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Abstract. We provide Lyapunov-like characterizations of boundedness and convergence of non-
trivial solutions for a class of systems with unstable invariant sets. Examples of systems to which
the results may apply include interconnections of stable subsystems with one-dimensional unstable
dynamics or critically stable dynamics. Systems of this type arise in problems of nonlinear output
regulation, parameter estimation, and adaptive control. In addition to providing boundedness and
convergence criteria, the results allow us to derive domains of initial conditions corresponding to solu-
tions leaving a given neighborhood of the origin at least once. In contrast to other works addressing
convergence issues in unstable systems, our results require neither input-output characterizations
for the stable part nor estimates of convergence rates. The results are illustrated with examples,
including the analysis of phase synchronization of neural oscillators with heterogeneous coupling.

Key words. convergence, weakly attracting sets, Lyapunov functions, synchronization

AMS subject classifications. 34C11, 34D05, 34E18, 37B25, 37C70, 93C10, 93C41

DOI. 10.1137/120865173

1. Introduction. Methods and tools for the analysis of asymptotic properties
of solutions of ordinary differential equations are important components of modern
control theory. Even though the problems of control are often viewed as that of
synthesis rather than analysis, the latter crucially affects the former. Indeed, in order
to be able to specify feasible goals of synthesis, e.g., forward-completeness, state
boundedness, asymptotic convergence of solutions to a region in the state space, etc.,
one needs to understand how these properties depend on the system parameters and
controls.

The majority of the analysis techniques in control, and hence methods for systems
design, rely upon the assumption that desired motions in the system are stable in the
sense of Lyapunov [23]. Let us briefly recall this and other related notions from
the domain of dynamical systems and also introduce notational conventions used
throughout the manuscript.

1.1. Notation and basic notions. The following notational conventions are
used throughout the paper. Let D be an open set in R

n. The symbol Ck(D) denotes
the space of functions that are at least k times differentiable in D; D denotes the
closure of D; ‖ · ‖ stands for the Euclidean norm. Let S be a subset of Rn, and
let x ∈ R

n; then dist(S, x) = infx′∈S ‖x − x′‖. By K0 we denote the set of all
nondecreasing continuous functions κ : R≥0 → R≥0 such that κ(0) = 0; K ⊂ K0 is the
subset of strictly increasing functions, and K∞ ⊂ K consists of functions from K with
infinite limit: lims→∞ κ(s) = ∞. Consider a nonautonomous system ẋ = f(x, p, t),
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where f : Rn × R
d × R → R

n is continuous, p ∈ R
d is the vector of parameters, and

f(·, p, t) is locally Lipschitz; x(· ; t0, x0|p) stands for the unique maximal solution of the
initial value problem: x(t0; t0, x0|p) = x0. In cases when no confusion arises, we will
refer to these solutions as x(·; t0, x0), x(·;x0), or simply x(·). Solutions of the initial
value problem above at t are denoted as x(t; t0, x0), x(t;x0), or x(t), respectively. We
always separate by the semicolon the symbol of the independent (time) variable from
symbols of other variables (initial data or parameters).

Let us start with the classical notion of invariance of a set. Let D be an open
subset of Rn, and consider systems represented by differential equations ẋ = f(x)
in the domain D. The right-hand side, f(x), is assumed to be a locally Lipschitz
vector-field on D. In this case, for any initial condition x(0) = x0, x0 ∈ D, the system
has a solution x(·;x0) defined on a time interval (−τ, τ) where τ > 0 may depend
on x0. A set S, S ⊂ D, is forward invariant (w.r.t. the system dynamics) if for every
x0 ∈ S, x(·;x0) is defined on [0,∞) and x(t;x0) ∈ S for all t > 0. S is invariant if
for every x0 ∈ S the solution x(·;x0) is defined on (−∞,∞), and x(t;x0) ∈ S for all
t ∈ R. Unions and intersections of a family of (forward) invariant sets are (forward)
invariant.

A closed invariant set S ⊂ D is a weakly attracting set if there exists a set V ⊂ D
with strictly positive measure such that for all x0 ∈ V the solution x(·;x0) is defined
on [0,∞) and the following holds: limt→∞ dist(S, x(t;x0)) = 0 [26]. The set V is not
necessarily a neighborhood of S. The set is attracting if V is a neighborhood of S, and
V is forward invariant. A closed invariant set S ⊂ D is stable in the sense of Lyapunov
if for any neighborhood V of S there exists a forward invariant neighborhood W ⊂ D
of S such that W ⊂ V [41]. In other words, a set that is stable in the sense of
Lyapunov has a fundamental base of forward invariant neighborhoods. (A collection
US of all neighborhoods of S is called a neighborhood system of S. A subcollection
BS ⊂ US is a fundamental base of system US iff every element of US contains at least
one element of BS .)

For noncompact sets S ⊂ D it may be useful to distinguish the notion of Lyapunov
stability from the notion of uniform Lyapunov stability that is defined with uniform
neighborhoods [10].

Various extensions of stability of sets are proposed for nonautonomous systems
too [20]. For these systems we need the notion of forward invariance of sets in the
state space. Consider systems ẋ = f(x, t) in a domain D × R ⊂ R

n+1, where the
vector-field f : D × R → R

n is continuous, and f(·, t) is locally Lipschitz uniformly
in t. A set S ⊂ D is t0-forward invariant w.r.t. dynamics if for given t0 ∈ R and every
x0 ∈ S the solution x(·; t0, x0) is defined on [t0,∞) and x(t; t0, x0) ∈ S for t ≥ t0. If it
is t0-forward invariant for all t0, then we call it forward invariant. In this work, we use
systems of nested forward invariant sets to characterize the attractivity of solutions
that are not stable in the classical senses.

The notion of Lyapunov stability and analysis methods that are based on this
notion are proven successful in a wide range of engineering applications (see as a list
of nonexhaustive references, e.g., [30], [18], [22], [29]). The popularity and success of
the concept of Lyapunov stability resides, to a substantial degree, in the convenience
and utility of the method of Lyapunov functions for assessing asymptotic properties of
solutions of ordinary differential equations. Instead of deriving the solutions explicitly
it suffices to solve an algebraic inequality involving partial derivatives of a given
Lyapunov candidate function.

As the methods of control expand from purely engineering applications into a
wider area of science, there is a need for maintaining behavior that fails to obey the
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oscillators of which the phase differences are governed by the following set of equations
(see section 4.2):

ϑ̇1 = ε/π sin(ϑ2)
2,(2a)

ϑ̇2 = −ε1/2 sin(2ϑ2) + ε/π(sin(ϑ1)
2 + sin(ϑ2)

2).(2b)

Variables ϑ1, ϑ2 denote the phase differences, and ε, ε1 are parameters representing
the coupling strengths between oscillators. It is clear that the origin of (2a), (2b) is
unstable in the sense of Lyapunov. This rules out explicit application of Lyapunov
function–based approaches for deriving conditions of synchronization in such systems.
The questions, nevertheless, are, For which values of ε, ε1 will phase synchronization
occur, how large is the domain of initial conditions leading to such a synchronous
state, and how does it depend on ε, ε1?

Example 3. A universal adaptive stabilizer of nonlinear systems (in the presence
of uncertainties). The studied question is as follows. Consider the following system:

ẋ = f(x, t) + g(x, t)u(t), f : Rn × R → R
n, g : Rn × R → R

n×m,

y = h(x), h : Rn → R
d,

(3)

where y is the output, and u : R → R
m is a control input which may depend on

the current value of y(t) = h(x(t)) and on time t directly. The functions f(·, ·), g(·, ·)
are not known explicitly. What a priori information about the system should be
made available in order to derive a control input u(·) stabilizing the zero solutions
of (3)? The question has been answered in [15], [31] (see also [1], [17], [16] for related
work). Assume that there exists a matrix K ∈ R

m×d such that the zero solution
of ẋ = f(x, t) + g(x, t)Kh(x) is exponentially stable. The following system with the
stabilizer was constructed:

ẋ = f(x, t) + g(x, t)β(γ(λ))h(x),

λ̇ = ‖h(x)‖p, p ≥ 1,
(4)

where β(·) : R → R
m×d is a special function with dense image in R

m×d and γ : R → R

is a special monotone function whose growth rate decays to zero as λ→ ∞ [15]:

lim
λ→∞

λ · sup
�≥λ

∣∣∣∣ dd�γ(�)
∣∣∣∣ · sup
�∈[0,λ]

‖β(γ(�))‖p = 0.

It was proven that the x-component of solutions converges to the origin as t → ∞.
(For the details of β(·) and γ(·) construction and specific conditions on functions
f(·, ·), g(·, ·), and h(·), see the original papers [15], [31].) Nevertheless, solutions of
the extended system (4) are not uniformly asymptotically stable (cf. [37]).

Despite the problems described in Examples 2 and 3 arising in different subject
areas, they are inherently similar. In both cases we have to deal with systems com-
posed of an “attracting” subsystem coupled with a “wandering” one. The attracting
subsystem has an attracting invariant set in its state space, and solutions of the wan-
dering subsystem unidirectionally evolve along a certain path. The general description
of the composed system is provided below.
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1.3. Class of systems. We will focus on systems whose dynamics can be de-
scribed by the system of ordinary differential equations

(5a)

{
ẋ= f(x, λ, t),

λ̇= g(x, λ, t),

where the vector-fields f : Rn × R × R → R
n, g : Rn × R × R → R are continuous,

f(·, ·, t), g(·, ·, t) are locally Lipschitz uniformly in t, and g(·, ·, ·) in (5a) is of constant
sign. Equation (5a) describes the coupled system generalizing (1a)–(1c), (2a), (2b),
and (4).

Throughout the paper we assume that (0, 0) is an equilibrium of (5a). Moreover,
we assume that the origin x = 0 is a weak attractor of the x-subsystem of (5a) for
frozen values of λ at λ = 0; i.e., the origin x = 0 of the system

(5b)

{
ẋ= f(x, λ, t),
λ= const, λ ∈ R,

is a weak attractor at λ = 0. We also assume that for system (5b) there are a p > 0
and a set ω(p) which is forward invariant for all λ ∈ [0, p]: if x0 ∈ ω(p) and λ ∈ [0, p],
then

(6) x(t; t0, x0|λ) ∈ ω(p) for all t0 ∈ R, t ≥ t0.

