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We develop a general framework for the discussion of detailed balance and analyse its microscopic back-
ground. We find that there should be two additions to the well-known T- or PT-invariance of the micro-
scopic laws of motion:

1. Equilibrium should not spontaneously break the relevant T- or PT-symmetry.
2. The macroscopic processes should be microscopically distinguishable to guarantee persistence of

detailed balance in the model reduction from micro- to macrokinetics.

We briefly discuss examples of the violation of these rules and the corresponding violation of detailed
balance.
� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/3.0/).
1. The history of detailed balance in brief

VERY deep is the well of the past. . . .For the deeper we sound,
the further down into the lower world of the past we probe
and press, the more do we find that the earliest foundation
of humanity, its history and culture, reveal themselves
unfathomable.

T. Mann [1]

Detailed balance as a consequence of the reversibility of colli-
sions (at equilibrium, each collision is equilibrated by the reverse col-
lision, Fig. 1) was introduced by Boltzmann for the Boltzmann
equation and used in the proof of the H-theorem [2] (Boltzmann’s
arguments were analysed by Tolman [3]). Five years earlier, Max-
well used the principle of detailed balance for gas kinetics with
the reference to the principle of sufficient reason [4]. He analysed
equilibration in cycles of collisions and in the pairs of mutually
reverse collisions and mentioned ‘‘Now it is impossible to assign
a reason why the successive velocities of a molecule should be
arranged in this cycle, rather than in the reverse order.’’

In 1901, Wegscheider introduced detailed balance for chemical
kinetics on the basis of classical thermodynamics [5]. He used the
assumption that each elementary reaction is reversible and should
respect thermodynamics (i.e. entropy production in this reaction
should be always non-negative). Onsager used this work of
Wegsheider in his famous paper [6]. Instead of direct citation he
wrote: ‘‘Here, however, the chemists are accustomed to impose a
very interesting additional restriction, namely: when the equilib-
rium is reached each individual reaction must balance itself.’’
Einstein used detailed balance as a basic assumption in his theory
of radiation [7]. In 1925, Lewis recognized the principle of detailed
balance as a new general principle of equilibrium [8]. The limit of
the detailed balance for systems which include some irreversible
elementary processes (without reverse processes) was recently
studied in detail [9,10].

In this paper, we develop a general formal framework for
discussion of detailed balance, analyse its microscopic background
and persistence in the model reduction from micro- to
macrokinetics.

2. Sampling of events, T-invariance and detailed balance

2.1. How detailed balance follows from microreversibility

In the sequel, we omit some technical details assuming that all
the operations are possible, all the distributions are regular and
finite Borel (Radon) measures, and all the integrals (sums) exist.

The basic notations and notions:

� X – a space of states of a system (a locally compact metric
space).
� Ensemble m – a non-negative distribution on X.
� Elementary process has a form a! b (Fig. 2), where a; b are

non-negative distributions.
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Fig. 2. Schematic representation of an elementary process. Input (a) and output (b)
distributions are represented by column histograms.
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� Complex – an input or output distribution of an elementary
process.
� ! – the set of all complexes participating in elementary pro-

cesses. It is equipped with the weak topology and is a closed
and locally compact set of distributions.
� The reaction rate r is a measure defined on !2 ¼ fða; bÞg. It

describes the rates of all elementary processes a! b.
� The support of r, suppr � !2, is the mechanism of the process,

i.e. it is the set of pairs ða; bÞ, each pair represents an elementary
process a! b. (Usually, suppr ( !2.)
� The rate of the whole kinetic process is a distribution W on X

(the following integral should exist):
W ¼ 1
2

Z
ða;bÞ2!2

ðb� aÞd½rða; bÞ � rðb;aÞ�:

The distribution m depends on time t. For systems with
continuous time, _m ¼W . For systems with discrete time,
mðt þ sÞ � mðtÞ ¼W , where s is the time step. To create the closed
kinetic equation (the associated nonlinear Markov process [11])
we have to define the map m#r that puts the reaction rate r (a
Radon measure on !2) in correspondence with a non-negative dis-
tribution m on X (the closure problem). In this definition, some addi-
tional restrictions on m may be needed. For example, one can
expect that m is absolutely continuous with respect to a special
(equilibrium) measure. There are many standard examples of
kinetic systems: mass action law for chemical kinetics [12,13], sto-
chastic models of chemical kinetics [18], the Boltzmann equation
[14] in quasichemical representation [15] for space-uniform distri-
butions, the lattice Boltzmann models [16], which represent the
space motion as elementary discrete jumps (discrete time), and
the quasichemical models of diffusion [17].

