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Study of R-D Equations

• Adapt and build framework for studying phase space 
structure

• Driven by numerical experiments and the dynamics of 
model systems with analytical solutions
– Linear and nonlinear cases



Bottom Line

• Systems are dissipative
• Relax to equilibrium distribution

– 0-D manifold in ∞-D space
• When there is a sufficient separation of time scales there 

are low-dimensional manifolds on the way to equilibrium
• Find ways to observe/generate manifolds

– Project onto physical space



Comments

• Examples chosen are meant to fit within combustion 
research framework

• Most interested in chemical behavior
• In the combustion community test cases typically have 

one spatial dimension
– Standard test examples are one-dimensional flames 

with complex chemistry
– Possibly many species

• H2/O2 has 10-12, including temperature
• Methane models have ~40, depending on model

• Spatial distributions are generally simple



Ozone Combustion

• Example from:
– S. B. Margolis, J. Comp. Phys. 27, 410 (1978).
– S. Singh, J. M. Powers, S. Paolucci, J. Chem. Phys. 

117, 1482 (2002).
• 14 reactions, 3 species (O, O2, O3)

– Simplified further in current study: isothermal and 
reaction-diffusion system only:

– Scaled length. Mixed boundary conditions
– Method-of-lines: 100 points for each species

• Solve 300 ODEs

∂[O2 ]
∂t

 =  − k3[O2 ][O3]+ ...+ D∂2[O2 ]
∂x2



Time development of species 
distribution

• Solving the reaction-diffusion equations defines the 
species spatial distributions as a function of time:

x (range ~ 1 cm)



Geometric Representation

Propagation of three 
additional distributions



More Projections of 1-D Manifold

Left: [O2] (x=.49), [O] (x=.49)
Right: [O2] (x=.77), [O] (x=.29)

Two 2-D projections 3-D projection



Implications of 1-D Manifold

• Time development of all species spatial distributions 
follow from a single point along any of their spatial 
distributions  



Investigate Low-Dimensional Manifolds for 
Reaction-Diffusion Equations

• Studied many simple systems, including:
– Nonlinear model
– Ozone combustion

• Two papers:
– “Low-Dimensional Manifolds in Reaction-Diffusion 

Equations 1: Fundamental Aspects”, J. Phys. Chem. 
A 110, 5235 (2006)

– “Low-Dimensional Manifolds in Reaction-Diffusion 
Equations 2: Numerical Analysis and Method 
Development”, J. Phys. Chem. A 110, 5257 (2006)



Nonlinear test system with an exact 
solution
• System:

• Boundary Conditions:

• Study γ >> 1, D1

• Pure chemical kinetics (D1 = D2 = 0, a = γ-2) has an 
exact manifold (“chemical manifold”):

y2 =  y1
2

∂y1

∂t
 =  - y1 +  D1

∂ 2y1

∂x 2

∂y2

∂t
 =  − γy2  +  ay1

2  +  D2
∂ 2y2

∂x 2  

y1(x = 0) = y10,  y2(x = 0) = y20,  
∂y1

∂x
(x =1) = ∂y2

∂x
(x =1) = 0



Solution Nonlinear Reaction-Diffusion



Solution Nonlinear Reaction-Diffusion 2



Manifold Equation

• Relaxation
• Define manifold in physical space

– Eliminate time

y1β  ≡  y1(x = xβ ) − y1
eq (x = xβ )

e
-[1+

π 2D1

4
]
 =  

y1β

sin(
πxβ

2
)

 



Dimension reduction for nonlinear 
model

• So, at longest time, the following hold (1-D manifold):

y2φ  =  f(xφ )
y1β

2

[sin(
πxβ

2
)]2

 +  g(xφ )
y1β

sin(
πxβ

2
)

y1 and y2 at different spatial points are  functions of 
y1 at one spatial point (xβ).  Good for all species at 
all spatial points.

y1σ  =  
sin(πxσ

2
)

sin(
πxβ

2
)

y1β



Develop numerical methods for dimension 
reduction

• Dimension reduction represents orders of magnitude 
reduction at long time

• Develop a geometric approach
• Adapt two methods

– Maas-Pope ILDM algorithm
• Approximate, but can be implemented for manifolds 
of any dimension

– Predictor-Corrector (Davis and Skodje)
• Accurate, but only developed for one-dimensional 
manifolds.

• Easily implemented



ILDMs

• Test ILDM for nonlinear model
– Analytic results

• Develop numerical procedure
• Test on ozone example

– For 1-D manifolds, compare to 
predictor-corrector



ILDM Calculation for Model



Error Analysis for nonlinear model
• ILDM can be found analytically.  Error in quadratic term.

y2φ  =  f(xφ )
y1β

2

[sin(
πxβ

2
)]2

 +  g(xφ )
y1β

sin(
πxβ

2
)

f(x)  =  Τmsin[(m + 1
2

)πx]
m
∑   

Tm −  Tm
MP

Tm
 =  2(δm )2

(1−δm )
 δm ≡  

λ0
(1)

λm
(2)

λ0
(1) =  − 1  −  π 2D1

4
λm

(2)  =  − γ −  π 2(m + 1
2

)2 D2



Error Analysis for nonlinear model (2)
• Relative error depends on interplay between reaction 

stiffness (γ) and diffusion (the D’s)
• Sum of terms, so may be difficult to pin down
• Generally the errors are greatest when δ0 is largest