In principle, ω(p) is allowed to coincide with R
n. Notice also that since we do not

wish to impose any additional specific constraints (such as, e.g., minimality), the set
ω(p) is not uniquely determined by the system itself. For example, for the system
(5b) induced by the first equation of (1a) the sets ω(p) can be chosen as intervals
[b1, b2], b1 ≤ 0, b2 ≥ p, as well as (−∞, b2], [b1,∞), or (−∞,∞). For the system (5b)
corresponding to (1b) the sets ω(p) are [0, b1], b1 ≥ √

p. For the sake of simplicity one
may ignore references to ω(p) in the statements of the results and assume that ω(p)
coincides with R

n. On the other hand, as we shall see later, the introduction of ω(p)
enables us to produce criteria for checking whether an equilibrium is a weak attractor
or not for dynamical systems (e.g., described by (1b)) in which the zero solution of
(5b) at λ = 0 is not stable in the sense of Lyapunov.

Further and specific technical assumptions about f(·, ·, ·) and g(·, ·, ·) are provided
in section 2.

Remark 1. If ω(p) is forward invariant for (5b) for all λ ∈ [0, p], then the set ω(p)
is also forward invariant w.r.t. equations

ẋ = f(x, λ(t), t)

for any piecewise-continuous function λ(·) with values λ(t) ∈ [0, p] (and a discrete set
of discontinuity points). This can be easily proved using approximation of λ(·) by
piecewise constant functions.

In addition to the previous examples, equations (5a) describe estimation algo-
rithms in problems of adaptive control and observer design when models of uncertainty
are nonlinearly parameterized, or when the application of standard techniques is com-
putationally ill-posed [11], [38]. They also can be viewed as a prototype for control
and estimation schemes with prerouting in the domain of supervisory control [27].

A rather general interpretation of systems (5a) is that they govern a class of
systems in which inherent dynamics of an object (first equation and (5b)) is coupled
with the dynamics of the system’s resources (second equation). In this regard g(·, ·, ·)
defines the rate of the resource’s consumption, and f(·, ·, ·) determines the velocity of
the state x given the available resources λ at t.
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1.4. Extension of Lyapunov’s idea onto unstable sets. The systems with
inherently unstable behavior are important for many applications, including modeling,
control, and identification (see, for example, [33], [32], where dissipative saddles were
used to model decision-making sequences, [12], where the flutter suppressors were de-
veloped, and [15], [31], where the general problem of universal adaptive stabilization
was studied). Nevertheless, there are limitations restricting further progress in appli-
cation of the broader concept of unstable convergence in these areas. Among these
is the lack of a simple analogue of the Lyapunov method for these, strictly speaking,
unstable systems that would allow one to draw conclusions about asymptotic proper-
ties of unstable solutions without the need to solve the equations. This motivates the
focus of our present work.

In this paper we propose an extension of the classical Lyapunov function method
for assessing boundedness and convergence of motion in dynamical systems with un-
stable invariant sets. The class of systems we will consider is given by (5a), and the
questions we address below can be formulated as follows:

1. Let the origin of (5a) be an equilibrium. Can we tell (without solving the sys-
tem) whether the set is an attractor in some appropriate sense, e.g., Milnor’s
sense [26]?

2. Pick a point in the system’s state space. Is it possible to predict (without solv-
ing the system) whether the solution passing through this point is bounded
in forward time, or does it escape to infinity?

These questions are certainly not original. Algebraic criteria for checking attractivity
of unstable point attractors in a rather general setting have been proposed in [34] and
were further developed in [24], [40]. These results apply to systems in which almost
all points in a neighborhood of the attractor correspond to solutions converging to the
attractor asymptotically. Yet, as can be seen clearly from Figure 1, this requirement
may not hold for the class of systems described by (5a). On the other hand, tech-
niques which can be used to address the questions above for equations (5a), such as,
e.g., [39], lack the convenience of the method of Lyapunov functions. Further, they re-
quire the existence of input-output gains for the stable subsystem. Hence, developing
novel methods to address the issue of convergence to unstable sets is needed. These
methods, on the one hand, should inherit the efficiency of Lyapunov analysis in which
boundedness of solutions can be verified by checking a system of inequalities without
involving prior knowledge of the solutions of the system. On the other hand, these
methods should apply to systems with instabilities, such as those specified by (5a).
In our present contribution we provide a set of results that can be considered as a
possible candidate.

The main idea behind the development of these results can briefly be summarized
as follows. Since we are interested in the solutions that are not necessarily stable
in the sense of Lyapunov, we abandon the concept of neighborhoods from standard
Lyapunov analysis [23], [41]. For a given invariant set S of a system, instead of
searching for a fundamental base of forward invariant neighborhoods of S, we study
the existence of a collection of forward invariant sets associated with S. These sets
are not necessarily neighborhoods, and they are not required to form a fundamental
base. In particular, the sets are allowed to be closed, and their boundaries may have
nonempty intersections with S.

For the chosen class of dynamical systems we formulate Lyapunov-like conditions
that allow us to specify forward invariant sets containing Lyapunov-unstable equilibria
on their boundaries. In the classical method of Lyapunov functions the role of a
Lyapunov function is to ensure that an invariant set, e.g., an equilibrium, has a
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fundamental base of forward invariant neighborhoods. In our work we use an extension
of this method in which a substitute of a Lyapunov function is used to demonstrate
the existence of a family of forward invariant sets (not necessarily neighborhoods)
associated with the equilibrium.

The method we use for determining positive invariance of an individual set is
similar in spirit to the second method of Lyapunov [23] and its extensions [9], [41],
[25], including equations with differential inclusions [5], [21], [28], [3], [4]. Namely,
we are looking for closed sets containing the origin such that on the boundaries of
these sets the vector-fields in the right-hand side of (5a) are pointing inward or van-
ishing. Following this intuition we demonstrate that there is a set of simple algebraic
conditions, very similar to those in the second method of Lyapunov, enabling us to
characterize asymptotic behavior of solutions for systems with unstable invariant sets.
In particular, these results allow us to estimate the domains of initial conditions, as
functions of system parameters, which are associated with bounded solutions in for-
ward time without the need to require information about the convergence rate of the
stable part of (5a). Parameters of these systems are not required to be known pre-
cisely, and input-output gains of the systems need not be defined. Furthermore, in
contrast to our previous results on the same topic [39], the present conditions allow
us to specify domains of initial conditions that lead to solutions necessarily escaping
from a neighborhood of the equilibria in question.

The paper is organized as follows. In section 2 we formulate the problem and
specify the main assumptions. Section 3 contains the main results of the paper.

Section 4 presents illustrative examples showing how the results can be applied
to (1) derive estimates of attractor basins for (1a)–(1c), (2) solve the phase synchro-
nization problem described in Example 2, and (3) design an adaptive control scheme
for a class of systems with general nonlinear parametrization. Section 5 concludes the
paper. Auxiliary technical results are presented in the appendix (section 6).

2. Problem formulation. Consider system (5a),

ẋ = f(x, λ, t),

λ̇ = g(x, λ, t),
(5a)

where the vector-fields f : R
n × R × R → R

n, g : R
n × R× R → R are continuous

and locally Lipschitz w.r.t. x, λ uniformly in t. Recall that the point x = 0, λ = 0
is an equilibrium of (5a), that x = 0 is a weak attractor for (5b) at λ = 0, and that
ω(p), p > 0, is the set which is forward invariant for all λ ∈ [0, p] w.r.t. the dynamics
of (5b).

Let D be an open subset of Rn, and let Λ = [c1, c2], c1 ≤ 0, c2 > 0, be an interval.
Suppose that the closure D of D contains the origin, and denote DΩ = D × Λ × R.
Finally, we suppose that the right-hand side of (5a) satisfies Assumptions 1 and 2
below.

Assumption 1. There exist a function V : R
n → R, V ∈ C0, differentiable

everywhere except possibly at the origin, and five functions of one variable, α, ᾱ ∈ K∞,
α : R≥0 → R, α ∈ C0([0,∞)), α(0) = 0, β : R≥0 → R≥0, β ∈ C0([0,∞)), ϕ ∈ K0,
such that for every (x, λ, t) ∈ (D \ {0})× Λ× R the following properties hold:

α(‖x‖) ≤ V (x) ≤ ᾱ(‖x‖), ∂V

∂x
f(x, λ, t) ≤ α(V (x)) + β(V (x))ϕ(|λ|).(7)
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Assumption 1 holds, for example, for systems in which the term (∂V /∂x)f(x, λ, t)
can be bounded from above as follows: there exist α0, β0, ϕ ∈ K such that

(8)
∂V

∂x
f(x, λ, t) ≤ −α0(‖x‖) + β0(‖x‖)ϕ(|λ|) for all (x, λ, t) ∈ (D \ {0})× Λ× R.

Indeed, (7) follows immediately from (8) with α(·) = −α0 ◦ ᾱ−1(·), β(·) = β0 ◦α−1(·),
and α−1(·), ᾱ−1(·) is the inverse of α(·), ᾱ(·), respectively. In this case, Assumption 1
states that the zero solution of (5b) at λ = 0 is globally asymptotically stable in
the sense of Lyapunov, and V (·) is the corresponding Lyapunov function. Notice,
however, that Lyapunov stability of the zero solution of (5b) at λ = 0 is not needed
for the assumption to hold. System (1b) is an example of a system in which the
origin is unstable equilibrium, and yet Assumption 1 is satisfied with V (x) = x2, D =
{x| x ∈ R>0} (see section 4.1 for more details). Finally, we remark that despite the
right-hand side of (5a) being allowed to be time-varying, we restrict our consideration
to systems for which the function V (·) does not depend on time explicitly.

Let us now proceed with detailing the requirements for the function g(·, ·, ·). These
are presented in Assumption 2.

