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was proposed by Kruskal (1963), but fundamentalresearh in this diretion are muh older, and manyfundamental approahes were developed by I. New-ton (Newton polyhedron, and many other things).Following Kruskal (1963), asymptotology is \theart of desribing the behavior of a spei�ed solution(or family of solutions) of a system in a limiting ase.... The art of asymptotology lies partly in hoosingfruitful limiting ases to examine ... The sienti� el-ement in asymptotology resides in the nonarbitrari-ness of the asymptoti behavior and of its desrip-tion, one the limiting ase has been deided upon."Asymptoti behavior of rational funtions of sev-eral positive variables ki > 0 gives us a toy-example.Let R(k1; : : : kn) = P (k1; : : : kn)=Q(k1; : : : kn)Preprint submitted to Elsevier



be suh a funtion and P;Q be polynomials. To de-rive fruitful limiting ases we onsider logarithmistraight lines ln ki = �i� and study asymptotial be-havior of R for � ! 1. In this asymptotis, for al-most every vetor (�i) (outside several hyperplanes)there exists suh a dominant monomial R1(k) =AQi k�ii that R = R1 + o(R1). The funtion thatassoiates a monomial with vetor (�i) is pieewiseonstant: it is onstant inside some polyhedral ones.Impliit funtions given by equations whih de-pend on parameters provide plenty of more inter-esting examples, espeially in the ase when theimpliit funtion theorem is not appliable. Someanalytial examples are presented by Andrianov &Manevith (2002) and White (2006). Introdutionof algebrai bakgrounds and speial software is pro-vided by Greuel & P�ster (2002).For a diÆult problem, analysis of eigenvaluesand eigenvetors of non-symmetri matries, Vishik& Ljusternik (1960) studied asymptoti behavior ofspetra and spetral projetors along the logarith-mi straight lines in the spae of matries. This anal-ysis was ontinued by Lidskii (1965).We study networks of linear reations. For a linearsystem with reation rate onstants ki all the dy-namial information is ontained in eigenvalues andeigenvetors of the kineti matrix or, more preisely,in its transformation to the Jordan normal form. It isomputationally expensive task to �nd this transfor-mation for a non-symmetri matrix whih is usuallysti� (Golub & Van Loan (1996)). Moreover, the an-swer ould be very sensitive to the errors in onstantski. Nevertheless, it appears that sti�ness an helpus to �nd a robust approximation, and in the limitwhen all onstants are very di�erent (well-separatedonstants) the asymptotial behavior of eigenvaluesand eigenvetors follow simple expliit expressions.Analysis of this asymptotis is our main goal.In our approah, we study asymptoti behaviorof eigenvalues and eigenvetors of kineti matriesalong logarithmi straight lines, ln ki = �i� in thespae of onstants. We signi�antly use the graphrepresentation of hemial reation networks anddemonstrate, that for almost every vetor (�i) thereexists a simple reation network whih desribesthe dominant term of this asymptoti. Followingthe asymptotology terminology (White (2006)), weall this simple network the dominant system. Forthese dominant system there are expliit formulasfor eigenvalues and eigenvetors. The topology ofdominant systems is rather simple: they are aylinetworks without branhing. This allows us to on-

strut the expliit asymptotis of eigenvetors andeigenvalues. All algorithms are represented topolog-ially by transformation of the graph of reation (la-beled by reation rate onstants). The reation rateonstants for dominant systems may not oinidewith onstant of original network. In general, theyare monomials of the original onstants.This result fully supports the observation byKruskal (1963): \And the answer quite generallyhas the form of a new system (well posed prob-lem) for the solution to satisfy, although this issometimes obsured beause the new system is soeasily solved that one is led diretly to the solutionwithout notiing the intermediate step."The dominant systems an be used for diret om-putation of steady states and relaxation dynamis,espeially when kineti information is inomplete,for design of experiments and mining of experimen-tal data, and ould serve as a robust �rst approxi-mation in perturbation theory or for preondition-ing. They an be used to answer an important ques-tion: given a network model, whih are its ritialparameters? Many of the parameters of the initialmodel are no longer present in the dominant sys-tem: these parameters are non-ritial. Parametersof dominant subsystems indiate putative targets tohange the behavior of the large network.Most of reation networks are nonlinear, it isnevertheless useful to have an eÆient algorithm forsolving linear problems. First, nonlinear systemsoften inlude linear subsystems, ontaining rea-tions that are (pseudo)monomoleular with respetto speies internal to the subsystem (at most oneinternal speies is reatant and at most one is prod-ut). Seond, for binary reations A + B ! :::, ifonentrations of speies A and B (A; B) are wellseparated, say A � B then we an onsider thisreation as B ! ::: with rate onstant proportionalto A whih is pratially onstant, beause its rel-ative hanges are small in omparison to relativehanges of B . We an assume that this onditionis satis�ed for all but a small fration of genuinelynonlinear reations (the set of nonlinear reationshanges in time but remains small). Under suhan assumption, nonlinear behavior an be approxi-mated as a sequene of suh systems, followed oneeah other in a sequene of \phase transitions". Inthese transitions, the order relation between some ofspeies onentrations hanges. Some appliationsof this approah to systems biology are presented byRadulesu, Gorban, Zinovyev & Lilienbaum (2008).The idea of ontrollable linearization \by exess" of2



some reagents is in the bakground of the eÆientexperimental tehnique of Temporal Analysis ofProduts (TAP), whih allows to deipher detailedmehanisms of atalyti reations (Yablonsky, Olea,& Marin (2003)).In hemial kinetis various fundamental ideasabout asymptotial analysis were developed(Klonowski (1983)): quasieqiulibrium asymptoti(QE), quasi steady-state asymptoti (QSS), lump-ing, and the idea of limiting step.Most of the works on nonequilibrium thermody-namis deal with the QE approximations and orre-tions to them, or with appliations of these approx-imations (with or without orretions). There aretwo basi formulation of the QE approximation: thethermodynami approah, based on entropy max-imum, or the kineti formulation, based on sele-tion of fast reversible reations. The very �rst use ofthe entropy maximization dates bak to the lassialwork of Gibbs (1902), but it was �rst laimed for apriniple of informational statistial thermodynam-is by Jaynes (1963). A very general disussion ofthe maximum entropy priniple with appliations todissipative kinetis is given in the review by Balian,Alhassid & Reinhardt (1986). Corretions of QE ap-proximationwith appliations to physial and hem-ial kinetis were developed by Gorban, Karlin, Ilg,& �Ottinger (2001); Gorban & Karlin (2005).QSS was proposed by Bodenstein (1913) and waselaborated into an important tool for analysis ofhemial reationmehanism and kinetis (Semenov(1939); Christiansen (1953); Hel�erih (1989)). Thelassial QSS is based on the relative smallness ofonentrations of some of \ative" reagents (radi-als, substrate-enzyme omplexes or ative ompo-nents on the atalyst surfae) (Aris (1965); Segel &Slemrod (1989)).Lumping analysis aims to ombine reagents into\quasiomponents" for dimension redution (Wei &Kuo (1969); Kuo & Wei (1969); Li & Rabitz (1989);Toth, Li, Rabitz, & Tomlin (1997).The onept of limiting step gives the limit simpli-�ation: the whole network behaves as a single step.This is the most popular approah for model simpli-�ation in hemial kinetis and in many areas be-yond kinetis. In the form of a bottlenek approahthis approximation is very popular from traÆ man-agement to omputer programming and ommuni-ation networks. The proposed asymptoti analysisan be onsidered as a wide extension of the lassialidea of limiting step (Gorban & Radulesu (2008)).The struture of the paper is as follows. In Se. 2

we introdue basi notions and notations. We on-sider thermodynami restritions on the reationrate onstants and demonstrate how appear systemswith arbitrary onstants (as subsystems of more de-tailed models). For linear networks, the main theo-rems whih onnet ergodi properties with topol-ogy of network, are reminded. Four basi ideas ofmodel redution in hemial kinetis are desribed:QE, QSS, lumping analysis and limiting steps.In Se. 3, we introdue the dominant system for asimple irreversible atalyti yle with limiting step.This is just a hain of reations whih appears afterdeletion the limiting step from the yle. Even forsuh simple examples several new observation arepresented:{ The relaxation time for a yle with limiting stepis inverse seond reation rate onstant;{ For hains of reations with well separated rateonstants left eigenvetors have oordinates loseto 0 or 1, and right eigenvetors have oordinateslose to 0 or �1.For general reation networks instead of linearhains appear general ayli non-branhing net-works. For them we also provide expliit formulasfor eigenvetors and their 0, �1 asymptotis forwell-separated onstants (Se. 4). In (Se. 5) themain algorithm is presented. Se. 6 is devoted to asimple demonstration of the algorithm appliation.In Se. 7, we briey disuss further orretions todominant systems. The estimates of auray aregiven in Appendix.2. Main Asymptoti Ideas in ChemialKinetis2.1. Chemial Reation NetworksTo de�ne a hemial reation network, we have tointrodue:{ a list of omponents (speies);{ a list of elementary reations;{ a kineti law of elementary reations.The list of omponents is just a list of symbols (la-bels) A1; :::An. Eah elementary reation is repre-sented by its stoihiometri equationXi �siAi !Xsi �siAi; (1)where s enumerates the elementary reation, andthe non-negative integers �si, �si are the stoihio-metri oeÆients. A stoihiomentri vetor s with3