Error Analysis for nonlinear model (3)
• Error analysis more complicated for 2-D manifolds
• 2-D generally accurate, but not always:

Need more accurate method for 
2-D manifolds



Numerical Generation of ILDMs: Start 
near equilibrium

[O](x, t)  = [O]eq(x) + y1(x, t)

∂[O2 ]
∂t

 =  − k3[O2 ][O3]+  ...  + D∂2 [O2 ]
∂x2

∂y2
∂t

 =  − k3([O2 ]eq y3  +  [O3]
eq

y2 )+ D∂2y2
∂x2

Dynamics near equilibrium:

The following results:

For:

[O2 ](x, t) = [O2 ]eq(x) + y2(x, t)

[O3](x, t) = [O3]eq(x) + y3(x, t)



Near equilibrium (cont)
• The linear system which includes terms like this:

can be solved as an eigenvalue/eigenvector problem
on a grid or with a basis set 
– Information often available in computer codes

• One-dimensional manifold extends this away from 
equilibrium and into nonlinear region.

∂y2
∂t

 =  − k3([O2 ]eq y3  +  [O3]
eq

y2 )+ D∂2y2
∂x2



Dynamics near Equilibrium: Contrast 
Chemical-Kinetic case with R-D

• Linear, 1-D manifold near equilibrium pt. for chemical 
kinetics

• Projection of linear, 1-D manifold near equilibrium 
distribution of Reaction-Diffusion Equations

• Equilibrium point for chemical kinetics• Projection of equilibrium distribution for R-D Equations
(x

=0
.4

)

(x=0.5)



ILDM: Manifold for Chemical Kinetics vs. 1-
D Manifold for Reaction-Diffusion
• ILDM (Maas-Pope) for Chemical Kinetics

• ILDM: Least steepest descent lies along f

dyi
dt

 =  fi({y j})

v
~

f ,v
~

s :  eigenvectors. of J,  Jij  =  ∂fi
∂y j

∂yi
∂t

 =  G =  fi({y j}) +  Di
∂2yi
∂x2

v
~

f ,v
~

s :  eigenvectors. of J,  Jij  =  ∂fi
∂y j

 +  Di
∂2(δyi )

∂x2  

Reaction-Diffusion

G

Equilibrium Distribution



New algorithm for ILDMs

• Extra care needed because:
– True spectrum is infinite and all calculations are 

truncated versions
• Only a few eigenvectors sufficiently converged
• Even truncated versions are large

• New algorithm is faster and more stable
– Only “slow” space used to find manifold

• Reduces need for unconverged eigenvectors
– “Analytic” eigenvector derivatives used in search

• Reduces number of matrix diagonalizations
– Generated 1-D and 2-D manifolds



Description of algorithm for 1-D ILDMs

Diagonalization of Jacobian:

LT JR =  Λ

dyk
dt

 =  Gk ({y j}), j =  1 → n

Jkm  =  ∂Gk
∂ym

Dynamical system:

Define Jacobian:

Elements of the right eigenvectors:

Rkm



Description of algorithm for 1-D ILDMs: 2

Rk1
Rm1

= Gk
Gm

, k =  1 → n, k ≠  m

Sk = 0, k =  1→ n, k ≠ m
Sk ≡ Rm1Gk (x) -  Rk1Gm(x), k =  1→ n, k ≠  m

Eigenvector of interest:

Maas Pope conditions:

Rk1

Search for zeros:



Description of algorithm for 1-D ILDMs: 3

Search requires:

Jkj
S = ∂Sk

∂y j
 =  Rm1

∂Gk
∂y j

 + Gk
∂Rm1
∂y j

 + Rk1
∂Gm
∂y j

 +  Gm
∂Rk1
∂y j

 

 ∂Rm1
∂y j

,  ∂Rk1
∂y j

 

A single diagonalization  and linear algebra 
used for derivatives like these:

“Analytical” eigenvector derivatives



1-D Manifold
• Manifold is nonlinear

– Compare to exact dynamics
• Dimension reduction: 1 ODE instead of 150-300



Compare Predictor-Corrector and ILDM
• Good agreement between predictor-corrector 

and ILDM

* : ILDM Lines: Predictor-corrector



Moving Toward Equilibrium
• Find manifold and steady conditions

– Use manifold idea as an aid to find steady flames, etc
• Alternative approach to full integration, which is 
used when shooting and Newton methods fail

• Short time propagation to manifold, then follow manifold.
– Newton method near steady for maximum accuracy

Manifold reached
Follow manifoldFind steady flame

Initial DistributionInitial Distribution



Attraction to manifold near equilibrium for 
ozone combustion

• Defines best manifold near equilibrium
– Ratio of adjacent eigenvalues (labeled “α”)
– Two-dimensional manifolds at lower T and 1-D 

manifolds at higher T
• Function of temperature for ozone combustion: 

2-D

1-D



Summary

• Low-dimensional manifolds in systems with reaction and 
diffusion
– Reduces effort from hundreds of ODEs to a few
– Different than species reduction

• Modification of ILDM algorithm for high dimensional 
systems with truncated spectra
– Large computational savings

• Need better algorithm for 2-D manifolds
• Attractive manifolds over significant regions of parameter 

space
– Attractiveness limited