We consider interrelations between two important properties
of the measure rða; bÞ:

(EQ) W ¼ 0 (equilibrium condition);
(DB) rða; bÞ � rðb;aÞ (detailed balance condition).
It is possible to avoid the difficult closure question about the

map m#r in discussion of T-invariance and relations between EQ
and DB conditions.

Obviously, DB)EQ. There exists a trivial case when EQ)DB (a
sort of linear independence of the vectors c ¼ b� a for elementary
processes joined in pairs with their reverse processes): ifZ
ða;bÞ2suppr

ðb� aÞdlða;bÞ ¼ 0) l ¼ 0

for every antisymmetric measure l on !2 (lða;bÞ ¼ �lðb;aÞ), then
EQ)DB.

There is a much more general reason for detailed balance, T-
invariance. Assume that the kinetics give a coarse-grained descrip-
tion of an ensemble of interacting microsystems and this interaction
of microsystems obeys a reversible in time equation: if we look on
the dynamics backward in time (operation T) we will observe the
solution of the same dynamic equations. For T-invariant micro-
scopic dynamics, T maps an equilibrium ensemble into an equilib-
rium ensemble. Assuming uniqueness of the equilibrium under
given values of the conservation laws, one can just postulate the
invariance of equilibria with respect to the time reversal transformation
Fig. 1. Schematic representation of detailed balance for collisions: at equilibrium,
each collision is equilibrated by the reverse collision.
or T-invariance of equilibria: if we observe an equilibrium ensemble
backward in time, nothing will change.

Let the complexes remain unchanged under the action of T. In
this case, the time reversal transformation for collisions (Fig. 1)
leads to the reversal of arrow: the direct collision is transformed
into the reverse collision. The same observation is valid for inelas-
tic collisions. Following this hint, we can accept that the reversal of
time T transforms every elementary process a! b into its reverse
process b! a. This can be considered as a restriction on the defi-
nition of direct and reverse processes in the modelling (a ‘‘model
engineering’’ restriction): the direct process is an ensemble of
microscopic events and the reverse process is the ensemble of
the time reversed events.

Under this assumption, T transforms rða; bÞ into rðb;aÞ. If the
rates of elementary processes may be observed (for example, by
the counting of microscopic events in the ensemble) then T-invari-
ance of equilibrium gives DB: at equilibrium, rða; bÞ ¼ rðb;aÞ, i.e.
EQ)DB under the hypothesis of T-invariance.

The assumption that the complexes are invariant under the
action of T may be violated: for example, in Boltzmann’s collisions
(Fig. 2) the input measure is a ¼ dv þ dw and the output measure is

b ¼ dv 0 þ dw0 . Under time reversal, dv #
T

d�v . Therefore a#
T

d�v þ d�w

and b#
T

d�v 0 þ d�w0 . We need an additional invariance, the space
inversion invariance (transformation P) to prove the detailed bal-
ance (Fig. 1). Therefore, the detailed balance condition for the
Boltzmann equation (Fig. 1) follows not from T-invariance alone
but from PT-invariance because for Boltzmann’s kinetics

fa! bg#PT fb! ag:

In any case, the microscopic reasons for the detailed balance condi-
tion include existence of a symmetry transformation T such that

fa! bg#T fb! ag ð1Þ

and the microscopic dynamics is invariant with respect to T. In this
case, one can conclude that (i) the equilibrium is transformed by T

into the same equilibrium (it is, presumably, unique) and (ii) the
reaction rate rða;bÞ is transformed into rðb;aÞ and does not change
because nothing observable can change (equilibrium is the same).
Finally, at equilibrium rða; bÞ � rðb;aÞ and EQ)DB.