oordinates si = �si � �si is assoiated with eahelementary reation.For analysis of losed hemial systems with de-tailed balane it is usual pratie to group reationsin pairs, diret and inverse reations together, butin more general settings this is not onvenient.A non-negative real extensive variable Ni � 0,amount ofAi, is assoiatedwith eah omponentAi.It measures \the number of partiles of that speies"(in partiles, or in moles). The onentration of Aiis an intensive variable: i = Ni=V , where V is vol-ume. It is neessary to stress, that in many pra-tially important ases the extensive variable V isneither onstant, nor the same for all omponentsAi. For more details see, for example the book ofYablonskii, Bykov, Gorban, & Elokhin (1991). Forsimpliity, we will onsider systems with one on-stant volume and under onstant temperature, butit is neessary always keep in mind the possibilityto return to general equations. For that onditions,the kineti equations have the following formddt =Xs ws(; T )s + �; (2)where � is the vetor of external uxes normalizedto unit volume. It may be useful to represent exter-nal uxes as elementary reations by introdution ofnew omponent ? together with inoming and out-going reations ?! Ai and Ai ! ?.The most popular kineti law of elementary rea-tions is the mass ation law for perfet systems:ws(; T ) = ks(T )Y �sii ; (3)where \kineti onstant" ks(T ) depends on temper-ature T . More general kineti law, whih an be usedfor most of non-ideal (non-perfet) systems isws(; T ) = 's exp 1RT Xi �si�i! ; (4)whereR is the universal gas onstant, �i is the hem-ial potential, �i = �F (N;T;V )�Ni = �G(N;T;P )�Ni , F is theHelmgoltz free energy, G is the Gibbs energy (freeenthalpy), P is pressure and 's > 0 is an intensivevariable, kineti fator, whih an depend on any setof intensive variables, �rst of all, on T .Chemial thermodynamis (Prigogine & Defay(1954)) provides tools of hoie for stability analy-sis of reation networks (Proaia & Ross (1977))and hemial reators (Aris (1965)). The laws ofthermodynamis have been used for analyzing ofstrutural stability of proess systems by Hangos,

Bokor, & Szederk�enyi (2004). In general reationnetwork oeÆients ks (3) or 's (4) are not inde-pendent. In order to respet the seond law of ther-modynamis, they should satisfy some equationsand inequalities. The most famous suÆient ondi-tion gives the priniple of detailed balane. Let usgroup the elementary reations in pairs, diret andinverse reations, and mark the variables for diretreations by supersript +, and for inverse rea-tions by �. Then the priniple of detailed balanefor general kinetis (4) reads:'+s = '�s (5)(Feinberg (1972)). For the isothermal mass ationlaw the priniple of detailed balane an be formu-lated as follows: there exists a stritly positive point� of detailed balane, at this pointw+s (�) = w�s (�) (6)for all s. This is, essentially, the same priniple: if wesubstitute in the general reation rate (4) the fra-tion �i=RT by ln(i=�i ), then we will get the massation law, and '+s = '�s . The priniple of detailedbalane is losely related to the miroreversibilityand Onsager relations.More general ondition was invented by Stuek-elberg (1952) for the Boltzmann equation. He pro-dued them from the S-matrix unitarity (the quan-tum omplete probability formula). For the generallaw (4) without diret-inverse reations grouping forany state the following identity holds:Xs 's exp 1RT Xi �si�i!�Xs 's exp 1RT Xi �si�i! : (7)Even more general ondition whih guarantees theseond law and has learmirosopi sense (the om-plete probability does not inrease) was obtained byGorban (1984): for any stateXs 's exp 1RT Xi �si�i!�Xs 's exp 1RT Xi �si�i! : (8)To obtain formulas for the isothermal mass ationlaw, it is suÆient just to apply the general law (4)with onstant 's to the perfet free energy F =RTPi i(ln i + �i0) with onstant �i0. More de-tailed analysis was presented, by Gorban (1984).4



In any ase, reation onstants are dependent,and this dependene guarantees stability of equilib-rium and existene of global thermodynami Lya-punov funtions for losed systems (2) with � =0. Nevertheless, we often study equations for suhsystems with osillations, bifurations, haos, andother e�ets, whih are impossible in systems withglobal Lyapunov funtion. Usually this means thatwe study a subsystem of a large system, where someof onentrations do not hange beause they arestabilized by external uxes or by a large externalreservoir. These onstant (or very slow) onentra-tions are inluded into new reation onstants, andafter this rede�nition they an loose any thermody-nami property.2.2. Linear Networks and ErgodiityIn this Se., we onsider a general network oflinear reations. This network is represented as adireted graph (digraph) (Temkin, Zeigarnik, &Bonhev (1996)): verties orrespond to ompo-nents Ai, edges orrespond to reations Ai ! Ajwith kineti onstants kji > 0. For eah vertex, Ai,a positive real variable i (onentration) is de�ned.A basis vetor ei orresponds to Ai with ompo-nents eij = Æij , where Æij is the Kroneker delta.The kineti equation for the system isdidt =Xj (kijj � kjii); (9)or in vetor form: _ = K. We don't assume any spe-ial relation between onstants, and onsider themas independent quantities. The thermodynami re-stritions on onstants are not appliable here be-ause, in general, we study pseudomonomoleularsystems whih are subsystems of larger nonlinearsystems and don't represent by themselves losedmonomoleular systems.For any network of linear reations the matrix ofkineti oeÆients K has the following properties:{ non-diagonal elements of K are non-negative;{ diagonal elements of K are non-positive;{ elements in eah olumn of K have zero sum.For any K with these properties there exists a net-work of linear reations with kineti equation _ =K. This family of matries oinide with the familyof generators of �nite Markov hains, and this lassof kineti equations oinide with the lass of inverseKolmogorov's equations or master equations for the

�nite Markov hains in ontinuous time (Meyn &Tweedie (2009); Meyn (2007)).A linear onservation law is a linear funtion de-�ned on the onentrations b() = Pi bii, whosevalue is preserved by the dynamis (9). The onser-vation laws oeÆient vetors bi are left eigenvetorsof the matrix K orresponding to the zero eigen-value. The set of all the onservation laws forms theleft kernel of the matrixK. Equation (9) always hasa linear onservation law: b0() = Pi i = onst.If there is no other independent linear onservationlaw, then the system is weakly ergodi.A set E is positively invariant with respet to ki-neti equations (9), if any solution (t) that startsin E at time t0 ((t0) 2 E) belongs to E for t > t0((t) 2 E if t > t0). It is straightforward to hekthat the standard simplex � = f j i � 0; Pi i =1g is positively invariant set for kineti equation (9):just to hek that if i = 0 for some i, and all j � 0then _i � 0. This simple fat immediately impliesthe following properties of K:{ All eigenvalues � of K have non-positive realparts, Re� � 0, beause solutions annot leave �in positive time;{ If Re� = 0 then � = 0, beause intersetion of� with any plane is a polygon, and a polygonannot be invariant with respet to rotations tosuÆiently small angles;{ The Jordan ell of K that orresponds to zeroeigenvalue is diagonal { beause all solutionsshould be bounded in � for positive time.{ The shift in time operator exp(Kt) is a ontra-tion in the l1 norm for t > 0.{ For weakly ergodi systems there exists suh amonotonially dereasing funtion Æ(t) (t > 0, 0 <Æ(t) < 1, Æ(t)! 0 when t!1) that for any twosolutions of (9) (t); 0(t) 2 �Xi ji(t)� 0i(t)j � Æ(t)Xi ji(0)� 0i(0)j : (10)The ergodiity oeÆient Æ(t) was introdued byDobrushin (1956) (see also a book by Seneta (1981)).It an be estimated using the struture of the net-work graph (Gorban, Bykov & Yablonskii (1986);Meyn (2007)).Two verties are alled adjaent if they share aommon edge. A path is a sequene of adjaent ver-ties. A graph is onneted if any two of its vertiesare linked by a path. A maximal onneted sub-graph of graphG is alled a onneted omponent ofG. Every graph an be deomposed into onnetedomponents.5



