
Chemical-Kinetic case with R-D

e Projection of equilibrium distribution for R-D Equations

* Projection of linear, 1-D manifold near equilibrium
distribution of Reaction-Diffusion Equations
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ILDM: Manifold for Chemical Kinetics vs. 1-
D Manifold for Reaction-Diffusion
* ILDM (Maas-Pope) for ' Reaction-Diffusion

* ILDM: Least steepest descent lies along G

1486 J. Chem. Phys., Vol. 117, No. 4, 22 July 2002 Singh, Powers, and Paolucci
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New algorithm for ILDMs

e Extra care needed because:

— True spectrum is infinite and all calculations are
truncated versions

* Only a few eigenvectors sufficiently converged
e Even truncated versions are large

« New algorithm Is faster and more stable
— Only “slow” space used to find manifold
e Reduces need for unconverged eigenvectors
— “Analytic” eigenvector derivatives used in search
* Reduces number of matrix diagonalizations
— Generated 1-D and 2-D manifolds




Description of algorithm for 1-D ILDMs
Dynamical system:

d .
-%%—= Gk{yj}). ] = 1-n

Define Jacobian:
Ay

Jm =
" K
Diagonalization of Jacobian:
LTIR = A

Elements of the right eigenvectors:

ka




Description of algorithm for 1-D ILDMs: 2

Elgenvector of interest:
Ri1

Maas Pope conditions:

Rkl:Gk,k = 15n k# m
le Gm

Search for zeros:

Sy =0k =1->n k#m
SkEleGk(X) - Rlem(X), K =1-n k#m




Description of algorithm for 1-D ILDMs: 3

Search reguires:

J‘EJ :ﬁ = R &(;k +Gkﬂ +Rk1%+

dp M ¥

A single diagonalization and linear algebra
used for derivatives like these:

. R
Y




1-D Manifold

 Manifold is nonlinear
— Compare to exact dynamics
e Dimension reduction: 1 ODE instead of 150-300
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Compare Predictor-Corrector and ILDM

e Good agreement between predictor-corrector

and ILDM
T=1200K,D =100 T=1100K, D = 1000
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Moving Toward Equilibrium

* Find manifold and steady conditions
— Use manifold idea as an aid to find steady flames, etc

o Alternative approach to full integration, which is
used when shooting and Newton methods fail

o Short time propagation to manifold, then follow manifold.

— Newton method near steady for maximum accuracy
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Attraction to manifold near equilibrium for
ozone combustion

* Defines best manifold near equilibrium
— Ratio of adjacent eigenvalues (labeled “o”)

— Two-dimensional manifolds at lower T and 1-D
manifolds at higher T

e Function of temperature for ozone combustion:
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Summary

« Low-dimensional manifolds in systems with reaction and
diffusion

— Reduces effort from hundreds of ODESs to a few
— Different than species reduction

* Modification of ILDM algorithm for high dimensional
systems with truncated spectra

— Large computational savings
* Need better algorithm for 2-D manifolds

o Attractive manifolds over significant regions of parameter
space
— Attractiveness limited
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