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Current practice in materials development

Design of materials and processes
Is largely empirical

Macroscopic models are used in
process design, but
molecular/microscopic models are
not

Materials properties (advanced ...'“3‘-’
materials) require consideration of

molecular structure




Evolution of polymer networks
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Background

* Objectives

— Use complex simulations to control and engineer nanoscale material
structure

— Understand and predict the uncertainty

* Technical approach

— Build reduced order (reduced computation) models based on discrete
configurations using the full simulations

* Aggregation
® Discrete number of states
— Use spatial statistics to model the error
®* Errors in areduced order model are correlated

— Current state: multiple modeling approaches, error analysis is ad hoc
or non-existent

* Adaptive tabulation (Pope 1995)



Plant model
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Key gquestion

What is the mathematical structure of a molecular system?

Options

1. Probabilistic representation

* Master equation or Liouville equation

e State-affine control system

* Graph structure

2. Stochastic simulations of time-dependent behavior
* Molecular dynamics (many body Hamiltonian)
e Kinetic Monte Carlo (Poisson statistics)

e State is not meaningful as a dynamic state

3. Moment equations

* Not closed for many properties of interest
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Reduction Approach
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Characterizing the state space

Simulations with constant and varying Ga flux profiles

Run a set of
simulations under
different conditions

l

Performed 76 KMC simulations
Growth Temperature: 580 °C
Incident As, flux: 0.4 ML/s
Incident Ga flux: 0.06-0.20 ML/s
Lattice size: 300x300

Record surface
snapshots

l

Quantify the
microstructure of
the surface snapshots

1521 surface
snapshots are
recorded

0.05 ML 0.15 ML 0.20 ML

Film coverage

Use a step-step correlation (SSC) function.

Only interested in relative positions of the steps.
Each snapshot is described by a (300x16) SSC matrix.




Principal component analysis

Reducing the dimensions of the simulation data

PCA retains most of the information:
* Find the principal components
* Plot eigenvalues versus PCs

* Pick the first ‘n’ PCs that can capture
most of the variance

Data reconstruction showed that we need 5 PCs

> [X1,X5... X4800]
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The self organizing map

An algorithm used for grouping similar surface snapshots
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®* Each surface snapshot is

described by a 5-D data mapped onto a * 1521 snapshots are
vector. particular node. grouped in 175 map
nodes.

e Each map nodeis * Similar snapshots
described by a 5-D are mapped onto the

prototype vector. same map node.



Cell mapping

Transitions between different snapshot groups

Performing system identification:

— Pick one snapshot from each
map node.

— Run additional simulations
starting from selected
snapshots under each
different flux setting.

— lIdentify and record the map
node that the system reaches
in each case.

Cell mapping provides a dynamic
model:

— Relationship between the
system state and the surface
coverage under different flux
profiles.

Flux setting 1

—
~

Flux setting 2

Cell-to-cell
mapping
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Local (one-step) error associated with
cell mapping

Assumption: Structures in
the same node should show
identical dynamic behavior

under same input. -

If the assumption

Cell mapping error=0

Is correct for one step
If the assumption

‘ If the assumption

IS incorrect is correct for

multiple steps

Cell Mapping error:
[ISSC1-SSCy|| I [CIISSCyll + [[SSC,l[ ) /2]
SSC functions are constructed from prototype vectors.




Results of the CME (local error) analysis

Compute the error for

ee
Sy

e 52% of the mappings turned out to be identical

each node under each
flux setting

With a 0.52 probability, the mapping error
is ‘0’
e With a 0.9 probability:

Mapping error < 0.75%

e Surface structures in the same groups show
similar dynamic behavior.

e Alarger SOM can decrease the CME.
— Larger SOM= Larger cell map

— Computational load for cell mapping
would increase.

Discretize the error
domain into bins

Compute the probability

—)

of having certain error values
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Testing the dynamic model

Run test simulations and evaluate model performance
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How can we quantify
prediction error?
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Global (multi-step) prediction error

Cumulative distribution function (CDF)
of the error

— With a probability of 0.99, error
is less than 2.5 %.

The mean value of error at different
film coverage levels (Eg5:<1.2%)

— Mean Eggcincreases steadily at
high film coverage (prediction
gets worse)

Error at 0.2 ML is lower for simulations
in the training data

— Dynamic model is more familiar
with the film structures in the
training data

No need to run more test simulations

Cumulative Distribution Function

ESSC
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Optimizing film structure

Minimizing the deposition time

0.2
Find the H
most > Zots
regular E
film Find the optimal & o | |
structure flux profile | L
to reach that 0025 0.05 0.1 0.15 0.2
Structure Surface coverage (ML)
: : Simulation vs
Used eight flux settings (0.06, 0.08 ... 0.20 ML/s). orediction

— 10 surface coverage intervals.

— Simulation |
I |
© 7 = Prediction |

— 810 possible flux profiles.
48% reduction in the deposition time.

Optimal profile is found without running 81° KMC
simulations

— It would have taken 2.9 million years using an
Intel Xeon processor (2.66 GHz speed).

— Took 5 minutes using the dynamic model
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Modeling of the Error

Error quantification and prediction via spatial statistics
® Develop procedures for spatial statistics

1. the sample points

2. the form of the spatial correlation function

3. aset of regression functions - Exact Function

4. the method for parameter identification Kriging Model

e Apply and generalize kriging p
for static systems to the Xy = Z'Bi f(X U ) +Z (X, Uy )
dynamic models i1

Z ~N(0,0°)

Cov[Z (%), Z(x;)1=0 -R(x;,%;),i, j=1...n

X, = F (X, Uy )

— Discrete time models

— Kriging is a method, initially developed by geologists, which
uses the sample points as a “true” reference points to infer the
value of the unknown points.
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A Simple Example

Parameter ldentification

— MLE is a good method for
its simplicity, easy to
program, fast response and
accurate solution. 3500

Kriging Approximation

DA C E 3000 e Original

e Kriging

— A standard experimental
design approach causes
high error near the
boundaries due to the local
approximations performed
in kriging.

Regression function

— A constant (not necessarily 5 4 2 2 4 0o 1 2z 3 4 s
the mean)

Model of error correlation

— Gaussian



Prediction of the Error Variance

Use variance as an estimate for uncertainty in the model

Xz = F (X, uy)

Observations

— No uncertainty at the sampled points

— Uniform sampling leads to high uncertainty near the boundaries

Questions
— Where to sample?
— How to use the snapshots?
— How to resample?
— What regression functions

to use?
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Impact

* Empirical models based on large simulations are used in many
applications

— Tabulation models in combustion and reacting flow

— Equation-free computing, tabulation, and Markov modeling in
molecular simulations

— Potential applications in multi-vehicle systems

* Methods must be developed to predict and control the uncertainty in the
reduced models (variance v. bounds)

— Suggest when to resample
— Steer away from uncertain regions

* Spatial statistics provide a flexible method for modeling error across
this spectrum of empirical models
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