Assumption 2. There exist functions δ, ξ ∈ K0 such that the following inequality
holds for all (x, λ, t) ∈ DΩ:

−ξ(|λ|)− δ(‖x‖) ≤ g(x, λ, t) ≤ 0.(9)

Assumption 2 reflects the fact that derivative λ̇ does not change sign for all
(x, λ, t) ∈ DΩ. Without loss of generality we consider the case when λ is nonincreasing
with time. Alternative formulations of our conclusions for the case when (9) is replaced
with 0 ≤ g(x, λ, t) ≤ δ(‖x‖) + ξ(|λ|) are readily available. (In this case one may also
need to redefine Λ as an interval [c1, c2], c1 < 0, c2 ≥ 0.)

We aim to formulate a list of conditions that would allow us to estimate forward
invariant sets of (5a) and, specifically, those in which the solutions of (5a) remain
bounded. These conditions are provided in the next section.

3. Main results. Before providing formal statements of the results let us briefly
comment on the internal structure of the section. We begin with section 3.1 present-
ing conditions for the existence of forward invariant sets for (5a) containing nontrivial
bounded solutions in forward time. The conditions are constructive; i.e., not only is
the existence of such sets guaranteed, but their boundaries are also explicitly provided.
Two alternative statements of the results are discussed: one is limited to the case
of differentiable boundaries (Lemma 1, section 3.1), and the other is applicable to
nondifferentiable boundaries (Lemma 2, section 3.1). Estimates of the sets corre-
sponding to solutions escaping the origin are provided in Lemmas 3 and 4 in sec-
tion 3.2.

3.1. Forward invariance. Our first result is provided in the lemma below.
Lemma 1 (boundedness 1). Let system (5a) be given and satisfying Assump-

tions 1 and 2. Suppose that the following holds:
(C1) there exist a function ψ : ψ ∈ K ∩ C1((0,∞)) and a ∈ R>0 such that for all

V ∈ (0, a]

(10)
∂ψ(V )

∂V
[α(V ) + β(V )ϕ(ψ(V ))] + δ

(
α−1(V )

)
+ ξ (ψ(V )) ≤ 0,

and suppose, in addition to (C1), that the following hold:
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∂ψ
∂V V̇ − λ̇|λ=ψ(V ) ≤ 0. Hence, according to (10), the vector (V̇ , λ̇) is pointing in the
direction of λ ≥ ψ(V ) on the surface λ = ψ(V ). Condition (C2) is illustrated in
panels b and c. Panel b shows the case when the set D contains ω(ψ(a)). Set D is
the dark grey rectangle, the set λ ≥ ψ(V (x)) for some fixed value of λ is depicted
as a light grey ellipse, and ω(ψ(a)) is the white area. The condition states that
only those crossings through the boundary λ = ψ(V (x)) (segment DE in the figure)
are allowed which occur in the white area. Solutions cannot cross segments CD
and CE and hence must remain in D. Panel c concerns the second alternative, i.e.,
when the ball {x |x ∈ R

n, ‖x‖ ≤ α−1(a)} is in D. The white area depicts the ball
{x | x ∈ R

n, ‖x‖ ≤ α−1(a)}. The ball contains sets {x | x ∈ R
n, V (x) ≤ c, c ∈ [0, a]}

as subsets. Given that the function ψ(·) is nondecreasing and strictly monotone, it is
clear that the ball contains {x |x ∈ R

n, λ ≥ ψ(V (x)), λ ∈ [0, ψ(a)]}. The condition
therefore reflects that any solution x(·; t0, x0, λ0) leaving the set D at t = t′ must
necessarily cross through the surfaces λ = ψ(V (x)), λ ∈ [0, ψ(a)], and ‖x‖ = α−1(a)
at t = t1 and t = t2, t2 ≥ t1, respectively.

Proof of Lemma 1. The proof of the lemma is split into two parts. In the first
part we show that conditions (C2) and (C3) and the fact that Assumptions 1 and 2
hold guarantee that every solution of (5a) satisfying the initial condition x(t0) = x0,
λ(t0) = λ0, (x0, λ0) ∈ Ωa, will either (1) remain in ω(ψ(a))× [0, ψ(a)] for t ≥ t0 (and
consequently in D× [0, ψ(a)]) as long as λ(t; t0, x0, λ0) ≥ 0 (first alternative), or (2) if
it leaves the set D × [0, ψ(a)] at some t ≥ t0, then it should first cross the boundary
λ = ψ(V (x)), λ ∈ (0, ψ(a)] (second alternative), in D × [0, ψ(a)]. This ensures that
inequalities (7), (9) in Assumptions 1 and 2 will hold along the solutions of (5a)
starting in Ωa at t0 for t ≥ t0 as long as they remain in Ωa � {(0, 0)}. Furthermore,
if the solution crosses through the boundary of the set Ωa � {(0, 0)} at some t ≥ t0,
then it must necessarily satisfy Assumptions 1 and 2 over a nonempty interval [t, t′],
t′ > t, because the set Ωa � {(0, 0)} is in the interior of D × Λ.

In the second part of the proof we use this property to show that condition (10)
is incompatible with the assertion that solutions of (5a) starting in Ωa at t = t0 may
intersect the boundary λ = ψ(V (x)) at t ≥ t0.

Part 1. Let (x0, λ0) be a point in Ωa. It is clear that solutions of (5a) exist at
least locally and are unique. According to the first alternative of condition (C2), that
D ⊃ ω(ψ(a)), components x(t; t0, x0, λ0), x0 ∈ ω(ψ(a)), λ0 ∈ [0, ψ(a)] of the solutions
of (5a) must belong to D for t ≥ t0 as long as λ(t; t0, x0, λ0) ≥ 0 (see Remark 1).

Consider the second alternative of (C2); D contains the ball {x | x ∈ R
n, ‖x‖ ≤

α−1(a)}. Since the right-hand side of (5a) is locally Lipschitz, the equilibrium so-
lution x(·; t0, 0, 0) ≡ 0, λ(·; t0, 0, 0) ≡ 0 is unique. Thus solutions x(·; t0, x0, λ0),
λ(·; t0, x0, λ0), (x0, λ0) ∈ Ωa cannot escape the domain D × [0, ψ(a)] through the
point (0, 0). Let us show that if there is a solution x(·; t0, x0, λ0), λ(·; t0, x0, λ0),
(x0, λ0) ∈ Ωa of (5a) that is leaving the set D × [0, ψ(a)] at some t > t0, then it
must first cross the boundary λ = ψ(V (x)), λ ∈ (0, ψ(a)]. Let this not be the case,
and suppose that there exists a solution of (5a) touching the boundary of D without
crossing through λ = ψ(V (x)), λ ∈ (0, ψ(a)]. This means that there exists a t′ > t0
such that

λ(t′; t0, x0, λ0) ≥ ψ(V (x(t′; t0, x0, λ0))),(14a)

λ(t′; t0, x0, λ0) ∈ (0, ψ(a)],(14b)

i.e., no crossing occurred, and yet the point x(t′; t0, x0, λ0) is on the boundary of D.
It is therefore clear that the following must hold: ψ(α(‖x(t′; t0, x0, λ0)‖)) > ψ(a). On
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the other hand, according to Assumption 1, we have that ψ(α(‖x(t′; t0, x0, λ0)‖)) ≤
ψ(V (x(t′; t0, x0, λ0))), and hence ψ(V (x(t′; t0, x0, λ0))) > ψ(a). The latter inequality
together with (14a) result in λ(t′; t0, x0, λ0) > ψ(a). This, however, contradicts (14b).

Part 2. We claim that any solution of (5a) passing through (x0, λ0) at t0 is
defined for all t ≥ t0 and remains in Ωa for all t ≥ t0. Let us first demonstrate that
solutions of (5a) starting in Ωa � {(0, 0)} cannot leave the set through the boundary
λ = ψ(V (x)), V (x) ∈ (0, a]. Assume that this is not the case. Pick an arbitrary point
(x0, λ0) ∈ Ωa � {(0, 0)}, let φ(·; t0, x0, λ0) = (x(·; t0, x0, λ0), λ(·; t0, x0, λ0)), (x0, λ0) ∈
Ωa�{(0, 0)}, be the maximal solution of (5a), and let T = [t0, tmax) be the interval of
its definition for t > t0. Suppose that φ(·; t0, x0, λ0) can cross through the boundary;
i.e., there exists a t′ ∈ T such that λ(t′; t0, x0, λ0) < ψ(V (x(t′; t0, x0, λ0))). Condition
(C3) states that Ωa is in the interior of D × Λ. Hence without loss of generality we
can suppose that φ(t′; t0, x0, λ0) ∈ D × Λ.

Consider the function p : T → R, p(t) = ψ(V (x(t; t0, x0, λ0))) − λ(t; t0, x0, λ0).
The function p(·) is continuous in T . Thus there is a nonempty interval [t1, t

′] ⊂ T
such that p(t1) = 0 and p(t) > 0 for all t ∈ (t1, t

′]. Moreover, given that ψ ∈
C1((0,∞)), for every t ∈ (t1, t

′] the derivative ṗ(t) exists, and ṗ(·) is locally bounded

in T . Therefore p(·) is absolutely continuous in [t1, t
′], and p(t) =

∫ t
t1
ṗ(τ)dτ > 0, t ∈

(t1, t
′]. According to the mean-value theorem there exists a τ ∈ (t1, t] such that

p(t) = (t− t1)ṗ(τ) = (t− t1)

[
∂ψ

∂V

∂V

∂x
f(x(τ ; t0, x0, λ0), λ(τ ; t0, x0, λ0), τ)

− g(x(τ ; t0, x0, λ0), λ(τ ; t0, x0, λ0), τ)

]
.

Using the fact that the function ψ(·) is nondecreasing, i.e., ∂ψ/∂V ≥ 0 for all V ∈
(0, a], and invoking Assumptions 1 and 2 we derive that

ṗ(τ) ≤ ∂ψ

∂V
[α(V (x(τ ; t0, x0, λ0))) + β(V (x(τ ; t0, x0, λ0)))ϕ(λ(τ ; t0 , x0, λ0))]

+ ξ(λ(τ ; t0, x0, λ0)) + δ(‖x(τ ; t0, x0, λ0)‖).

The functions ξ(·), δ(·), ϕ(·) are nondecreasing, and

λ(τ ; t0, x0, λ0) < ψ(V (x(τ ; t0, x0, λ0))).