A direted path is a sequene of adjaent edgeswhere eah step goes in diretion of an edge. A ver-tex A is reahable from a vertex B, if there exists adireted path from B to A.A nonempty set V of graph verties forms a sink, ifthere are no direted edges from Ai 2 V to anyAj =2V . For example, in the reation graph A1  A2 !A3 the one-vertex sets fA1g and fA3g are sinks.A sink is minimal if it does not ontain a stritlysmaller sink. In the previous example, fA1g, fA3gare minimal sinks. Minimal sinks are also alled er-godi omponents.A digraph is strongly onneted, if every vertex Ais reahable from any other vertex B. Ergodi om-ponents are maximal strongly onneted subgraphsof the graph, but inverse is not true: there may ex-ist maximal strongly onneted subgraphs that haveoutgoing edges and, therefore, are not sinks.The weak ergodiity of the network follows fromits topologial properties.Theorem 1. The following properties are equiv-alent (and eah one of them an be used as an alter-native de�nition of weak ergodiity):(i) There exist the only independent linear on-servation law for kineti equations (9) (this isb0() =Pi i = onst).(ii) For any normalized initial state (0) (b0() =1) there exists a limit state� = limt!1 exp(Kt) (0)that is the same for all normalized initial on-ditions: For all ,limt!1 exp(Kt)  = b0()�:(iii) For eah two vertiesAi; Aj (i 6= j) we an �ndsuh a vertex Ak that is reahable both fromAi and fromAj . This means that the followingstruture exists:Ai ! : : :! Ak  : : : Aj :One of the paths an be degenerated: it maybe i = k or j = k.(iv) The network has only one minimal sink (oneergodi omponent).�The proof of this theorem ould be extrated fromdetailed books about Markov hains and networks(Meyn (2007); Van Mieghem (2006)). In its presentform it was published by Gorban, Bykov & Yablon-skii (1986) with expliit estimations of ergodiityoeÆients.For every monomoleular kineti system, themaximal number of independent linear onserva-

tion laws (i.e. the geometri multipliity of the zeroeigenvalue of the matrixK) is equal to the maximalnumber of disjoint ergodi omponents (minimalsinks).2.3. Quasi-equilibrium (QE) or Fast EquilibriumQuasi-equilibrium approximation uses the as-sumption that a group of reations is muh fasterthan other and goes fast to its equilibrium. We usebelow supersripts `f ' and `s' to distinguish fast andslow reations. A small parameter appears in thefollowing formddt = X�; slowws�(; T )s� + 1" X&; fastwf&(; T )f& ; (11)To separate variables, we have to study the spaesof linear onservation law of the initial system (11)and of the fast subsystemddt = 1" X&; fastwf&(; T )f&If they oinide, then the fast subsystem just dom-inates, and there is no fast-slow separation forvariables (all variables are either fast, or onstant).But if there exist additional linearly independentlinear onservation laws for the fast system, thenlet us introdue new variables: linear funtionsb1(); :::bn(), where b1(); :::bm() is the basis of thelinear onservation laws for the initial system, andb1(); :::bm+l() is the basis of the linear onservationlaws for the fast subsystem. Then bm+l+1(); :::bn()are fast variables, bm+1(); :::bm+l() are slow vari-ables, and b1(); :::bm() are onstant. The quasi-equilibrium manifold is given by the equationsP& wf&(; T )f& = 0 and for small " it serves as anapproximation to a slow manifold. In the old andstandard approah it is assumed that system (11) aswell as system of fast reations satis�es the thermo-dynami restritions, and the quasi-equilibrium isjust a partial thermodynami equilibrium, and ouldbe de�ned by onditional extremum of thermody-nami funtions. This guarantees global stability offast subsystems and all the lassial singular per-turbation theory like Tikhonov theorem ould beapplied.Reently, Vora & Daoutidis (2001) took notiethat this type of reasoning does not require las-sial thermodynami restritions on onstants. Forexample, let us onsider the mass ation law ki-netis and group the reations in pairs, diret and6



inverse reations. If the set of stoihiometri ve-tors for fast reations is linearly independent, thenfor this system the detailed balane priniple holds(obviously), and it demonstrates the \thermody-nami behaviour" without onnetion to lassialthermodynamis. This ase of \stoihiometriallyindependent fast reations" an be generalized forirreversible reations too (Vora &Daoutidis (2001)).For suh fast system the quasiequilbrium manifoldhas the same nie properties as for thermodynamipartial equilibrium, and approximates slow dynam-is for suÆiently small ".There are other lasses of mass ation law sub-systems with suh a \quasi-thermodynami" be-haviour, whih depends on struture, but not ononstants. For example, any system of reationswithout interations has suh a property (Gorban,Bykov, & Yablonskii (1986)). These reations havethe form �Ai ! P :::: any linear reation are al-lowed, as well as reations like 2Ai ! Aj + Ak,3Ai ! Aj +Ak + Al, et. All suh fast subsystemsan serve for quasi-equilibrium approximation, be-ause for them dynamis is globally stable.Quasi-equilibrium manifold approximates expo-nentially attrative slow manifold and is used inmany areas of kinetis either as initial approxima-tion for slow motion, or just by itself (more disus-sion and further referenes are presented by Gorban& Karlin (2005)).2.4. Quasi Steady-State (QSS) or Fast SpeiesThe quasi steady-state (or pseudo steady state)assumption was invented in hemistry for desrip-tion of systems with radials or atalysts. In themost usual version the speies are split in two groupswith onentration vetors s (\slow" or basi om-ponents) and f (\fast intermediates"). For atalytireations there is additional balane for f , amountof atalyst, usually it is just a sum bf =Pi fi. Theamount of the fast intermediates is assumed muhsmaller than the amount of the basi omponents,but the reation rates are of the same order, oreven the same (both intermediates and slow ompo-nents partiipate in the same reations). This is thesoure of a small parameter in the system. Let ussale the onentrations f and s to the ompatibleamounts. After that, the fast and slow time appearandwe ould write _s =W s(s; f), _f = 1"W f(s; f),where " is small parameter, and funtions W s;W fare bounded and have bounded derivatives (are \of

the same order"). We an apply the standard singu-lar perturbation tehniques. If dynamis of fast om-ponents under given values of slow onentrationsis stable, then the slow attrative manifold exists,and its zero approximation is given by the systemof equationsW f(s; f) = 0. Bifurations in fast sys-tem orrespond to ritial e�ets, inluding ignitionand explosion.This sheme was analyzedmany times with plentyof details, examples, and some ompliations. Ex-haustive ase study of the simplest enzyme reationwas provided by Segel & Slemrod (1989) . For het-erogenious atalyti reations, the book by Yablon-skii, Bykov,Gorban, & Elokhin (1991) gives analysisof saling of fast intermediates (there aremany kindsof possible saling). In the ontext of the Computa-tional Singular Perturbation (CSP) approah, Lam(1993) and Lam&Goussis (1994) developed oneptof the CSP radials. Gorban & Karlin (2003, 2005)onsidered QSS as initial approximation for slow in-variant manifold. Analysis of the error of the QSSwas provided by Turanyi, Tomlin, & Pilling (1993).The QE approximation is also extremely popularand useful. It has simpler dynamial properties (re-spets thermodynamis, for example, and gives noritial e�ets in fast subsystems of losed systems).Nevertheless, neither radials in ombustion, nor in-termediates in atalyti kinetis are, in general, loseto quasi-equilibrium. They are just present in muhsmaller amount, and when this amount grows, thenthe QSS approximation fails.The simplest demonstration of these two approx-imation gives the simple reation: S + E $ SE !P +E with reation rate onstants k�1 and k2. Theonly possible quasi-equilibrium appears when the�rst equilibrium is fast: k�1 = ��=". The orrespond-ing slow variable is Cs = S+SE , bE = E+SE =onst. For the QEmanifold we get a quadrati equa-tion k�1k+1 SE = SE = (Cs � SE)(bE � SE). Thisequation gives the expliit dependene SE(Cs), andthe slow equation reads _Cs = �k2SE(Cs), Cs +P = bS = onst.For the QSS approximation of this reation ki-netis, under assumption bE � bS , we have fast in-termediates E and SE. For the QSS manifold thereis a linear equation k+1 SE � k�1 SE � k2SE = 0,whih gives us the expliit expression for SE(S):SE = k+1 SbE=(k+1 S + k�1 + k2) (the standardMihaelis{Menten formula). The slow kinetis reads_S = �k+1 S(bE�SE(S))+k�1 SE(S). The di�er-ene between the QSS and the QE in this example7



is obvious.The terminology is not rigorous, and often QSS isused for all singular perturbed systems, and QE isapplied only for the thermodynami exlusion of fastvariables by the maximum entropy (or minimum offree energy, or extremum of another relevant ther-modynami funtion) priniple (MaxEnt). This ter-minologial onvention may be onvenient. Never-theless, without any relation to terminology, the dif-ferene between these two types of introdution of asmall parameter is huge. There exists plenty of gen-eralizations of these approahes, whih aim to on-strut a slow and (almost) invariantmanifold, and toapproximate fast motion as well. The following ref-erenes an give a �rst impression about these meth-ods: Method of Invariant Manifolds (MIM) (Roussel& Fraser (1991); Gorban&Karlin (2005),Method ofInvariant Grids (MIG), a disrete analogue of invari-ant manifolds (Gorban, Karlin, & Zinovyev (2004)),Computational Singular Perturbations (CSP) (Lam(1993); Lam & Goussis (1994); Zagaris, Kaper, &Kaper (2004)) Intrinsi Low-Dimensional Manifolds(ILDM) by Maas, & Pope (1992), developed furtherin series of works byBykov,Goldfarb, Gol'dshtein, &Maas, U. (2006)), methods based on the Lyapunovauxiliary theorem (Kazantzis & Kravaris (2006)).2.5. Lumping AnalysisWei & Prater (1962) demonstrated that for(pseudo)monomoleular systems there exist linearombinations of onentrations whih evolve in timeindependently. These linear ombinations (quasi-omponents) orrespond to the left eigenvetors ofkineti matrix: if lK = �l then d(l; )=dt = (l; )�,where the standard inner produt (l; ) is onentra-tion of a quasiomponent. They also demonstratedhow to �nd these quasiomponents in a properlyorganized experiment.This observation gave rise to a question: howto lump omponents into proper quasiomponentsto guarantee the autonomous dynamis of thequasiomponents with appropriate auray. Weiand Kuo studied onditions for exat (Wei & Kuo(1969)) and approximate (Kuo &Wei (1969)) lump-ing in monomoleular and pseudomonomoleularsystems. They demonstrated that under ertainonditions large monomoleular system ould bewell{modelled by lower{order system.More reently, sensitivity analysis and Lie groupapproah were applied to lumping analysis (Li &