There remain two questions:

1. We are sure that T transforms the equilibrium state into an
equilibrium state but is it necessarily the same equilibrium?
Is it forbidden that the equilibrium is degenerate and T acts
non-trivially on the set of equilibria?

2. We assume that the rates of different elementary processes are
physical observables and the ensemble with different values of
these rates may be distinguished experimentally. Is it always
true?

The answer to both questions is ‘‘no’’. The principle of detailed
balance can be violated even if the physical laws are T; P and PT
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symmetric. Let us discuss the possible reasons for these negative
answers and the possible violations of detailed balance.

2.2. Spontaneous breaking of T-symmetry

Spontaneous symmetry breaking is a well known effect in phase
transitions and particle physics. It appears when the physical laws
are invariant under a transformation, but the equilibrium of the
system transforms into another state, which should be also equi-
librium. Hence, the equilibrium is degenerated. The best known
examples are magnets. They are not rotationally symmetric (there
is a continuum of equilibria that differ by the direction of magnetic
field). Crystals are not symmetric with respect to translation (there
is continuum of equilibria that differ by a shift in space). In these
two examples, the multiplicity of equilibria is masked by the fact
that all these equilibrium states can be transformed into each other
by a proper rigid motion transformation (translation and rotation).

The nonreciprocal media violate T and PT invariance [19–21].
These media are transformed by T and PT into different (dual) equi-
librium media and cannot be transformed back by a proper rigid
motion. The implication EQ)DB for the nonreciprocal media
may be wrong and for its validity some strong additional assump-
tions are needed, like the linear independence of elementary
processes.

Spontaneous breaking of T-symmetry provides us a counterex-
ample to the proof of detailed balance. In this proof, we used the
assumption that under transformation T elementary processes
transform into their reverse processes (1) and, at the same time,
the equilibrium ensemble does not change.

If the equilibrium is transformed by T into another (but obvi-
ously also equilibrium) state then our reasoning cannot be applied
to reality and the proof is not valid. Nevertheless, the refutation of
the proof does not mean that the conclusion (detailed balance) is
necessarily wrong. Following the Lakatos terminology [23] we
should call the spontaneous breaking of T-symmetry the local
counterexample to the principle detailed balance. It is an intriguing
question whether such a local counterexample may be trans-
formed into a global one: does the violation of the Onsager recipro-
cal relation mean the violation of detailed balance (and not only
the refutation of its proof)?

2.3. Reciprocal relation and detailed balance

It is known that for many practically important kinetic laws the
Onsager reciprocal relations follow from detailed balance. In these
cases, violation of the reciprocal relations implies violation of the
principle of detailed balance. For example, for the systems in mag-
netic fields the reciprocal relations may be violated [24], and we
can expect that detailed balance for these systems will be also
violated.

For master equation (first order kinetics or continuous time
Markov chains) the principle of detailed balance is equivalent to
the reciprocal relations ([24] Ch. 10, Section 4). For the nonlinear
mass action law the implication ‘‘detailed balance ) reciprocal
relations’’ is also well known (see, for example, [12]) but the equiv-
alence is not correct because the number of nonlinear reactions for
a given number of components may be arbitrarily large and it is
possible to select such values of reaction rate constants that the
reciprocal relations are satisfied but the principle of detailed bal-
ance does not hold. For transport processes, the quasichemical
models [17] also demonstrate how the reciprocal relations follow
from detailed balance for the mass action law kinetics or the gen-
eralized mass action law. We confine the discussion of kinetic laws
to systems with finite sets of components.

Consider a finite-dimensional system with the set of compo-
nents (species or states) A1; . . . ;An given. For each Ai the extensive
variable Ni (‘‘amount’’ of Ai) is defined. The Massieu-Planck func-
tion UðN; . . .Þ (free entropy [25]) depends on the vector N with coor-
dinates Ni and on the variables that are constant under given
conditions. For isolated systems instead of ð. . .Þ in U we should
use internal energy U and volume V (and this U is the entropy),
for isothermal isochoric systems these variables are 1=T and V,
where T is temperature, and for isothermal isobaric systems we
should use 1=T and P=T , where P is pressure. For all such
conditions,