Hence invoking condition (C1) of the lemma, we can conclude that

ṗ(τ) ≤ ∂ψ

∂V
[α(V (x(τ ; t0, x0, λ0))) + β(V (x(τ ; t0, x0, λ0)))ϕ(ψ(V (x(τ ; t0, x0, λ0))))]

+ ξ(ψ(V (x(τ ; t0, x0, λ0)))) + δ(α−1(V (x(τ ; t0, x0, λ0)))) ≤ 0.(15)

On the other hand, since p(t) > 0 and (t − t1) > 0 for all t ∈ (t′, t1], the following
must hold: ṗ(τ) > 0. This contradicts (15), and hence the statement that the solution
φ(·; t0, x0, λ0) crosses the boundary λ = ψ(V (x)) at some t′ ∈ T in D × Λ� {(0, 0)}
in finite time is not true.

It is also clear that φ(·; t0, x0, λ0) cannot escape Ωa through the boundary λ =
ψ(a) at any t ∈ T since the derivative λ̇(t) is nonpositive for all t ∈ T . Finally, notice
that the only remaining subset of the boundary of Ωa through which the solutions
may escape is the set {(x, λ) | x ∈ R

n, λ ∈ R, V (x) = 0, λ = 0}. This set, however,
is the equilibrium of (5a), and the equilibrium solution φ(·; t0, 0, 0) = 0 is unique.
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Thus φ(t; t0, x0, λ0) ∈ Ωa for all t ∈ T . Noticing that the set Ωa is bounded and
that the right-hand side of (5a) is locally Lipschitz, we conclude that φ(·; t0, x0, λ0)
is defined on [t0,∞) and bounded. Given that (x0, λ0) was an arbitrary point of
Ωa � {(0, 0)}, that t0 was chosen arbitrarily, and that the origin is the equilibrium
of (5a), we conclude that all solutions of (5a) passing through Ωa remain in Ωa in
forward time.

Property (12) is an immediate consequence of the Bolzano–Weierstrass theorem.
In order to see that property (13) holds, we notice that the integral λ(t; t0, x0, λ0) =

λ0 +
∫ t
t0
g(x(τ ; t0, x0, λ0), λ(τ ; t0, x0, λ0), τ)dτ converges. Taking into account the

boundedness of x(·; t0, x0, λ0), λ(·; t0, x0, λ0) on [t0,∞) and the fact that g(·, ·, t) is
locally Lipschitz uniformly in t and is uniformly continuous in t, we conclude that the
function g(x(·; t0, x0, λ0), λ(·; t0, x0, λ0), ·) is uniformly continuous on [t0,∞). Thus,
according to Barbalat’s lemma (see, e.g., [7]),

lim
t→∞ g(x(t; t0, x0, λ0), λ(t; t0, x0, λ0), t) = 0.

Hence the result follows as a consequence of (12) and from the continuity of g(x, ·, t)
in Λ.

Remark 2. Notice that if the interior of ω(ψ(a)) is not empty and its closure
contains the origin, then the measure of Ωa, a > 0, is not zero. Indeed, since the
function ψ(·) is strictly monotone, ψ(a) > 0. Pick a λ′ ∈ (0, ψ(a)), and let B(x, r)
denote an open ball of radius r in R

n centered at x. The ball B(0, (α−1 ◦ ψ−1)(λ′))
is contained in the set {x ∈ R

n| x : ψ−1(λ′) > V (x)}. Since the closure of ω(ψ(a))
contains the origin and the interior of ω(ψ(a)) is open, we can conclude that there
exists a ball B(x′, r) such that B(x′, r) ⊂ ω(ψ(a)) and B(x′, r) ⊂ B(0, (α−1◦ψ−1)(λ′)).
Thus the set B(x′, r) × {λ′} is in the interior of Ωa. It is also clear that the set
B(x′, r)×[λ′, λ′′], ψ(a) > λ′′ > λ′ is in the interior of Ωa provided that λ′′ is sufficiently
close to λ′. Thus the measure of Ωa is not zero.

Remark 3. According to the assumptions of Lemma 1, dψ(V (x(t;x0, λ0)))/dt is
nonpositive in the set {(λ, x) λ ∈ R>0, x ∈ R

n| λ = ψ(V (x)), V (x) ∈ [0, a]}. Hence
if V (x) ∈ [0, a] and t ≥ t0, then

(16)
∂V

∂x
f(x, ψ(V (x)), t) ≤ 0.

Therefore, subject to the assumptions of the lemma, (16) may be used as a necessary
condition for testing positive invariance of the sets Ωa.

Remark 4. If the second alternative of (C2) holds, then the requirement that
ω(ψ(a)) exists is not necessary, and the definition of Ωa may be replaced with Ωa =
{(x, λ) | x ∈ R

n, λ ∈ R≥0, ψ(a) ≥ λ ≥ ψ(V (x)), V (x) ∈ [0, a]}.
Notice also that if D, Λ coincide with R

n and R, respectively, then Lemma 1
reduces to the much simpler statement below.

Corollary 1. Consider system (5a), and let D = R
n, Λ = R. Suppose that

Assumptions 1 and 2 hold and there exist a function ψ : ψ ∈ K ∩ C1((0,∞)) and a
positive constant a such that (10) holds. Then the set

(17) Ωa = {(x, λ) | x ∈ R
n, λ ∈ R≥0, ψ(a) ≥ λ ≥ ψ(V (x)), V (x) ∈ [0, a]}

is forward invariant, and conclusions (b), (c) of Lemma 1 hold.
Lemma 1 requires that the function ψ(·) used in the definition of the set Ωa be

strictly increasing and differentiable. Occasionally, a need might arise for functions
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ψ(·) which are not differentiable or not strictly monotone. While the requirement of
strict monotonicity can be traded for the weaker constraint that the function ψ(·)
be nondecreasing, without significant alternations to the statements of Lemma 1 and
Corollary 1 and their proofs, dealing with the issue of differentiability involves replac-
ing (10) with a set of different invariance conditions. In what follows we present these
modified conditions involving the notion of a star-shaped set. A formal definition and
the basic properties of star-shaped sets and functions are provided in the appendix.
A brief summary of notions that are essential for the formulation of the results is
provided below.

Recall that a set Ω ⊂ R
n is called star-shaped w.r.t. the origin if every segment

connecting the origin with a point p ∈ Ω lies entirely in Ω. Clearly, convexity of a
set containing the origin implies that it is also star-shaped w.r.t. the origin (since a
convex set is star-shaped w.r.t. every point of that set). The star-shaped envelope
of a set D (w.r.t. the origin) is the minimal star-shaped set (w.r.t. the origin) in-
cluding D; that is, every star-shaped set (w.r.t. the origin) including D as a subset
must necessarily include the star-shaped envelope (w.r.t. the origin) of D as well.
This set is denoted as star(D). (In the appendix, for a star shaped envelope of a set
w.r.t. a point x, the notation starx(D) is used. For notational convenience we omit
the subscript 0 when referring to star-shaped sets, envelopes, and functions w.r.t. the
origin.) The epigraph, respectively, hypograph, of a function f : Rn → R, or simply
epi(f), is the set in R

n+1: epi(f) = {(x, μ)| x ∈ R
n, μ ∈ R, f(x) ≤ μ}, respectively,

hyp(f) = {(x, μ)| x ∈ R
n, μ ∈ R, f(x) ≥ μ}. A function f : R

n → R is called
star-shaped w.r.t. the origin iff its epigraph is a star-shaped set w.r.t. the origin. The
convex envelope of a function f : Rn → R is denoted as conv(f)(x), and the star-
shaped envelope of f(·) (w.r.t. the origin) is denoted as star(f)(x). Let f : R → R,
and let [0, a], a > 0, be an interval. We define

epi(f[0,a]) = {(x, μ) | x ∈ [0, a], μ ∈ R, f(x) ≤ μ},
hyp(f[0,a]) = {(x, μ) | x ∈ [0, a], μ ∈ R, f(x) ≥ μ}

as the epigraph and hypograph of the restriction of f on the interval [0, a]. Now we
are ready to formulate the following.

Lemma 2 (boundedness 2). Let system (5a) be given, and let it satisfy Assump-
tions 1 and 2. Suppose that the following holds:

(C4) There exists a function ψ ∈ K such that for some a ∈ R>0 the set epi(ψ[0,a])
is star-shaped w.r.t. the origin, and for all V ∈ [0, a]

(18) ψ(V ) [α(V ) + β(V )ϕ(ψ(V ))] + V
[
δ
(
α−1(V )

)
+ ξ (ψ(V ))

]
≤ 0.

Furthermore, let conditions (C2) and (C3) of Lemma 1 hold.
Then Ωa is forward invariant w.r.t. (5a), and, moreover, conclusions (b), (c) of

Lemma 1 apply.
Proof of Lemma 2. The proof is similar to that of Lemma 1.
As has already been shown, conditions (C2) and (C3) and Assumptions 1 and 2

imply that if the solution x(·; t0, x0, λ0), λ(·; t0, x0, λ0), (x0, λ0) ∈ Ωa, leaves the set Ωa
at some t ≥ t0, then it must necessarily satisfy Assumptions 1 and 2 over a nonempty
interval [t, t′], t′ > t. We will show now that condition (18) is incompatible with the
claim that solutions of the system starting in the set Ωa at t = t0 may leave the set
at some t′ ≥ t0.

Let (x0, λ0) ∈ Ωa, and let φ(·; t0, x0, λ0) be a solution of (5a). The solution
exists at least locally; let T = [t0, tmax) be its maximal interval of definition for
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t ≥ t0. First, we show that if (x0, λ0) 
= (0, 0), then the solution φ(·; t0, x0, λ0) does
not leave Ωa through the boundary λ = ψ(V (x)), V (x) ∈ (0, a], at any t ∈ T .
Suppose that this is not the case, and there exists a t′ ∈ T such that λ(t′; t0, x0, λ0) <
ψ(V (x(t′; t0, x0, λ0))). Without loss of generality we can assume that the value of
t′ is such that λ(t; t0, x0, λ0) ≥ ψ(V (x(t; t0, x0, λ0))) for all t ∈ [t0, t1], t0 ≤ t1, but
λ(t; t0, x0, λ0) < ψ(V (x(t; t0, x0, λ0))) for t ∈ (t1, t

′]. Further, let t′ be close enough to
t0 so that λ(t; t0, x0, λ0) 
= 0 for all t ∈ [t0, t

′]. It is clear that making such a choice of
t′ is always possible because the value of λ(t1; t0, x0, λ0) must necessarily be positive,
and that λ(·; t0, x0, λ0) is continuous on T .