Rabitz (1989); Toth, Li, Rabitz, & Tomlin (1997)),and more general nonlinear forms of lumped on-entrations are used (for example, onentration ofquasiomponents ould be rational funtion of ).Huthinson & Luss (1970) studied lumping-analysis of mixtures with many parallel �rst orderreations. Farkas (1999) generalized these resultsand haraterized those lumping shemes whihpreserve the kineti struture of the original system.Coxson & Bisho� (1987) plaed lumping analysisin the linear systems theory and demonstrated therelationships between lumpability and the oneptsof observability, ontrollability and minimal real-ization. Djouad & Sportisse (2002) onsidered thelumping proedures as eÆient tehniques leadingto nonsti� systems and demonstrated eÆienyof developed algorithm on kineti models of at-mospheri hemistry. Lin, Leibovii & Jorgensen(2008) formulated an optimal lumping problem asa mixed integer nonlinear programming (MINLP)and demonstrated that it an be eÆiently solvedwith a stohasti optimization method, Tabu Searh(TS) algorithm.The power of lumping using a time-sale basedapproah was demonstrated by Whitehouse, Tom-lin, & Pilling (2004). This omputationally heapapproah ombines ideas of sensitivity analysis withsimple and useful grouping of speies with similarlifetimes and similar topologial properties ausedby onnetions of the speies in the reation net-works. The lumped onentrations in this approahare simply sums of onentrations in groups. For ex-ample, speies with similar omposition and fun-tionalities ould be lumped into one single represen-tative speies (Pepiot-Desjardins & Pitsh (2008)).Lumping analysis based both on mathematialarguments and fundamental physial and hemi-al properties of the omponents is now one of themain tools for model redution in highly multiom-ponent systems, suh as the hydroarbon mixturein petroleum hemistry (Zavala & Rodriguez &Vargas-Villamil (2004)) or biohemial networksin systems biology (Maria (2006)). The optimalsolution of lumping problem often requires the ex-haustive searh, and instead of them various heuris-tis are used to avoid ombinatorial explosion. Forthe lumping analysis of the systems biology mod-els Dokoumetzidis & Aarons (2009) developed aheuristi greedy searh strategy whih allowed themto avoid the exhaustive searh of proper lumpedomponents.Proedures of lumping analysis form a part of gen-8



eral algebra of model building and model simpli�-ation transformations. Hangos & Cameron (2001)applied formal methods of omputer siene and ar-ti�ial intelligene for analysis of this algebra. Inpartiular, a formal method for de�ning syntax andsemantis of proess models has been proposed.The modern systems and ontrol theory provideseÆient tools for lumping{analysis. The so-alledbalaned model redution was invented in late 1970s(Moore (1981)). For a linear system a set of \targetvariables" is seleted. The dimension of the system nis large, while the number of the target variables, forexample, inputs m and outputs p, usually satis�esm; p� n. The balaned model redution problem anbe stated as follows (Gugerin & Antoulas (2004)):�nd a redued order system suh that the followingproperties are satis�ed:(i) The approximation error in the target vari-ables is small, and there exists a global errorbound.(ii) System properties, like stability and passivity,are preserved.(iii) The proedure is omputationally eÆient.In large dimensions, speial e�orts are needed to re-solve the auray/eÆieny dilemma and to �ndeÆiently the approximate solution of the model re-dution problem (Antoulas & Sorensen (2002)).Various methods for balaned trunation are de-veloped: Lyapunov balaning, stohasti balaning,bounded real balaning, positive real balaning, andfrequeny weighted balaning (Gugerin &Antoulas(2004)). Nonlinear generalizations are proposed aswell (Lall, Marsden & Glavaki (2002); Condon &Ivanov (2004)).2.6. Limiting StepsIn the IUPAC Compendium of Chemial Ter-minology (2007) one an �nd a de�nition of lim-iting steps. Rate-ontrolling step (2007): \A rate-ontrolling (rate-determining or rate-limiting) stepin a reation ourring by a omposite reation se-quene is an elementary reation the rate onstantfor whih exerts a strong e�et { stronger than thatof any other rate onstant { on the overall rate."Let us omplement this de�nition by additionalomment: usually when people are talking aboutlimiting step they expet signi�antly more: thereexists a rate onstant whih exerts suh a strong ef-fet on the overall rate that the e�et of all other rateonstants together is signi�antly smaller. For the

IUPAC Compendium de�nition a rate-ontrollingstep always exists, beause among the ontrol fun-tions generially exists the biggest one. On the on-trary, for the notion of limiting step that is usedin pratie, there exists a di�erene between sys-tems with limiting step and systems without limit-ing step.During XX entury, the onept of the limitingstep was revised several times. First simple idea of a\narrow plae" (the least ondutive step) ould beapplied without adaptation only to a simple yleor a hain of irreversible steps that are of the �rstorder (see Chap. 16 of the book Johnston (1966) orthe paper by Boyd (1978)). When researhers try toapply this idea in more general situations they meetvarious diÆulties suh as:{ Some reations have to be \pseudomonomoleu-lar." Their onstants depend on onentrationsof outer omponents, and are onstant only un-der ondition that these outer omponents arepresent in onstant onentrations, or hange suf-�iently slow (i.e. are present in signi�antly big-ger amount).{ Even under �xed or slow outer omponents on-entration, the simple \narrow plae" behaviourould be spoiled by branhing or by reverse rea-tions. The simplest example is given by the yle:A1 $ A2 ! A3 ! A1. Even if the onstant ofthe last step A3 ! A1 is the smallest one, thestationary rate may be muh smaller than k3b(where b is the overall balane of onentrations,b = 1 + 2 + 3), if the onstant of the reversereation A2 ! A1 is suÆiently big.In a series of papers, Northrop (1981, 2001) learlyexplained these diÆulties and suggested that theonept of rate{limiting step is \outmoded". Nev-ertheless, the main idea of limiting is so attrativethat Northrop's arguments stimulated the searh formodi�ation and improvement of the main onept.Ray (1983) proposed the use of sensitivity analy-sis. He onsidered yles of reversible reations andsuggested a de�nition: The rate{limiting step in areation sequene is that forward step for whih ahange of its rate onstant produes the largest e�eton the overall rate.Ray's approah was revised by Brown & Cooper(1993) from the system ontrol analysis point ofview (see the book of Cornish-Bowden & Cardenas(1990)). They stress again that there is no uniquerate{limiting step spei� for an enzyme, and thisstep, even if it exists, depends on substrate, produtand e�etor onentrations.9



Near ritial onditions the ritial simpli�ationappears, whih is also a type of limitation, beausesome reations beome ritially important (Yablon-sky, Mareels, & Lazman (2003))Two lassial examples of limiting steps demon-strate us the hain of linear reation and the linearatalyti yle, when they inlude a reation whihis signi�antly slower, than other reations.A linear hain of reations, A1 ! A2 ! :::An,with reation rate onstants ki (for Ai ! Ai+1),gives the �rst example of limiting steps. Let thereation rate onstant kq be the smallest one. Thenwe expet the following behaviour of the reationhain in time sale & 1=kq: all the omponentsA1; :::Aq�1 transform fast into Aq , and all the om-ponents Aq+1; :::An�1 transform fast into An, onlytwo omponents, Aq and An are present (onentra-tions of other omponents are small) , and the wholedynamis in this time sale an be represented bya single reation Aq ! An with reation rate on-stant kq . This piture beomes more exat when kqbeomes smaller with respet to other onstants.The atalyti yle is one of the most importantsubstrutures that we study in reation networks. Inthe redued form the atalyti yle is a set of linearreations: A1 ! A2 ! : : : An ! A1:Redued form means that in reality some of thesereation are not monomoleular and inlude someother omponents (not from the listA1; : : : An). Butin the study of the isolated yle dynamis, onen-trations of these omponents are taken as onstantand are inluded into kineti onstants of the ylelinear reations.For the onstant of elementary reation Ai ! weuse the simpli�ed notation ki beause the produtof this elementary reation is known, it is Ai+1 fori < n and A1 for i = n. The elementary reationrate is wi = kii, where i is the onentration ofAi. The kineti equation is:_i = ki�1i�1 � kii; (12)where by de�nition 0 = n, k0 = kn, and w0 =wn. In the stationary state ( _i = 0), all the wi areequal: wi = w. This ommon ratew we all the ylestationary rate, andw = b1k1 + : : : 1kn ; i = wki ; (13)where b =Pi i is the onserved quantity for rea-tions in onstant volume. Let one of the onstants,