@U
@Ni
¼ �li

T
;

where li is the chemical potential of Ai or the generalized chemical
potential for the quasichemical models where interpretation of Ai

is wider than just various atomic particles.
Elementary processes in the finite-dimensional systems are

represented by their stoichiometric equationsX
i

aqiAi !
X

i

bqiAi:

This is a particular case of the general picture presented in Fig. 2.
The stoichiometric vector is cq: cqi ¼ bqi � aqi (gain minus loss).
The generalized mass action law represents the reaction rate in
the following form:

rq ¼ /q exp
X

i

aqi
li

RT

 !
; ð2Þ

where expð
P

iaqili=RTÞ is the Boltzmann factor (R is the gas con-
stant) and /r > 0 is the kinetic factor (this representation is closely
related to the transition state theory [26] and its generalizations
[27]).

The equilibria and conditional equilibria are described as the
maximizers of the free entropy under given conditions. For a sys-
tem with detailed balance every elementary process has a reverse
process and the couple of processes

P
iaqiAi�

P
ibqiAi should move

the system from the initial state to the partial equilibrium, that is
the maximizer of the function U in the direction cq. Assume that
the equilibrium is not a boundary point of the state space. For a
smooth function U, the conditional maximizer in the direction cq
should satisfy the necessary condition

P
icqili ¼ 0. In the general-

ized mass action form (2) the detailed balance condition has a very
simple form:

/þq ¼ /�q ; ð3Þ

where /þq is the kinetic factor for the direct reaction and /�q is the
kinetic factor for the reverse reaction.

Assume that the detailed balance condition (3) holds. Let us join
the elementary processes in pairs, direct with reverse ones, with
the corresponding change in their numeration. The kinetic equa-
tion is _N ¼ V

P
qcqðrþq � r�q Þ. The Jacobian matrix at equilibrium is

@ _Ni

@Nj

�����
eq

¼ �V
R

X
k

X
q

req
q cqicqk

 !
@ðlk=TÞ
@Nj

����
eq

;

where req
q ¼ rþeq

q ¼ r�eq
q is the rate at equilibrium of the direct and

reverse reactions (they coincide due to detailed balance) and the
subscript ‘eq’ corresponds to the derivatives at the equilibrium.
The linear approximation to the kinetic equations near the equilib-
rium is

dDNi

dt
¼ �V

R

X
k

X
q

req
q cqicqk

 !
D

lk

T

� �
;

where DNi and Dðlk=TÞ are deviations from the equilibrium values.
The variables DNi are extensive thermodynamic coordinates and
Dðlk=TÞ are intensive conjugated variables – thermodynamic forces.



Fig. 3. Boltzmann’s cyclic balance (1887) (or semi-detailed balance or complex
balance) is a summarized detailed balance condition: at equilibrium the sum of
intensities of collisions with a given input v þw! . . . coincides with the sum of
intensities of collisions with the same output . . .! v þw (for general systems see
(4)).
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Time derivatives dDNi=dt are thermodynamic fluxes. Symmetry of
the matrix of coefficients and, therefore, validity of the reciprocal
relations is obvious.

Thus, for a wide class of kinetic laws the reciprocal relations in a
vicinity of a regular (non-boundary) equilibrium point follow from
detailed balance in the linear approximation. In these cases, the
non-reciprocal media give global counterexamples to the detailed
balance. Without reference to a kinetic law they remain local coun-
terexamples to the proof of detailed balance.

2.4. Sampling of different macro-events from the same micro-events

In kinetics, only the total rate W is observable (as W ¼ _m or
W ¼ Dm ¼ mðt þ sÞ � mðtÞ). In the macroscopic world the observ-
ability of the rates of the elementary processes is just a hypothesis.

Imagine a microscopic demon that counts collisions or other
microscopic events of various types. If different elementary pro-
cesses correspond to different types of microscopic events then
the rates of elementary processes can be observed. If the equilib-
rium ensemble is invariant with respect to T then the demon can-
not detect the difference between the equilibrium and the
transformed equilibrium and the rates of elementary processes
should satisfy DB. But it is possible to sample the elementary pro-
cesses of macroscopic kinetics from the events of microscopic
kinetics in a different manner.