Introduce the function p : [t0, t
′] → R: p(t) = V (x(t; t0, x0, λ0))/λ(t; t0, x0, λ0).

The function p(·) is defined on [t0, t
′], and, moreover, it is continuous and is continu-

ously differentiable on [t0, t
′]. Thus p(·) is absolutely continuous on [t0, t

′], and p(t) =
p(t1)+

∫ t
t1
ṗ(τ)dτ . Notice that p(t) > p(t1) for t ∈ (t1, t

′]. Indeed, if p(t) ≤ p(t1), then

the point (V (x(t; t0, x0, λ0)), λ(t; t0, x0, λ0)) would belong to the set epi(ψ[0,a]), which
contradicts the earlier established property that ψ(V (x(t; t0, x0, λ0))) < λ(t; t0, x0, λ0)
for all t ∈ (t1, t

′].
In order to see this consider the point (V (x(t1; t0, x0, λ0)), λ(t1; t0, x0, λ0)). Ac-

cording to the choice of t1, this point is from epi(ψ[0,a]). Given that epi(ψ[0,a]) is
star-shaped (condition (C4) of the lemma), every pair (v, λ): λ ≥ v/p(t1), v ∈
[0, V (x(t1; t0, x0, λ0))], belongs to epi(ψ[0,a]). Noticing that

λ(t; t0, x0, λ0) ≤ λ(t1; t0, x0, λ0) for all t ∈ (t1, t
′],

we conclude that the condition p(t) ≤ p(t1) for all t ≥ t1 implies that V (x(t; t0, x0, λ0))
≤ V (x(t1; t0, x0, λ0)) for all t ∈ (t1, t

′]. Thus points (V (x(t; t0, x0, λ0)), λ) such that
λ ≥ V (x(t; t0, x0, λ0))/p(t1) are in epi(ψ[0,a]). This includes points (V (x(t; t0, x0, λ0),
λ(t; t0, x0, λ0))) for t ∈ (t1, t

′] provided that p(t) = V (x(t; t0, x0, λ0)) / λ(t; t0, x0, λ0) ≤
p(t1) for t ∈ (t1, t

′].
Having derived that p(t) > p(t1) for all t ∈ (t1, t

′] we therefore obtain
∫ t′
t1
ṗ(s)ds >

0. According to the mean-value theorem, there is a τ ∈ (t1, t
′] such that ṗ(τ) > 0.

Assumptions 1 and 2, however, imply that

ṗ(τ) =
V̇ (x(τ ; t0, x0, λ0))λ(τ ; t0 , x0, λ0)− λ̇(τ ; t0, x0, λ0)V (x(τ ; t0, x0, λ0))

λ2(τ ; t0, x0, λ0)
≤ 0

because condition (C4) of the lemma demands that

V̇ (x(τ ; t0, x0, λ0))λ(τ ; t0, x0, λ0)− λ̇(τ ; t0, x0, λ0)V (x(τ ; t0, x0, λ0))

≤ ψ(V (x(τ ; t0, x0, λ0)))
[
α(V (x(τ ; t0, x0, λ0)))

+ β(V (x(τ ; t0, x0, λ0)))ϕ(ψ(V (x(τ ; t0, x0, λ0))))
]

+ V
[
δ
(
α−1(V (x(τ ; t0, x0, λ0)))

)
+ ξ

(
ψ(V (x(τ ; t0, x0, λ0)))

)]
≤ 0.

This is clearly a contradiction, and hence the solution φ(·; t0, x0, λ0) does not cross
the boundary λ = ψ(V (x)), V ∈ (0, a], of Ωa at any t ∈ T . The rest of the proof is
identical to that of Lemma 1.

There is a simple geometric interpretation of the conditions of Lemma 2 (see
Figure 3). Consider an interval (0, a] such that the epigraph of ψ for V ∈ [0, a]:
epi(ψ[0,a]) = {(V, λ) | V ∈ [0, a], λ ∈ R≥0, ψ(V ) < λ} is star-shaped w.r.t. the

origin. It is clear that if the vector (V̇ , λ̇) at the boundary λ = ψ(V ), V ∈ (0, a],
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with the assumption that the solutions passing through the interior of Ωa can cross
the boundary λ = ψ(V (x)). Thus one may expect that a dual result might involve a
set of conditions which is dual to (7), (9). For this purpose we consider the following
substitutes for Assumptions 1 and 2.

Assumption 3. There exist a continuous function V : Rn → R, differentiable
everywhere except possibly at the origin, and five functions of one variable, α, ᾱ ∈ K∞,
α : R≥0 → R, α(0) = 0, β : R≥0 → R≥0, β ∈ C0([0,∞)), ϕ ∈ K0, such that for every
(x, λ, t) ∈ DΩ the following properties hold:

α(‖x‖) ≤ V (x) ≤ ᾱ(‖x‖), ∂V

∂x
f(x, λ, t) ≥ α(V (x)) − β(V (x))ϕ(|λ|).(20)

Assumption 3 is similar to Assumption 1, except for the sign of the last inequality
and also for the sign with which the term β(V )ϕ(|λ|) enters the right-hand side of (20).
In essence, it states that one can provide a lower bound for the derivative of V as a
function of V and λ. Let us proceed with determining a substitute for Assumption 2.

Assumption 4. There exists a function δ ∈ K0 such that the following inequality
holds for all (x, λ, t) ∈ DΩ:

g(x, λ, t) ≤ −δ(‖x‖).(21)

Similarly to the case of Assumptions 1 and 3, Assumption 4 is almost a copy of
Assumption 2, in which the sign of the inequality is reversed. The other difference
is that we suppose that there is an upper bound for g(·, ·, ·), and this bound is inde-
pendent of λ. It is clear, however, that if such a dependence were to be in the form
g(x, λ, t) ≤ −δ(‖x‖)−ξ(|λ|), δ, ξ ∈ K0, then it could be reduced to that stated in (21).

Lemma 3 (solutions escaping a neighborhood of the origin). Let system (5a) be
given and satisfying Assumptions 3 and 4. Suppose that D contains the origin. In
addition, let the following hold:

(C5) there exist a function ψ : ψ ∈ K∞ ∩C1((0,∞)) and an a ∈ R>0 such that for
some ε ∈ R>0 and all V ∈ (0, a] the following holds:

∂ψ(V )

∂V
[α(V )− β(V )ϕ(ψ(V )− ε)] + δ

(
α−1(V )

)
≥ 0;(22)

(C6) the set Ωa, where

(23) Ωa = {(x, λ) | x ∈ D, ψ(a)− ε ≥ λ ≥ ψ(V (x)) − ε, V (x) ∈ [0, a]},

is contained in D × (c1, c2).
Let Ω∗

a be the complement of Ωa in D × [c1, ψ(a) − ε]. Then solutions of (5a)
starting in Ω∗

a at t = t0 cannot converge to the origin without leaving the set D ×
[c1, ψ(a)− ε] at least once.

Proof of Lemma 3. Let φ(·; t0, x0, λ0) = (x(·; t0, x0, λ0), λ(·; t0, x0, λ0)), (x0, λ0) ∈
Ω∗
a, be a solution of (5a) converging to the origin as in forward time without leaving

the set D× [c1, ψ(a)− ε]. This implies that for an r > 0 (sufficiently small) there is a
t1 > t0 such that λ2(t1; t0, x0, λ0)+ ‖x(t1; t0, x0, λ0)‖2 = r2, and that φ(t; t0, x0, λ0) ∈
D × [c1, ψ(a) − ε] for all t ≥ t0. Let us pick r = (α−1 ◦ ψ−1)(ε)/2. Notice that
λ(t1; t0, x0, λ0) is positive since λ̇ = g(x, λ, t) is nonpositive in DΩ. Thus the following
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estimate holds:

‖x(t1; t0, x0, λ0)‖ =
√
r2 − λ(t1; t0, x0, λ0) < (α−1 ◦ ψ−1)(ε)

< (α−1 ◦ ψ−1)(ε+ λ(t1; t0, x0, λ0)).

This, however, implies that ψ(α(‖x(t1; t0, x0, λ0)‖)) < λ(t1; t0, x0, λ0) + ε, and subse-
quently that λ(t1; t0, x0, λ0) > ψ(V (x(t1; t0, x0, λ0))) − ε.

Introduce the function p : [t0,∞) → R:

p(t) = ψ(V (x(t; t0, x0, λ0)))− λ(t; t0, x0, λ0)− ε.

The function p(·) is continuous and differentiable on [t0, t1], and ṗ(·) is clearly bounded.
Since p(t0) > 0 (condition (C6)) and p(t1) < 0 then, according to the intermediate
value theorem, there must be a point t′ ∈ (t0, t1) such that p(t′) = 0. Without loss of
generality we can suppose that p(t) > 0 for all t ∈ [t0, t

′). Let t′′ be a point in (t0, t
′);

then

(24) p(t′)− p(t′′) =
∫ t′

t′′
ṗ(s)ds = (t′ − t′′)

(
∂ψ

∂V
V̇ (τ) − λ̇(τ)

)
< 0,

where τ belongs to [t′′, t′]. Recall that we assumed that φ(t; t0, x0, λ0) ∈ D×[c1, ψ(a)−
ε] for all t ≥ t0, including for t ∈ [t′′, t′]. According to Assumptions 3 and 4, the fact
that λ(τ ; t0, x0, λ0) ≤ ψ(V (x(τ ; t0, x0, λ0))) − ε, and condition (C5), the following
should hold:

∂ψ

∂V
V̇ (τ) − λ̇(τ) ≥ ∂ψ

∂V
[α(V (x(τ ; t0, x0, λ0)))

− β(V (x(τ ; t0, x0, λ0)))ϕ(|λ(τ ; t0 , x0, λ0)|)] + δ(‖x(τ ; t0, x0, λ0)‖)

≥ ∂ψ

∂V
[α(V (x(τ ; t0, x0, λ0)))− β(V (x(τ ; t0, x0, λ0)))ϕ(ψ(V (x(τ ; t0, x0, λ0)))− ε)]

+ δ(α−1(V (x(τ ; t0, x0, λ)))) ≥ 0.