kmin, be muh smaller than others (let it be kmin =kn): ki � kmin if i 6= n : (14)In this ase, in linear approximation w = knb,n = b 1�Xi<n knki ! ; and i = bknki for i 6= n :(15)The simplest zero order approximation for thesteady state givesn = b; i = 0 (i 6= n): (16)This is trivial: all the onentration is olleted atthe starting point of the \narrow plae," but may beuseful as an origin point for various approximationproedures.So, the stationary rate of a yle is determinedby the smallest onstant, kmin, if it is muh smallerthan the onstants of all other reations (14):w � kminb: (17)In that ase we say that the yle has a limiting stepwith onstant kmin.3. Dynamis of Catalyti Cyle withLimiting Step3.1. EigenvaluesThere is signi�ant di�erene between the exam-ples of limiting steps for the hain of reations andfor irreversible yle. For the hain, the steady statedoes not depend on nonzero rate onstants. It is justn = b; 1 = 2 = ::: = n�1 = 0. The smallest rateonstant kq gives the smallest positive eigenvalue,the relaxation time is � = 1=kq. The orrespondingapproximation of eigenmode (right eigenvetor) r1has oordinates: r11 = ::: = r1q�1 = 0, r1q = 1, r1q+1 =::: = r1n�1 = 0, rn = �1. This exatly orresponds tothe statement that the whole dynamis in the timesale & 1=kq an be represented by a single reationAq ! An with reation rate onstant kq . The lefteigenvetor for eigenvalue kq has approximation l1with oordinates l11 = l12 = ::: = l1q = 1, l1q+1 = ::: =l1n = 0. This vetor provides the almost exat lump-ing on time sale & 1=kq. Let us introdue a newvariable lump =Pi lii, i.e. lump = 1+2+:::+q.For the time sale & 1=kq we an write lump+ n �b, dlump=dt � �kqlump, dn=dt � kqlump.In the example of a yle, we approximate thesteady state, that is, the right eigenvetor r0 for10



zero eigenvalue (the left eigenvetor is known andorresponds to the main linear balane b: l0i � 1). Inthe zero-order approximation, this eigenvetor hasoordinates r01 = ::: = r0n�1 = 0, r0n = 1.If kn=ki is small for all i < n, then the kinetibehaviour of the yle is determined by a linear hainof n�1 reationsA1 ! A2 ! :::An, whih we obtainafter utting the limiting step. The harateristiequation for an irreversible yle, Qni=1(� + ki) �Qni=1 ki = 0, tends to the harateristi equation forthe linear hain, �Qn�1i=1 (�+ ki) = 0, when kn ! 0.The harateristi equation for a yle with limit-ing step (kn=ki � 1) has one simple zero eigenvaluethat orresponds to the onservation law P i = band n� 1 nonzero eigenvalues�i = �ki + Æi (i < n): (18)where Æi ! 0 whenPi<n knki ! 0.A yle with limiting step (12) has real eigenspe-trum and demonstrates monotoni relaxation with-out damped osillations. Of ourse, without limita-tion suh osillations ould exist, for example, whenall ki � k > 0, (i = 1; :::n).The relaxation time of a stable linear system (12)is, by de�nition, � = 1=minfRe(��i)g (� 6= 0). Forsmall kn, � � 1=k� , k� = minfkig, (i = 1; :::n� 1).In other words, for a yle with limiting step, k� isthe seond slowest rate onstant: kmin � k� � :::.3.2. Eigenvetors for Reation Chain and forCatalyti Cyle with Limiting StepLet the irreversible yle inlude a limiting step:kn � ki (i = 1; :::; n � 1) and, in addition, kn �jki�kj j (i; j = 1; :::; n�1, i 6= j), then the eigenve-tors of the kineti matrix almost oinide with theeigenvetors for the linear hain of reations A1 !A2 ! :::An, with reation rate onstants ki (forAi ! Ai+1) (Gorban & Radulesu (2008)).The kineti equation for the linear hain is_i = ki�1i�1 � kii; (19)The oeÆient matrix K of these equations is verysimple. It has nonzero elements only on the maindiagonal, and one position below. The eigenvaluesof K are �ki (i = 1; :::n � 1) and 0. The left andright eigenvetors for 0 eigenvalue, l0 and r0, are:l0 = (1; 1; :::1); r0 = (0; 0; :::0; 1); (20)all oordinates of l0 are equal to 1, the only nonzerooordinate of r0 is r0n and we represent vetor{olumn r0 in row.

Below we use expliit form of K left and righteigenvetors. Let vetor{olumn ri and vetor{rowli be right and left eigenvetors of K for eigenvalue�ki. For oordinates of these eigenvetors we usenotation rij and lij . Let us hoose a normalizationondition rii = lii = 1. It is straightforward to hekthat rij = 0 (j < i) and lij = 0 (j > i), rij+1 =kjrj=(kj+1 � ki) (j � i) and lij�1 = kj�1lj=(kj�1 �kj) (j � i), andrii+m = mYj=1 ki+j�1ki+j � ki ; lii�m = mYj=1 ki�jki�j � ki : (21)It is onvenient to introdue formally k0 = 0. Underseleted normalization ondition, the inner produtof eigenvetors is: lirj = Æij , where Æij is the Kro-neker delta.If the rate onstants any two onstants, ki, kj areonneted by relation ki � kj or ki � kj (i.e. theyare well separated), thenki�jki�j � ki � � 1; if ki � ki�j ;0; if ki � ki�j ; (22)Hene, jlii�mj � 1 or jlii�mj � 0. To demonstratethat also jrii+mj � 1 or jrii+mj � 0, we shift nomina-tors in the produt (21) on suh a way:rii+m = kiki+m � ki m�1Yj=1 ki+jki+j � ki :Exatly as in (22), eah multiplier ki+jki+j�ki here iseither almost 1 or almost 0, and kiki+m�ki is eitheralmost 0 or almost �1. In this zero-one asymptotislii =1; lii�m � 1if ki�j > ki for all j = 1; : : :m; else lii�m � 0;rii =1; rii+m � �1if ki+j > ki for all j = 1; : : :m� 1and ki+m < ki; else rii+m � 0: (23)In this asymptoti (Fig. 1), only two oordinates ofright eigenvetor ri an have nonzero values, rii = 1and rii+m � �1 where m is the �rst suh positiveinteger that i + m < n and ki+m < ki. Suh malways exists beause kn = 0. For left eigenvetorli, lii � : : : lii�q � 1 and lii�q�j � 0 where j > 0 andq is the �rst suh positive integer that i � q � 1 >0 and ki�q�1 < ki. It is possible that suh q doesnot exist. In that ase, all lii�j � 1 for j � 0. Itis straightforward to hek that in this asymptotilirj = Æij .11
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1 -1Fig. 1. Graphial representation of eigenvetors approxima-tion for the linear hain of reations with well separatedonstants. To �nd the left (l) and right (r) eigenvetors foreigenvalue k it is neessary to delete from the hain all thereations with the rate onstants < k (dashed lines) and to�nd the maximal onneted interval, where the reation withonstant k (bold arrow) is situated. The right eigenvetor rhas oordinate 1 for the vertex, whih is the beginning of thereation with onstant k, and oordinate �1 for the vertex,whih is end of the interval in the diretion of reations. Theleft eigenvetor l has oordinate 1 for the beginning of thereation with onstant k and for all preeding verties fromthe onneted interval. All other oordinates of r and l arezero.The simplest example gives the order k1 � k2 �::: � kn�1: lii�j � 1 for j � 0, rii = 1, rii+1 � �1and all other oordinates of eigenvetors are lose tozero. For the inverse order, k1 � k2 � ::: � kn�1,lii = 1, rii = 1, rin � �1 and all other oordinates ofeigenvetors are lose to zero.For less trivial example, let us �nd the asymptotiof left and right eigenvetors for a hain of reations:A1!5 A2!3 A3!4 A4!1 A5!2 A6;where the upper index marks the order of rate on-stants: k4 � k5 � k2 � k3 � k1 (ki is the rateonstant of reation Ai ! :::).For left eigenvetors, rows li, we have the followingasymptotis:l1 � (1; 0; 0; 0; 0; 0); l2 � (0; 1; 0; 0; 0; 0);l3 � (0; 1; 1; 0; 0; 0); l4 � (0; 0; 0; 1; 0; 0);l5 � (0; 0; 0; 1; 1; 0): (24)For right eigenvetors, olumns ri, we have thefollowing asymptotis (we write vetor-olumns inrows):r1 � (1; 0; 0; 0; 0;�1); r2 � (0; 1;�1; 0; 0; 0);r3 � (0; 0; 1; 0; 0;�1); r4 � (0; 0; 0; 1;�1; 0);r5 � (0; 0; 0; 0; 1;�1): (25)The orresponding approximation to the general so-lution of the kineti equations is:(t) = (l0; (0))r0 + n�1Xi=1 (li(0))ri exp(�kit); (26)where (0) is the initial onentration vetor, andfor left and right eigenvetors li and ri we use their