For example, in chemical mass action law kinetics we can con-
sider the reaction mechanism A�B (rate constants k�1),
Aþ B�2B (rate constants k�1) [22]. We can also create a stochastic
model for this system with the states ðxA; yBÞ (x; y are nonnegative
integers) and the elementary transitions ðxA; yBÞ� ððx� 1Þ
A; ðyþ 1ÞBÞ (rate constants jþ ¼ kþ1xþ kþ2x2;j� ¼ k�1ðyþ 1Þ þ
k�2ðx� 1Þðyþ 1Þ). The elementary transitions in this stochastic
model are linearly independent and EQ() DB. In the correspond-
ing mass action law chemical kinetics detailed balance requires
additional relation between constants: kþ1=k�1 ¼ kþ2=k�2.

Thus, macroscopic detailed balance may be violated in this
example when microscopic detailed balance holds. (For more
examples and theoretic consideration of the relations between
detailed balance in mass action law chemical kinetics and
stochastic models of these systems see [22].) Indeed, both of
the macroscopic elementary processes A�B and Aþ B�2B
correspond to the same set of microscopic elementary processes
ðxA; yBÞ� ððx� 1ÞA; ðyþ 1ÞBÞ. Each of these elementary events is
‘‘shared’’ between two different macroscopic elementary pro-
cesses. Therefore, the macroscopic elementary processes in this
example are microscopically indistinguishable.

The microscopic indistinguishability in this example follows
from the coincidence of the stoichiometric vectors for two macro-
scopic processes A�B and Aþ B�2B. If the stoichiometric vectors
are just linearly dependent then it does not imply microscopic
indistinguishability.

For example, let us take two reactions A�B and 2A�2B. For
the first reaction the corresponding microscopic processes have
the form ðxA; yBÞ� ððx� 1ÞA; ðyþ 1ÞBÞ (if all the coefficients are
nonnegative). For the reaction 2A�2B the microscopic processes
have the form ðxA; yBÞ� ððx� 2ÞA; ðyþ 2ÞBÞ (if all the coefficients
are nonnegative). These sets do not intersect, the elementary pro-
cesses are microscopically distinguishable and macroscopic
detailed balance follows from microscopic detailed balance.

Nontrivial Wegscheider identities appear in this example at the
microscopic level (in the first example all the microscopic transi-
tions are linearly independent and there exist no additional rela-
tions). Let the microscopic reaction rate constants for the
reaction ðxA; yBÞ� ððx� 1ÞA; ðyþ 1ÞBÞ be j�1 ðx; yÞ and j�2 ðx; yÞ for
the reaction ðxA; yBÞ� ððx� 2ÞA; ðyþ 2ÞBÞ. Due to detailed balance,
in each cycle of a linear reaction network the product of reaction
rate constants in the clockwise direction coincides with the prod-
uct in the anticlockwise direction. It is sufficient to consider the
basis cycles (and their reversals):

ðxA; yBÞ ! ððx� 1ÞA; ðyþ 1ÞBÞ !
! ððx� 2ÞA; ðyþ 2ÞBÞ ! ðxA; yBÞ:

Therefore,

jþ1 ðx; yÞjþ1 ðx� 1; yþ 1Þj�2 ðx; yÞ ¼ jþ2 ðx; yÞj�1 ðx� 1; yþ 1Þj�1 ðx; yÞ:

In the macroscopic limit these conditions transform into the macro-
scopic detailed balance conditions.

3. Relations between elementary processes beyond
microreversibility and detailed balance

If microreversibility does not exist, is everything permitted?
What are the relations between the reaction rates beyond the
microreversibility conditions if such universal relations exist?
The radical point of view is: beyond the microreversibility we face
just the world of kinetic equations with preservation of positivity,
various specific restrictions on the coefficients appear in some spe-
cific cases and the variety of these cases is unobservable. Develop-
ment of this point of view leads to the general theory of nonlinear
Markov processes [11], i.e. the general theory of kinetic equations
with preservation of positivity.