This, however, contradicts (24). Hence conditions of the lemma are incompatible with
the assumption that the solution φ(·; t0, x0, λ0) converges to the origin without leaving
the set D × [c1, ψ(a)− ε] at least once.

When the function ψ(·) is not differentiable it is still possible to provide conditions
for specifying solutions escaping a neighborhood of the origin at least once. The
conditions are dual to those of Lemma 2, and we present them in the lemma below.

Lemma 4 (solutions escaping the origin 2). Let system (5a) be given and satis-
fying Assumptions 3 and 4. Suppose that D contains the origin. In addition, let the
following hold:

(C7) There exist a function ψ ∈ K∞ and an a ∈ R>0 such that for some ε ∈ R>0

and all V ∈ (0, a] the following holds:

ψ(V ) [α(V )− β(V )ϕ(ψ(V )− ε)] + V δ
(
α−1(V )

)
≥ 0,(25)

and hyp(ψ[0,a]) is star-shaped w.r.t. the origin.
Moreover, let condition (C6) of Lemma 3 hold, and let Ω∗

a be the complement of Ωa
in D × [c1, ψ(a)− ε].

Then solutions of (5a) starting in Ω∗
a at t = t0 cannot converge to the origin

without leaving the set D × [c1, ψ(a)− ε] at least once.
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Proof of Lemma 4. As before, let φ(·; t0, x0, λ0), (x0, λ0) ∈ Ω∗
a, be a solution of

(5a) converging to the origin as t → ∞ without leaving the set D × [c1, ψ(a) − ε] at
least once. Invoking the same argument as in Lemma 3 we can conclude that there
is an interval [t′, t′′] such that ψ(V (x(t′; t0, x0, λ0)))− λ(t′; t0, x0, λ0)− ε = 0, and for
all t ∈ [t′, t′′] we have that φ(t; t0, x0, λ0) ∈ D × Λ and

ψ(V (x(t; t0, x0, λ0))) − λ(t; t0, x0, λ0)− ε < 0.(26)

It is clear that if the set hyp(ψ[0,a]) is star-shaped w.r.t. the origin, then the set
hyp(ψ[0,a] − ε) is star-shaped w.r.t. the point (0,−ε).

Consider the function p : [t0,∞) → R:

p(t) = V (x(t; t0, x0, λ0))/(λ(t; t0, x0, λ0) + ε).

The function p(·) is well defined for t ∈ [t′, t′′]. Notice that, according to (26), the
point (V (x(t′; t0, x0, λ0)), λ(t′; t0, x0, λ0)) belongs to hyp(ψ[0,a] − ε), and the point
(V (x(t′′; t0, x0, λ0)), λ(t′′; t0, x0, λ0)) is in the interior of epi(ψ[0,a] − ε). Therefore,
p(t′′) < p(t′), for otherwise the point (V (x(t′′; t0, x0, λ0)), λ(t′′; t0, x0, λ0)) would be
in hyp((ψ(V )− ε)[0,a]); this would then contradict the condition ψ(V (t′′; t0, x0, λ0))−
λ(t′′; t0, x0, λ0)− ε < 0. On the other hand, there is a τ ∈ [t′, t′′] such that

p(t′′)− p(t′) = (t′′ − t′)[V̇ (x(τ ; t0, x0, λ0))(λ(τ ; t0, x0, λ0) + ε)

− λ̇(τ ; t0, x0, λ0)V (x(τ ; t0, x0, λ0))](λ(τ ; t0, x0, λ0) + ε)−2.

Hence, invoking Assumption 4, we arrive at the following estimate:

V̇ (x(τ ; t0, x0, λ0))(λ(τ ; t0, x0, λ0) + ε)− λ̇(τ ; t0, x0, λ0)V (x(τ ;x0 , λ0))

≥ ψ(V (x(τ ; t0, x0, λ0)))×
[
α(V (x(τ ; t0, x0, λ0))) − β(V (x(τ ; t0, x0, λ0)))

× ϕ(ψ(V (x(τ ; t0, x0, λ0))) − ε)
]

+ V (x(τ ; t0, x0, λ0))δ
(
α−1(V (x(τ ; t0, x0, λ0)))

)
≥ 0.

This implies that p(t′′)− p(t′) ≥ 0, and hence we have reached a contradiction.

4. Examples. In this section we illustrate the theoretical results with examples.
We begin with the analysis of systems (1a)–(1c) presented in Example 1 in section 1.
Then we proceed to the phase synchronization problem introduced in Example 2.
Finally, in section 4.3, we illustrate how Lemma 2 can be used to approach an adaptive
control problem for a class of systems nonlinear in the parameters.

4.1. Forward invariant sets and basins of attraction for (1a)–(1c). We
start with system (1a):

ẋ = −x+ λ,

λ̇ = −γ|x|3, γ ∈ R>0.

Let D = R, Λ = R, and notice that Assumption 1 is satisfied for the first equation in
(1a) with V (x) = x2, and α(V ) = −2V , β(V ) = 2

√
V , ϕ(|λ|) = |λ|. Assumption 2 is

fulfilled with ξ(·) ≡ 0, δ(|x|) = γ|x|3. Pick a candidate for the function ψ : ψ(V ) =
pV , p ∈ R>0, and consider the function F : R≥0 → R:

(27) F(V ) =
∂ψ

∂V
(α(V ) + β(V )ϕ(ψ(V ))) + δ(

√
V ) = (−2p+ (2p2 + γ)

√
V )V.
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followed by the analysis of solutions in a vicinity of the point (ρ, ϕ) = (0, 0) in the
(ρ, ϕ) coordinates.

Let us see whether we can determine domains corresponding to the solutions of
(1c) escaping some specified neighborhoods of the origin. For this purpose we will use
Lemma 3. Let V (x) = |x|q, q ∈ R>0; then Assumption 3 holds with α(·), β(·), and
ϕ(·) defined as

α(V ) = −qV (1+ 2
q ), β(V ) = qV (1− 1

q ), ϕ(|λ|) = |λ|,

and Assumption 4 holds with ξ(·) ≡ 0, δ(|x|) = γ|x|3. Let ψ(V ) = pV r, r ∈ R>0,
p ∈ R>0, and consider

F(V ) =
∂ψ

∂V
(α(V )− β(V )ϕ(ψ(V )− ε)) + δ(V

1
q )

≥ −pqrV (r+ 2
q ) − p2qrV (2r− 1

q ) + γV
3
q .

In order to apply Lemma 3 we need to find r, q, p ∈ R>0 and a > 0 such that F(V ) ≥ 0

for V ∈ (0, a]. Letting r = 1 and q = 2 we arrive at F(V ) ≥ −2pV 2 − 2p2V
3
2 + γV

3
2 .

Hence F(V ) ≥ 0 whenever
√
V ≤ (γ/2p) − p. Therefore, according to the lemma,

solutions of (1c) starting in the complements Ωa(p)
∗ of

Ωa(p) =

{
(x, λ) | x ∈ R,

(
γ

2p
− p

)2

− ε ≥ λ ≥ pV − ε, p ∈ (0,
√
γ/2)

}

in R × (−∞, ( γ2p − p)2 − ε] cannot converge to the origin without leaving Ωa(p)
∗ at

least once. The union of Ωa(p)
∗ over p for γ = 0.5 and ε = 0.01 is shown in Figure 4,

right panel. Note that in this particular case, since g(x, λ, t) = −γ|x|3 is nonpositive
for all x, λ, t ∈ R, solutions starting in this union do not converge to the origin.

4.2. Phase synchronization of neuronal oscillators. We now proceed with
the analysis of a somewhat more complicated system: a network of coupled neuronal
oscillators (or cells). Interaction between individual elements is allowed to be het-
erogeneous: the cells are able to interact with immediate neighbors via gap-junctions
(intercellular connections enabling direct flows of ions from one to another), or they
can transmit pulses to other cells through synaptic connections.

In the absence of coupling, each oscillator generates spikes with a given frequency.
The oscillators may not be identical, yet the frequency of oscillations is supposed
to be the same for every element in the network. For illustrative purposes we will
assume that oscillations in the cells occur through the saddle-node-on-invariant-cycle
bifurcation. Such a mechanism is inherent to a wide range of models, including
the canonical Hodgkin–Huxley equations describing potential generation in neural
membranes via potassium-sodium gates; cf. [14], [19]. Oscillators of this kind have
the following normal form [19]:

(30) ẋi = 1 + x2i + εiu(t),

where xi represents the neuron’s membrane potential, εi ∈ R≥0 is an input gain, and
u : R → R is a function that models the inputs (couplings) applied to the cell. In
this model, when xi(·; t0, x0) escapes to infinity, a spike is produced and the initial
conditions are reset to −∞. The process repeats infinitely many times, giving rise to
periodic spikes with infinite amplitude (see Figure 5).
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Thus letting D = (−μ, μ), 0 < μ < M , Λ = R, and α(|x|) = α(|x|) = tan2(|x|) we can
conclude that Assumption 1 holds for (34), (35). With regard to Assumption 2, it is
satisfied with δ(|x|) = ε̃ϕ(|x|), ξ(|λ|) ≡ 0.

Suppose that we wish to apply Lemma 1. In this case we need to find a strictly
monotone function ψ ∈ K such that the function F(·) defined as

F(V ) =
∂ψ

∂V
(α(V ) + β(V )ϕ(ψ(V ))) + δ(α−1(V ))(36)

is nonpositive in (0, a] for some a ∈ R>0. Let ψ(·) be such that its restriction on the
set {V ∈ R≥0 | V ≤ α(μ)} is as follows: ψ(V ) = p tan−1(V 1/2), p ∈ R>0. Then for
all V ∈ (0, α(μ)] the function F(·) in (36) can be estimated from above as follows:

F(V ) = p
−2(ε1 − ε̃V

1
2 )V + 2ε̃V

1
2 (1 + V ) sin2(p tan−1(V

1
2 ))

2V
1
2 (1 + V )

+ ε̃ sin2(tan−1(V
1
2 ))

≤ − pε1V
1
2

(1 + V )
+ ε̃(p3 + p+ 1)V.