zero-one asymptoti. In other words, approximationof the left eigenvetors provides us with almost exatlumping (for analysis of exat lumping see the paperby Li & Rabitz (1989)) .4. Ayli Non-branhing Network: ExpliitFormulas for EigenvetorsSo, to analyze asymptoti of eigenvalues andeigenvetors for a irreversible yle, we ut the rea-tion with the smallest onstant, get a linear hain,and analyze the eigenvalues and eigenvetors forthis hain. For a general multisale reation net-work (instead of a yle) we will ome, after somesurgery, to ayli non-branhing reation networks(instead of a linear hain).For any network without branhing, we an sim-plify the notation for the kineti onstants, by intro-duing �i = kji for the only reation Ai ! Aj , or�i = 0, if there is no suh a reation. Also it is usefulto introdue a map � on the set of verties: �(i) = j,if there exist reation Ai ! Aj , and �(i) = i if thereare no outgoing reations from the Ai ! Aj . Foriterations of the map � we use notation �q .For an ayli non-branhing reation network,for any vertex Ai there is an eigenvalue ��i andthe orresponding eigenvetor. If Ai is a sink vertex,then this eigenvalue is zero. For left and right eigen-vetors ofK that orrespond to Ai we use notationsli (vetor-row) and ri (vetor-olumn), orrespond-ingly.Let us suppose that Af is a sink vertex of thenetwork. Its assoiated right and left eigenvetorsorresponding to the zero eigenvalue are given by:rij = Æij ; lij = 1 if and only if �q(j) = i for someq > 0.For nonzero eigenvalues, right eigenvetors will beonstruted by reurrene starting from the vertexAi and moving in the diretion of the ow. The on-strution is in opposite diretion for left eigenve-tors.For right eigenvetor ri only oordinates ri�k(i)(k = 0; 1; : : : �i) ould have nonzero values, andri�k+1(i) = ��k(i)��k+1(i) � �i ri�k(i) = kYj=0 ��j(i)��j+1(i) � �i= �i��k+1(i) � �i k�1Yj=0 ��j+1(i)��j+1(i) � �i :(27)12
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Fig. 2. Graphial representation of eigenvetors approxima-tion for the ayli non-branhing reation network with wellseparated onstants (ompare to Fig. 1). The eigenvalue �korresponds to the reation Ai ! A�(i) (bold arrow). To theright from Ai are verties A�q(i) and to the left are thoseAj , for whih there exists suh q that �q(j) = i. The rea-tions with the rate onstants < k (dashed lines) are deletedfrom the network. The right and left eigenvetors ould havenonzero oordinates only for verties from the maximal on-neted subgraph of the presented graph, where the Ai issituated. The right eigenvetor r has oordinate 1 for Ai(beginning of the bold arrow), and oordinate �1 for thevertex, whih is the minimal in that onneted subgraph.The left eigenvetor l has oordinate 1 for the beginning ofthe reation with onstant k and for all preeding vertiesfrom the subgraph. All other oordinates of r and l are zero.For left eigenvetor li oordinate lij ould havenonzero value only if there exists suh q � 0 that�q(j) = i (this q is unique beause the system isayli):lij = �j�j � �i li�(j) = q�1Yk=0 ��k(j)��k(j) � �i : (28)For well separated onstants, we an write theasymptoti representation expliitly, analogously to(23) (Fig. 2). For left eigenvetors, lii = 1 and lij =1 (for i 6= j) if there exists suh q that �q(j) = i,and ��d(j) > �i for all d = 0; : : : q � 1, else lij = 0.For right eigenvetors, rii = 1 and ri�k(i) = �1 if��k(i) < �i and for all positive m < k inequality��m(i) > �i holds, i.e. k is �rst suh positive inte-ger that ��k(i) < �i (for �xed point Ap we use �p =0). Vetor ri has not more than two nonzero oor-dinates. It is straightforward to hek that in thisasymptoti lirj = Æij .For example, let us �nd that asymptoti for abranhed ayli system of reations:A1!7 A2!5 A3!6 A4!2 A5!4 A8; A6!1 A7!3 A4where the upper index marks the order of rate on-stants: �6 > �4 > �7 > �5 > �2 > �3 > �1 (�i isthe rate onstant of reation Ai ! :::).For zero eigenvalue, the left and right eigenvetorsarel8 = (1; 1; 1; 1; 1; 1; 1; 1; 1); r8 = (0; 0; 0; 0; 0; 0; 0; 1):

For left eigenvetors, rows li, that orrespond tononzero eigenvalues we have the following asymp-totis:l1 � (1; 0; 0; 0; 0; 0; 0; 0); l2 � (0; 1; 0; 0; 0; 0; 0; 0);l3 � (0; 1; 1; 0; 0; 0; 0; 0); l4 � (0; 0; 0; 1; 0; 0; 0; 0);l5 � (0; 0; 0; 1; 1; 1; 1; 0); l6 � (0; 0; 0; 0; 0; 1; 0; 0):l7 � (0; 0; 0; 0; 0; 1; 1; 0) (29)For the orresponding right eigenvetors, olumnsri, we have the following asymptotis (we writevetor-olumns in rows):r1�(1; 0; 0; 0; 0; 0; 0;�1); r2�(0; 1;�1; 0; 0; 0; 0; 0);r3�(0; 0; 1; 0; 0; 0; 0;�1); r4�(0; 0; 0; 1;�1; 0; 0; 0);r5�(0; 0; 0; 0; 1; 0; 0;�1); r6�(0; 0; 0; 0; 0; 1;�1; 0);r7�(0; 0; 0; 0;�1; 0; 1; 0): (30)5. Calulating the Dominant System for aLinear Multisale Network5.1. Problem StatementWe study asymptotial behavior of the transfor-mation of the kineti matrix K to the normal formalong the lines ln kij = �ij� when � ! 1. For al-most all diretion vetors (�ij) (outside several hy-perplanes) there exists a minimal reation networkwhih reation rate onstants are monomials of kij(Qij kfijij , where fij are not obligatory positive num-bers) and eigenvetors and eigenvalues approximatethe eigenvetors and eigenvalues when � !1 witharbitrary high relative auray. We all this mini-mal system the dominant system. Existene of dom-inant systems is proven by diret onstrution (thisSe.) and estimates of auray of approximations(Appendix).The dominant systems oinide for vetors (�ij)from some polyhedral ones. Therefore, we don'tneed to study a given value of (�ij) but rather haveto build these ones together with the orrespon-dent dominant systems. The following formal rule(\assumption of well separated onstants") allowsus to simplify this task: if in onstrution of dom-inant systems we need to ompare two monomials,Mf = Qij kfijij and Mg = Qij kgijij then we an al-ways state that either Mf �Mg or Mf �Mg andonsider the logarithmi hyperplane Mf =Mg as aboundary between di�erent ones. At the end, we13
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Fig. 4. Deomposition of a disrete dynamial system.sribed by _ = ~K, where ~Kij = ��jÆij + �jÆi �(j).5.2.2. Deomposition of Disrete DynamialSystems on Finite SetsDisrete dynamial system on a �nite set V =fA1; A2; : : : Ang is a semigroup 1; �; �2; :::, where �is a map � : V ! V . Ai 2 V is a periodi point,if �l(Ai) = Ai for some l > 0; else Ai is a tran-sient point. A yle of period l is a sequene of ldistint periodi points A; �(A); �2(A); : : : �l�1(A)with �l(A) = A. A yle of period one onsists ofone �xed point, �(A) = A. Two yles, C;C 0 eitheroinide or have empty intersetion.The set of periodi points, V p, is alwaysnonempty. It is a union of yles: V p = [jCj . Foreah point A 2 V there exist suh a positive integer�(A) and a yle C(A) = Cj that �q(A) 2 Cj forq � �(A). In that ase we say thatA belongs to basinof attration of yle Cj and use notation Att(Cj) =fA j C(A) = Cjg. Of ourse, Cj � Att(Cj). For dif-ferent yles, Att(Cj)\Att(Cl) = ?. If A is periodipoint then �(A) = 0. For transient points �(A) > 0.So, the phase spae V is divided onto subsetsAtt(Cj) (Fig. 4). Eah of these subsets inludesone yle (or a �xed point, that is a yle of length1). Sets Att(Cj) are �-invariant: �(Att(Cj)) �Att(Cj). The set Att(Cj) n Cj onsist of transientpoints and there exists suh positive integer � that�q(Att(Cj )) = Cj if q � � .Disrete dynamial systems on a �nite sets orre-spond to graphs without branhing points. Notiethat for the graph that represents a disrete dy-nami system, attrators are ergodi omponents,while basins are onneted omponents.14
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CFig. 5. Gluing a yle with rate onstants renormalization.QSl are the quasistationary onentrations on the yle. Af-ter gluing, we have to leave the outgoing from A1 reationwith the maximal renormalized rate onstant, and deleteothers.5.3. Algorithm for Calulating the DominantSystemFor this general ase, the algorithm onsists oftwo main proedures: (i) yles gluing and (ii) ylesrestoration and utting.5.3.1. Cyles GluingLet us start from a reation network W with agiven struture and �xed ordering of onstants. Theset of verties of W is A and the set of elementaryreations is R.If all attrators of the auxiliary dynami system�W are �xed points Af1; Af2; ::: 2 A, then the aux-iliary reation network is ayli, and the auxiliarykinetis approximates relaxation of the whole net-workW .In general ase, let the system �W have sev-eral attrators that are not �xed points, but ylesC1; C2; ::: with periods �1; �2; ::: > 1. By gluingthese yles in points, we transform the reationnetwork W into W1. The dynamial system �Wis transformed into �1. For these new system andnetwork, the onnetion �1 = �W1 persists: �1 isthe auxiliary disrete dynamial system forW1.For eah yle, Ci, we introdue a new vertex Ai.The new set of verties, A1 = A [ fA1; A2; :::g n([iCi) (we delete yles Ci and add verties Ai).All the reation A ! B from the initial set R,(A;B 2 A) an be separated into 5 groups:(i) both A;B =2 [iCi;(ii) A =2 [iCi, but B 2 Ci;(iii) A 2 Ci, but B =2 [iCi;(iv) A 2 Ci, B 2 Cj , i 6= j;(v) A;B 2 Ci.Reations from the �rst group do not hange. Rea-tion from the seond group transforms into A! Ai