The problem of the relations between elementary processes
beyond microreversibility and detailed balance was stated by Lor-
entz in 1887 [28]. Boltzmann immediately proposed the solution
[29] and used it for extension of his H-theorem beyond microre-
versibility. These conditions have the form of partially summed
conditions of detailed balance (Fig. 3, compare to Fig. 1). This solu-
tion was analysed, generalized and proved by several generations
of researchers (Heitler, Coester, Watanabe, Stueckelberg [30] and
others, see the review in [27]). It was rediscovered in 1972 [31]
in the context of chemical kinetics and popularized as the complex
balance condition.

For finite-dimensional systems which obey the generalized
mass action law (2) the complex balance condition is also the sum-
marized detailed balance condition (3). Consider the set Y of all
input and output vectors aq and bq. The complex balance condition
reads: for every y 2 YX
q; aq¼y

/q ¼
X

q; bq¼y

/q: ð4Þ

Now, the complex balance conditions in combination with general-
ized mass action law are proven for the finite-dimensional systems
in the asymptotic limit proposed first by Michaelis and Menten [32]
for fermentative reactions and Stueckelberg [30] for the Boltzmann
equation. This limit is constituted by three assumptions (Fig. 4): (i)
the elementary processes go through the intermediate compounds,
(ii) the compounds are in fast equilibria with the components
(therefore, these equilibria can be described by thermodynamics)
and (iii) the concentrations of compounds are small with respect



Fig. 4. Schematic representation of the Michaelis–Menten–Stueckelberg asymp-
totic assumptions: an elementary process

P
aqiAi !

P
bqiAi goes through inter-

mediate compounds B�q . The fast equilibria
P

aqiAi�Bþq and
P

bqiAi�B�q can be
described by conditional maximum of the free entropy. Concentrations of B�q are
small and reaction between them obeys linear kinetic equation.
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to concentrations of components (hence, (iiiA) the quasi steady
state assumption is valid for the compound kinetics and (iiiB) the
transitions between compounds follow the first order kinetics)
[27]. (It is worth mentioning that Michaelis and Menten in
1913 [32] found the asymptotic limit where the fermentative
reaction can be described by the mass action law. The so-called
Michaelis–Menten kinetics is different and was invented 12 years
later by Haldane and Briggs [33]).

Thus, beyond microreversibility, Boltzmann’s cyclic balance (or
semi-detailed balance, or complex balance) holds and it is as uni-
versal as the idea of intermediate compounds (activated complexes
or transition states) which exist in small concentrations and are in
fast equilibria with the basic reagents.

4. Conclusion

Thus, EQ() DB if:

1. There exists a transformation T that transforms the elementary
processes into reverse processes and the microscopic laws of
motion are T-invariant.

2. The equilibrium is symmetric with respect to T, that is, there is
no spontaneous breaking of T-symmetry.

3. The macroscopic elementary processes are microscopically dis-
tinguishable. That is, they represent disjoint sets of microscopic
events.

In applications, T is usually either time reversal T or the com-
bined transform PT.

For level jumping (reduction of kinetic models [15]), the equiv-
alence EQ() DB persists in the reduced (‘‘macroscopic’’) model if:

1. EQ() DB in the original (‘‘microscopic’’) model.
2. Equilibria of the macroscopic model correspond to equilibria of

the microscopic model. That is, the reduced kinetic model has
no equilibria, which correspond to non-stationary dynamical
regimes of the original kinetic model.

3. The macroscopic elementary processes are microscopically dis-
tinguishable. That is, they represent disjoint sets of microscopic
processes.

In this note, we avoid the discussion of an important part of
Boltzmann’s legacy which is very relevant to the topic under con-
sideration. Boltzmann represented kinetic process as an ensemble
of indivisible elementary events — collisions. In the microscopic
world, a collision is continuous in time and infinitely divisible pro-
cess (and it requires infinite time in most of the models of pair
interaction). In the macroscopic world it is instant and indivisible.
The transition from continuous motion of particles to an ensemble
of indivisible instant collisions is not digested by modern
mathematics up to now, more than 130 years after its invention.
The known results [34,35] state that the Boltzmann equation for
an ensemble of classical particles with pair interaction and
short–range potentials is asymptotically valid starting from a
non-correlated state during a fraction of the mean free flight time.
That is very far from the area of application. Nevertheless, if we
just accept that it is possible to count microscopic events then
the reasons of validity and violations of detailed balance in
kinetics are clear.
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