Hence F(V ) ≤ 0 whenever V ≤ tan2(μ) and −pε1 + ε̃(p3 + p + 1)V
1
2 (1 + V ) ≤ 0.

Thus solving the latter inequality for V
1
2 and choosing V ≤ a(p), where

a(p) = min

{
tan2(μ),

(
r(p) − 1

3r(p)

)2
}
, r(p) =

(
pε1+

√
(pε1)2+

4
27 ε̃

2(p3+p+1)2

2ε̃(p3+p+1)

) 1
3

,

we can ensure that condition (C1) of the lemma is satisfied. Given that the ball
{x| x ∈ R

n, |x| ≤ tan−1(a)} is contained in D (condition (C2)) and that ω(ψ(a)) = R,
Lemma 1 implies that

(37) Ωa(p) =
{
(x, λ)| p tan−1(a

1
2 (p)) ≥ λ ≥ p|x|

}
is forward invariant. The union of Ωa(p), p ∈ (0, 10], as well as the phase plot of (34)
for ε1 = 0.1, ε = 0.1 are shown in Figure 6.

Thus we can conclude that if the values of relative phases φa,0, φb,0, and φc,0
are chosen so that (φb,0 − φa,0, φa,0 − φc,0) ∈ ∪p>0Ωa(p), where Ωa(p) is defined
in (37), then the relative phases φb(·; t0, φa,0, φb,0, φc,0) − φa(·; t0, φa,0, φb,0, φc,0) and
φa(·; t0, φa,0, φb,0, φc,0) − φc(·; t0, φa,0, φb,0, φc,0) are bounded on [t0,∞). Moreover,
limt→∞ φa(t)− φc(t) = 0, and consequently limt→∞ φb(t)− φa(t) = 0. Hence relative
phases in the system converge to zero as t→ ∞ provided that (φb,0−φa,0, φa,0−φc,0) ∈
∪p>0Ωa(p). This corresponds to in-phase synchronization of the solutions of (31)–(33).
Looking at the phase plot in Figure 6 one can observe that the actual domain of initial
conditions corresponding to in-phase synchronization is substantially larger than that
obtained analytically (grey area). This may be viewed as a consequence of choosing
functions V (·), ψ(·), α(·), and β(·) so that the derivations of Ωa(p) are kept simple.

4.3. Adaptive control for nonlinearly parameterized systems. As yet
another and final illustration consider the following system:

(38) ẋ = f(x, θ, t, u(t)),

where the function f : Rn × R
m × R× R

q → R
n is continuous and locally Lipschitz,

θ ∈ Θ, Θ ⊂ R
m is the vector of unknown parameters, and u : R → R is a control
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Fig. 6. Estimate of the forward invariant set for system (34), (35) at ε1 = ε = 0.1. The
estimate (grey shaded area) is the union ∪p∈(0,10]Ωa(p) of the sets Ωa(p) defined in (37).

input. With regard to the input u, we suppose that it is a continuous function of
x and a parameter μ ∈ R. Furthermore, we suppose that for any θ ⊂ Θ there is a
stabilizing feedback u(t) = ũ(x(t), μ) that is locally Lipschitz in μ. In particular, we
suppose that the following assumption holds (cf. [31]).

Assumption 5. Let M = [μ1, μ2], μ2 > μ1, be an interval in R, and let there exist
a positive-definite differentiable function V : Rn → R and two functions α, α ∈ K∞:

α(‖x‖) ≤ V (x) ≤ α(‖x‖) for all x ∈ R
n.

The function f(·, ·, ·, ·) in (38) is such that the following hold:
(1) there are known continuous and locally Lipschitz functions ũ : Rn × R → R

q

and α ∈ K∞ such that for any θ ∈ Θ there is a μ ∈ M:

(39)
∂V

∂x
f(x, θ, t, ũ(x, μ)) ≤ −α(V (x)) for all x ∈ R

n, t ∈ R;

(2) there is a β ∈ K such that for every μ, μ′ ∈ M and θ ∈ Θ the following holds:

∂V

∂x
(f(x, θ, t, ũ(x, μ)) − f(x, θ, t, ũ(x, μ′))) ≤ β(V (x))|μ − μ′|

for all x ∈ R
n, t ∈ R.

Checking that the assumption holds for a given particular system may present
certain technical difficulties. Detailed discussion of this issue is outside of the scope
of this work.

We are interested in finding a function μ̂ : R → R such that solutions of ẋ =
f(x, θ, t, ũ(x, μ̂(t))) converge to the origin as t→ ∞ for all θ ∈ Θ. Let

μ̂ = q(h), ḣ = −γ(‖x‖), γ ∈ K,(40)

where the function q : R → R is H-periodic, that is, q(h +H) = q(h) for all h ∈ R,
and Lipschitz with constant � > 0, maxh∈R q(h) = μ2, minh∈R q(h) = μ1.
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Now we are ready to formulate the following result.
Corollary 2. Consider system (38), and let it satisfy Assumption 5. Consider

(38), (40):

ẋ = f(x, θ, t, ũ(x, μ̂)), μ̂ = q(h), ḣ = −γ(‖x‖),(41)

and suppose that the following conditions hold:
(C8) there is a V ∗ > 0 such that α(V ) > β(V )(μ2 − μ1) for all V ≥ V ∗;
(C9) epi(α[0,V ∗]) is star-shaped w.r.t. the origin, and the function γ(·) in (41) sat-

isfies

(42) γ ∈ K, γ(α−1(V )) <
α(V )2

4β(V ∗)�V
for all V ∈ R≥0.

Then solutions of (41) are bounded, and furthermore

(43) lim
t→∞x(t; t0, x0, h0) = 0, and there is a μ′ ∈ M : lim

t→∞ μ̂(q(t; t0, x0, h0)) = μ′.

Proof of Corollary 2. Let x0 ∈ R
n, h0 ∈ R. We begin with showing that solutions

of the interconnection are defined for all t ≥ t0. Given that the right-hand side of (41)
is locally Lipschitz, the solution satisfying the initial condition x(t0) = x0, h(t0) = h0
is defined at least locally in a neighborhood of (x0, h0, t0). Let [t0, t1), t1 <∞, be the
maximal interval of the solution’s definition for t ≥ t0. This implies that for any M ∈
R≥0 there exists a t

′ ∈ [t0, t1) such that max{|h(t′; t0, x0, h0)|, ‖x(t′; t0, x0, h0)‖} ≥M .
According to Assumption 5, there is a μ ∈ M such that

V̇ ≤ ∂V

∂x
f(x, θ, t, ũ(x, μ)) +

∂V

∂x
(f(x, θ, t, ũ(x, μ̂)− f(x, θ, t, ũ(x, μ))

≤ −α(V ) + β(V )|μ− μ̂|.

Taking condition (C8) of the corollary into account and using the comparison lemma,
we conclude that the function V (x(·; t0, x0, h0)) is bounded from above by max{V ∗,
V (x0)} on [t0, t

′]. This, however, contradicts V (x(t′; t0, x0, h0)) ≥ α(‖x(t′; t0, x0,
h0)‖) ≥ α(M) because M can be chosen so that α(M) > max{V ∗, V (x0)}. Therefore
x(·; t0, x0, h0) must be bounded on [t0, t1). On the other hand, according to (42), the
following holds:

|h(t′; t0, x0, h0)| ≤ |h0|+ (t′ − t0) max
V ∈[0,max{V (x0),V ∗}]

{
α(V )2

4β(V ∗)�V

}
.

Thus |h(·; t0, x0, h0)| is bounded on [t0, t1). Hence solutions of (41) are defined for
all t ≥ t0. Furthermore, as follows from (C8), the function V (x(·; t0, x0, h0)) and,
consequently, x(·; t0, x0, h0) are bounded on [t0,∞). Moreover, there is a t∗ ≥ t0,
independent on h0, such that V (x(t; t0, x0, h0)) ≤ V ∗ for all t ≥ t∗.

Let us show that h(·; t0, x0, h0) is bounded on [t0,∞) as well. In order to do so
we will invoke Lemma 2. According to Assumption 5 there is a μ ∈ M such that
(∂V / ∂x)f(x, θ, t, ũ(x, μ)) ≤ −α(V ). Given that the function q(·) in the definition
of μ̂ is continuous and periodic, it follows from the intermediate value theorem that
there is an hμ ∈ (0, H): q(hμ + nH) = μ, for all n ∈ Z. Let us pick an n such that

(44) η(n) = hμ + nH, η(n) < h0, h(t∗, x0, h0)− η(n) ≥ α(V ∗)
2β(V ∗)�
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and define λ(t) = h(t; t0, x0, h0)− η(n). It is clear that for t ≥ t∗ the following holds
along the solutions of (41):

V̇ ≤ ∂V

∂x
f(x, θ, t, ũ(x, μ̂)) ≤ −α(V ) + β(V ∗)�|λ(t)|, −γ(α−1(V )) ≤ λ̇(t) ≤ 0.

Consider the function ψ ∈ K∞: ψ(V ) = α(V )/(2β(V ∗)�). According to Lemma 2
and Remark 4 the set

Ωa = {(x, λ) | x ∈ R
n, λ ∈ R, ψ(a) ≥ λ ≥ ψ(V (x)), V (x) ∈ [0, a]}

is forward invariant for t ≥ t∗ provided that

ψ(V )(−α(V ) + β(V ∗)�ψ(V )) + V γ(α−1(V )) ≤ 0 for all V ∈ [0, a].