(to the whole glued yle) with the same onstant.Reation of the third type hanges intoAi ! B withthe rate onstant renormalization: let the yle Cibe the following sequene of reations A1 ! A2 !:::A�i ! A1, and the reation rate onstant forAi !Ai+1 is ki (k�i for A�i ! A1). For the limiting rea-tion of the yle Ci we use notation klim i. If A = Ajand k is the rate reation for A ! B, then the newreation Ai ! B has the rate onstant kklim i=kj .This orresponds to a quasistationary distributionon the yle (15). The new rate onstant is smallerthan the initial one: kklim i=kj < k, beause klim i <kj due to de�nition of limiting onstant. The sameonstant renormalization is neessary for reationsof the fourth type. These reations transform intoAi ! Aj . Finally, reations of the �fth type vanish.After we glue all the yles (Fig. 5) of auxiliarydynamial system in the reation networkW , we getW1. Let us assign W := W1, A := A1 and iterateuntil we obtain an ayli network and exit. Thisayli network is a \forest" and onsists of treesoriented from leafs to a root. The number of suhtrees oinide with the number of �xed points in the�nal network.After gluing we an identify the reations, whihwill be inluded into the dominant system. Theironstants are the ritial parameters of the networks.The list of these parameters, onsists of all rea-tion rates of the �nal ayli auxiliary network, andof the rate onstants of the glued yles, but with-out their limiting steps. Some of these parametersare rate onstants of the initial network, other havethe monomial struture. Other onstants and orre-sponding reations do not partiipate in the follow-ing operations. To form the struture of the domi-nant network, we need one more proedure.5.3.2. Cyles Restoration and CuttingWe start the reverse proess from the glued net-work Vm onAm. On a step bak, from the setAm toAm�1 and so on, some of glued yles should be re-stored and ut. On the qth step we build an aylireation network on Am�q , the �nal network is de-�ned on the initial vertex set and approximates re-laxation of W .To make one step bak from Vm let us selet theverties of Am that are glued yles from Vm�1. Letthese verties be Am1 ; Am2 ; :::. Eah Ami orrespondsto a glued yle from Vm�1, Am�1i1 ! Am�1i2 !:::Am�1i�i ! Am�1i1 , of the length �i. We assume thatthe limiting steps in these yles areAm�1i�i ! Am�1i1 .15
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In the simplest ase, the dominant system is de-termined by the ordering of onstants. But for suÆ-iently omplex systems we need to introdue aux-iliary elementary reations. They appear after ylegluing and havemonomial rate onstants of the formk& = Qi k&ii , where &i are integers, but not manda-tory positive. The dominant system depends on theplae of these monomial values among the orderedonstants. For systemswithwell separated onstantswe an also assume that eah of these new onstantswill be well separated from other onstants (Gorban& Radulesu (2008)).5.4. ExampleTo demonstrate a possible branhing of desribedalgorithm for yles surgery (gluing, restoring andutting) with neessity of additional orderings, letus onsider the following system:A1!1 A2!6 A3!2 A4!3 A5!4 A3; A4!5 A2; (31)(where the upper index marks the order of rate on-stants). The auxiliary disrete dynamial system forreation network (31) isA1!1 A2!6 A3!2 A4!3 A5!4 A3:It has only one attrator, a yle A3!2 A4!3 A5!4 A3.This yle is not a sink for the whole network (31) be-ause reation A4!5 A2 leads from that yle. Aftergluing the yle into a vertex A13 we get the new net-work A1!1 A2!6 A13!? A2. The rate onstant for thereation A13!A2 is k123 = k24k35=k54, where kij isthe rate onstant for the reation Aj ! Ai in theinitial network (k35 is the yle limiting reation).The new network oinides with its auxiliary systemand has one yle, A2!6 A13!? A2. This yle is a sink,hene, we an start the bak proess of yles restor-ing and utting. One question arises immediately:whih onstant is smaller, k32 or k123. The smallestof them is the limiting onstant, and the answer de-pends on this hoie. Let us onsider two possibili-ties separately: (1) k32 > k123 and (2) k32 < k123.(1) Let as assume that k32 > k123. The �nal auxil-iary system after gluing yles is A1!1 A2!6 A13!? A2.Let us delete the limiting reation A13!? A2 from theyle. We get an ayli system A1!1 A2!6 A13. Theomponent A13 is the glued yle A3!2 A4!3 A5!4 A3.Let us restore this yle and delete the limitingreation A5!4 A3. We get the dominant systemA1!1 A2!6 A3!2 A4!3 A5. Relaxation of this system16



approximates relaxation of the initial network (31)under additional ondition k32 > k123.(2) Let as assume now that k32 < k123. The �-nal auxiliary system after gluing yles is the same,A1!1 A2!6 A13!? A2, but the limiting step in the yleis di�erent, A2!6 A13. After utting this step, we getayli system A1!1 A2 ?A13, where the last reationhas rate onstant k123.The omponent A13 is the glued yleA3!2 A4!3 A5!4 A3 :Let us restore this yle and delete the limiting re-ation A5!4 A3. The onnetion from glued yleA13!? A2 with onstant k123 transforms into onne-tion A5!? A2 with the same onstant k123.We get the dominant system:A1!1 A2 ; A3!2 A4!3 A5!? A2 :The order of onstants is now known: k21 > k43 >k54 > k123, and we an substitute the sign \?" by\4": A3!2 A4!3 A5!4 A2.For both ases, k32 > k123 (k123 = k24k35=k54) andk32 < k123 it is easy to �nd the eigenvetors expliitlyand to write the solution to the kineti equations inexpliit form.6. The Reversible Triangle of ReationsIn this setion, we illustrate the analysis of dom-inant systems on a simple example, the reversibletriangle of reations.A1 $ A2 $ A3 $ A1 (32)This triangle appeared in many works as an idealobjet for a ase study. Our favorite example is thework of Wei & Prater (1962). Now in our study thetriangle (32) is not neessarily a losed system. Wean assume that it is a subsystem of a larger sys-tem, and any reation Ai ! Aj represents a rea-tion of the form : : :+Ai ! Aj+ : : :, where unknownbut slow omponents are substituted by dots. Thismeans that there are no mandatory relations be-tween reation rate onstants, and six reation rateonstants are arbitrary nonnegative numbers.Let the reation rate onstant k21 for the reationA1 ! A2 be the largest.Let us desribe all possible auxiliary dynamialsystems for the triangle (32). For eah vertex, wehave to selet the fastest outgoing reation. For A1,it is always A1 ! A2, beause of our hoie of enu-meration (the higher sheme in Fig. 7). There existtwo hoies of the fastest outgoing reation for two
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7. Corretions to Dominant DynamisThe hierarhy of systems W , W1, W2, ... an beused for multigrid orretion of the dominant dy-namis. The simple example of multigrid approahgives the algorithm of steady state approximation(Gorban & Radulesu (2008)). For this purpose, onthe way up (yle restoration and utting, Se. 5.3.2)we alulate distribution in restoring yles withhigher auray, by exat formula (13), or in linearapproximation (15) instead of the simplest zero-oneasymptoti (16). Essentially, the way up remains thesame.After termination of the gluing proess, we an�nd all steady state distributions by restoring y-les in the auxiliary reation network Vm. LetAmf1; Amf2; ::: be �xed points of �m. The set of steadystates for Vm is the set of all distributions on theset of �xed points fAmf1; Amf2; :::g.Let us take one of the basis distributions, mfi = 1,other i = 0 on Vm. If the vertexAmfi is a glued yle,then we substitute them by all the verties of this y-le. Redistribute the onentration mfi between theverties of the orresponding yle by the rule (13)(or by an approximation). As a result, we get a setof verties and a distribution on this set of verties.If among these verties there are glued yles, thenwe repeat the proedure of yle restoration. Termi-nate when there is no glued yles in the support ofthe distribution.The resulting distribution is the approximation toa steady state of W , and the basis of steady statesfor W an be approximated by this method.For example, for the system Fig. 8 we have, �rstof all, to ompute the stationary distribution in theyle A11 $ A3, 11 and 3. On the base of the generalformula for a simple yle (13) we obtain:w = 11k131 + 1k23 ; 11 = wk131 ; 3 = wk23 : (36)After that, we have to restore the yle glued intoA11. This means to alulate the onentrations ofA1 and A2 with normalization 1+2 = 11. Formula(13) gives:w0 = 111k21 + 1k12 ; 1 = w0k21 ; 2 = w0k12 : (37)For eigenvetors, there appear two operations oforretions: (i) orretion for an ayli networkwithout branhing (43), (45), and (ii) orretions fora yle with relatively slow outgoing reations (49).18