It is therefore clear that the choice γ(α−1(V )) ≤ ψ(V )α(V )
2V = α(V )2

4β(V ∗)V � ensures that

the set Ωa is forward invariant. Hence every solution of (41) which satisfies the

condition h(t∗; t0, x0, h0) = λ(t∗) + η(n), λ(t∗) = α(V ∗)
2β(V ∗)� , V (x(t∗; t0, x0, h0)) ≤ V ∗ is

bounded on [t∗,∞). This, in view of the choice of n in the definition of the variable
λ(t), (44), ensures that λ(·) is bounded on [t∗,∞). Hence h(·; t0, x0, h0) is bounded

on [t0,∞). This implies that limt→∞
∫ t
t0
γ(‖x(τ ; t0, x0, h0)‖)dτ = h′ < ∞, where

the function γ(‖x(·; t0, x0, h0)‖) is uniformly continuous on [t0,∞). Thus, invoking
Barbalat’s lemma we can conclude that (43) holds.

Note that despite (43) holding, the values of the internal state h of the controller
can be large, depending on the initial conditions x0, h0. This is a well-known drawback
of schemes of this type [15], [31]. One can remove this limitation by replacing (40)
with μ̂(h) = μ1+0.5(μ2−μ1)(1+h), ḣ = −γ(‖x‖) 2�

μ2−μ1
z, ż = γ(‖x‖) 2�

μ2−μ1
h, h(t0) =

h0, z(t0) = z0, γ ∈ K, and restricting the initial condition h0, z0 to h20 + z20 = 1 (see
[39]). Another issue is that the time needed for x(·; t0, x0, h0) to converge to a given
neighborhood of the origin may be large too. Derivation of a priori estimates of the
convergence times requires further analysis and, possibly, additional constraints.

5. Conclusions. In this manuscript we presented results for finding forward in-
variant sets and assessing convergence of solutions in dynamical systems with unstable
equilibria. In particular, we focused on systems in which stable motions in higher-
dimensional subspace of the system state space are coupled with unstable motions in
a lower-dimensional subspace. Such systems, as has been illustrated with examples,
occur in a relevant range of problems, including adaptive control in the presence of
general nonlinear parametrization of uncertainty and phase synchronization in net-
works of coupled oscillators.

Motivated by some limitations of earlier analysis techniques proposed for this
class of systems (cf. [39], [15]), we aimed at developing a more versatile alternative.
The alternative should apply to systems with unstable attractors while, at the same
time, retaining convenience and simplicity of conventional Lyapunov function–based
analysis.

The method proposed and discussed in the article allows one to produce simple
algebraic tests for finding areas of forward invariance for systems with Lyapunov-
unstable invariant sets. Moreover, the method can be applied to checking whether a
given equilibrium is an attractor, albeit not necessarily stable. Estimates of the at-
tractor basins are also supplied. In addition to convergence and boundedness criteria,
geometric intuition behind our results allows one to approach a dual problem: that of
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estimating domains of initial conditions corresponding to solutions escaping a given
neighborhood of the origin at least once. These latter results are relevant in the
context of determining relaxation times in nonlinear dynamical systems [13].

In spite of the advantages of the method we note that there are limitations too.
In particular, we require that the function V (·) characterizing dynamics of the stable
part in (5a) vanish only at a single point, x = 0. This prevents explicit applications of
the results to systems in which solutions of the stable part (in the absence of coupling
with the unstable part) are attracted to an orbit or a set which is not a single point.
We hope, however, to be able to address this and other issues in future publications.

6. Appendix. Star-shaped sets and envelopes. Let V be a real vector
space. In what follows, symbol [x, y] will denote a segment connecting two vectors
x, y ∈ V : [x, y] = {γx+ (1− γ)y | γ ∈ [0, 1]}.

Definition 1. A set S ⊂ V is star-shaped w.r.t. a point x ∈ S if for any y ∈ S
the segment [x, y] also belongs to S: [x, y] ⊂ S.

The following properties hold for star-shaped sets in V :
• A set is convex iff it is star-shaped w.r.t. its every point.
• Let x ∈ V and W be a family of sets star-shaped w.r.t. x. Then both the

intersection ∩S∈WS and the union ∪S∈WS are star-shaped w.r.t. x.
• Let E be a real vector space, A : V → E be a linear map, and S ⊂ V be a

star-shaped set w.r.t. a point x ∈ S. Then the image A(S) of A(·) is star-shaped
w.r.t. A(x).

Definition 2. For any set D ⊂ V and a point x ∈ D the star-shaped envelope of
D w.r.t. x, starx(D), is the minimal star-shaped set w.r.t. x which includes D. That
is, every star-shaped set w.r.t. x including D must include starx(D).

Star-shaped envelopes exist and can be defined in two alternative ways: “from
above” (as an intersection),

(45) starx(D) =
⋂

S∈Wx(D)

S,

where Wx(D) is a family of sets that are star-shaped w.r.t. x and include D; and
“from below” (as a union of segments):

(46) S =
⋃
y∈D

[x, y].

Notice that deriving a star-shaped envelope of an analytically defined set computa-
tionally is a much easier procedure than that of deriving a convex envelope of the
same set.

Let us remind the reader that the epigraph of a real valued function f : S → R

is a subset of S × R that consists of all points lying on or above its graph: epi(f) =
{(x, γ) | x ∈ S, γ ≥ f(x)}.

Definition 3. The function f : S → R is star-shaped w.r.t. x ∈ S if epi(f) is a
star-shaped set w.r.t. (x, f(x)). The function is convex if it is star-shaped w.r.t. every
x ∈ S.

If the function f : S → R is star-shaped w.r.t. x ∈ S, then S must necessarily be
star-shaped w.r.t. x. Alternatively, we can use the following definition.

Definition 4. A function f : S → R (on a star-shaped set S w.r.t. x) is star-
shaped w.r.t. x if the following holds for any y ∈ S and every γ ∈ [0, 1]:

(47) f(γx+ (1 − γ)y)≤γf(x) + (1− γ)f(y).
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Expression (47) is a form of Jensen’s inequality with one “fixed end.” It is obvious
that a function on S is convex iff it is star-shaped w.r.t. every point x ∈ S.

Definition 5. Let f : S → R be a bounded from above and from below function
(A < f(x) < B). The supremum of star-shaped (w.r.t. x) minorants of f(·) is the
star-shaped envelope of f(·) w.r.t. x, starx(f).

Note that Definition 5 can be viewed as a definition of the star-shaped envelope
of a function “from above” (compare with (45)).

Let S ⊂ V be a star-shaped set w.r.t. x ∈ S, and let conv(f) be the convex
envelope of f(·). The following properties hold for the star-shaped sets and functions:
conv(f)(y) ≤ starx(f)(y) ≤ f(y). The first property follows immediately from the
definition, and the second property is a consequence of the following fact:

(48) epi(f) ⊂ epi(starx(f)) ⊂ epi(conv(f)).

Let us follow the definition of a star envelope of a set from below, (46), and produce the
definition of a star envelope of a function “from below.” Consider the one-dimensional
case: V = R. Let S = [a, b], x ∈ S; for any z ∈ S (z 
= x) we define

(49) φz,x(y) =

⎧⎪⎨
⎪⎩

min

{
f(y),

y − x

z − x
f(x) +

z − y

z − x
f(z)

}
if 0 <

y − x

z − x
< 1;

f(y) else.

As follows from Jensen’s inequality with one fixed end, (47), the following holds:

starx(f)(y) = inf
z∈S

{φz,x(y)}.

One can also see that the definitions of star-shaped envelopes of a function “from
above” and “from below” are equivalent.

The following proposition is obvious.
Proposition 1. Let S = [a, b] be a closed interval in R, p be an element from S,

and f : S → R be a continuous function. Consider the functions φz,p(·), z ∈ S,
defined as in (49). Then the following hold:

(1) the functions φz,p(·), p ∈ S, are equicontinuous with f(·);
(2) the set of functions {φz,p(·)}, p ∈ S, is compact;
(3) the function starp(f), p ∈ S, exists and is a continuous function;
(4) if a continuous function on S achieves its minimum at a single point x, then

its star-shaped envelope w.r.t. x has the same property;
(5) the star-shaped envelope (w.r.t. a point p ∈ S) of a monotone function is

monotone.
The first property follows immediately from (49). Properties (2) and (3) fol-

low from the Arzela–Ascoli theorem. Indeed, according to this, equicontinuity and
uniform boundedness of φz,p(·), p ∈ S, imply that {φz,p(·)} is relatively compact.
Compactness then follows from the fact that the set of functions {φz,p(·)} is closed.
To demonstrate the existence and continuity of starp(f), p ∈ S, consider a sequence
{gi}∞i=1 of grids gi = {a, a+(b−a)/i, a+(b−a)k/i, . . . , b}, 1 ≤ k < i on S, and define

fi(y) = inf
r∈g2i

{φr,p(y)}.

The sequence of functions {fi(·)}∞i=1 is equicontinuous, and f1(·) ≥ f2(·) ≥ · · · ≥
fn(·) ≥ · · · pointwise. This means that the sequence converges uniformly and that
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limi→∞ fi(y) = infz∈S{φz,p(y)} = starp(f)(y). Continuity of the limiting function,
starp(f), follows from equicontinuity of the family {fi(·)}∞i=1. Property (4) is easily
verifiable by the contradiction argument. Property (5) is the consequence of the
fact that the functions fi(·) are monotone (by construction) if the function f(·) is
monotone.

Let V = Rn, and let S ⊂ V be compact and star-shaped w.r.t. x. For every z ∈ S
and γ ∈ [0, 1] we define ψz(γ) = min{f((1− γ)x+ γz), (1− γ)f(x) + γf(z)}. Then

starx(f)(y) = inf
(1−γ)x+γz=y, γ∈[0,1], z∈S

{ψz(y)}.

The properties of starx(f)(y) depend on the properties of mapping

(50) y �→ {(γ, z) | (1− γ)x+ γz = y, γ ∈ [0, 1], z ∈ V }.

If this mapping is continuous (in the Hausdorff metrics in the space of compact sets),
then the star-shaped envelope of every continuous in S function w.r.t. x is also con-
tinuous. Mapping (50) is continuous in S iff the Minkovski functional

p(y) = inf
a>0

{a | y − x ∈ a(S − x)}

is continuous in S.
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Order Dynamic Systems, Halsted Press, New York, 1973.

[3] J.-P. Aubin, Viability Theory, Birkhäuser, Boston, 1991.
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