These orretions are by-produts of the aurayestimates given in Appendix.8. ConlusionNow, the idea of limiting step is developed to theasymptotology of multisale reation networks. Wefound the main terms of eigenvetors and eigen-values asymptoti on logarithmi straight linesln kij = �ij� when � !1. These main terms ouldbe represented by ayli dominant system whihis a pieewise onstant funtion of the diretionvetors (�ij). This theory gives the analogue ofthe Vishik & Ljusternik (1960) theory for hemialreation networks. We demonstrated also how toonstrut the auray estimates and the �rst orderorretions to eigenvalues and eigenvetors.There are several ways of using the developed the-ory and algorithms:{ For diret omputation of steady states and relax-ation dynamis; this may be useful for omplexsystems beause of the simpliity of the algorithmand resulting formulas and beause often we donot know the rate onstants for omplex networks,and kinetis that is ruled by orderings rather thanby exat values of rate onstants may be very use-ful in pratially frequent situation when the val-ues of the various reation onstants are unknownor poorly known;{ For planning experiments and mining the exper-imental data { the observable kinetis is moresensitive to reations from the dominant net-work, and muh less sensitive to other reations,the relaxation spetrum of the dominant networkis expliitly onneted with the orrespondentreation rate onstants, and the eigenvetors(\modes") are sensitive to the onstant ordering,but not to exat values;{ The steady states and dynamis of the dominantsystem ould serve as a robust �rst approximationin perturbation theory or as a preonditioning innumerial methods.The next step should be development of asymp-toti estimates for networks with modular stru-ture and time separations between modules, not be-tween individual reations. But now it seems thatthe most important further development should bethe asymptotology of nonlinear reation networks.For multisale nonlinear reation networks the ex-peted dynamial behaviour is to be approximatedby the system of dominant networks. These net-
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be small, (this is the gap ondition). For example, iffor any two diagonal elements aii, ajj either aii �ajj or aii � ajj , then gi & 1 for all i.Let �i 2 GQi be the eigenvalue of A (j�i � a11j <Q1). Let us estimate the orresponding right eigen-vetor r(i). We take rii = 1 and for j 6= i introduea (n � 1)-dimensional vetor ~xi: ~xij = rij(ajj � aii)(i 6= j). For ~xi we get equation(1�B(i))~xi = �~ai (41)where ~ai is a vetor of the non-diagonal elementsof the ith olumn of A (~aij = aij , j 6= i), and the(n � 1) � (n � 1) matrix Bi has matrix elements(j; l 6= i)b(i)jj = �i � aiiajj � aii ; b(i)jl = ajlall � aii (l 6= j) (42)Due to the Gershgorin estimate, jb(i)jj j < Qijajj�aiij .From Eq. (41) we obtain:~xi = �~ai �B(i)(1�B(i))�1~ai: (43)From this de�nition and simple estimates in l1 norm,we get the following estimate of eigenvetors.Theorem 2. Let the Gershgoring disks be iso-lated, and the diagonal gap be big enough: g > n".Then for the ith eigenvetor of A the following uni-form estimate holds:jrij j � �g + n"2g(g � n") (j 6= 1; rii = 1): � (44)So, if the matrixA is diagonally dominant and thediagonal gap g is big enough, then the eigenvetorsare proven to be lose to the standard basis vetorswith expliit evaluation of auray.The �rst orretion to eigenvetors is also given byEq. (43). If for the iteration we use the Gershgorinestimates for eigenvalue �i � aii, then we an writein the next approximation for eigenvetors (rii =1; j 6= i):rij = � ajiajj � aii � (B(i)nd (1�B(i)nd )�1~ai)jajj � aii (45)where B(i)nd is the non-diagonal part of B(i): it hasthe same non-diagonal elements and zeros on diago-nal. There exists plenty of further simpli�ations forthis iteration formula. For example, one an leavejust the �rst term, that gives the �rst order approx-imation in the power of " (� � ").To apply these estimates to an ayli networksupplemented by additional reations, we have touse the eigenbasis of this ayli network (Se. 4).

Diret use of this theorem and estimates for a kinetimatrix K in the standard basis is impossible, thediagonal dominane in this oordinate system is notlarge, and sums of elements in olumns are zero. Toapply this theorem we need two lemmas.Let W be a reation network without branhing(a �nite dynamial system) with n verties. Thenthe number of reations in W is n � f , where f isthe number of �xed points (the verties without out-going reations). Let � be the set of stoihiometrivetors forW .Lemma 1. � forms a basis in the subspaef j Pi i = 0g if and only if the reation networkW is ayli and onneted (has only one �xedpoint). �Let us onsider a general reation network on theset A1; :::An. For stoihiometri vetor of reationAi ! Al we use notation li. Assume that the auxil-iary dynamial system i 7! �(i) for a given reationnetwork is ayli and has only one attrator, a �xedpoint. For this auxiliary network, we use notation:�i = kji for the only reation Ai ! Aj , or �i = 0.For every reation of the initial network,Ai ! Al,a linear operators Qil an be de�ned by its ationon the basis vetors, �(i) i:Qil(�(i) i) = li; Qil(�(p) p) = 0 for p 6= i: (46)Lemma 2. The kineti equation for the wholereation network (9) ould be transformed to theformddt =Xi 0�1 + Xl; l6=�(i) kli�i Qil1A �(i) i�ii= 0�1 + Xj;l (l6=�(j)) klj�j Qjl1AXi �(i) i�ii= 0�1 + Xj;l (l6=�(j)) klj�j Qjl1A ~K; (47)
where ~K is kineti matrix of the kineti equation forthe auxiliary network. �By onstrution of auxiliary dynamial system,kli < �i if l 6= �(i), and for reation networks withwell separated onstants kli � �i. Notie also thatthe matrix Qjl does not depend on rate onstantsvalues.For matrix ~K we have the eigenbasis in expliitform. Let us represent system (47) in this eigenbasisof ~K. Any matrix B in this eigenbasis has the formB = (~bij), ~bij = liBrj =Pqs liqbqsrjs, where (bqs) ismatrix B in the initial basis, li and rj are left and22



right eigenvetors of ~K (27), (28). In eigenbasis of ~Kthe estimates of eigenvalues and estimates of eigen-vetors are muhmore eÆient than in original oor-dinates: the system is strongly diagonally dominant.Transformation to this basis is an e�etive preondi-tioning for the perturbation theory that uses auxil-iary kinetis as a �rst approximation to the kinetisof the whole system.Estimates for Perturbed Ergodi SystemsLet us onsider a strongly onneted networkwith kineti matrix K. The orresponding kinet-is is ergodi and there exists unique normalizedsteady state �i > 0,Pi �i = 1. For eah i we de�ne�i = Pj kji. The number ��i is the iith diagonalelement of unperturbed kineti matrix K.Let this network be perturbed by outgoing rea-tions Ai ! 0. The perturbation has the \loss form":the perturbedmatrix isK�diag("i�i), perturbationof eah diagonal element is relatively small (diag isthe diagonal matrix).The perturbations "i�i are relatively small withrespet to �i, but not obligatory small with respetto other rate onstants.First, we do not assume anything about value of"i � 0 and make the following transformation. Foran arbitrary normalized vetor r (ri � 0,Pi ri = 1)we add to the network reations Ai ! Aj with rea-tion rates qji = rj"i�i. We use Q(r) for the kinetimatrix of this additional network. Simple algebragivesQ(r) + diag("i�i) = ["1�1r; "2�2r; :::"n�nr℄= r("1�1; "2�2; :::"n�n): (48)Here, in the right hand side we have a matrix, allolumns of whih are proportional to the vetor r,this is a produt of r on the vetor-rawof oeÆients.We represent the perturbed matrix in the formK�diag("i�i) = K +Q(r) � (Q(r) + diag("i�i)).Theorem 3. There exists suh normalized posi-tive r� that (K +Q(r�))r� = 0. This r� is an eigen-vetor of the perturbed network with the eigenvalue� =Pi r�i "i�i, and, at the same time, it is a steady-state for the network with kineti matrixK+Q(r�).To prove existene it is suÆient to mention, thatfor any r the network with kineti matrix K +Q(r)has unique positive normalized steady state �(r),whih depends ontinuously on r. The map r 7!�(r) has a �xed point r� (the Brouwer �xed pointtheorem). �

This representation allows us to produe usefulestimates, for example, when the unperturbed sys-tem is a yle, we �nd jr�i � �i j < 3"j�i j under on-dition " < 0:25, where " = P "i. Formula for the�rst orretion gives (r� = �i + Æri, w = ki�i ):Æri = viki ; vi = v + w iXj=1("�j � "j);v = wn nXi=1 i("�i � "i): (49)For more omplex networks, the expliit formulasfor orretions ould be produed on the base of thenetwork graphs, similar to the steady-state formu-las, presented, for example, by Yablonskii, Bykov,Gorban, & Elokhin (1991).So, the asymptoti analysis gives good approxi-mation of eigenvetors and eigenvalues for kinetimatrix. The ondition number is big (unbounded)but these estimates work even better when the on-stants beome more separated. Nevertheless, someaution is needed: the error is proven to be small,but the residuals (the values kKr� �rk for approx-imations of r and �) may be not small (Gorban &Radulesu (2008)).
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