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a b s t r a c t 

In this work we discuss the problem of selecting suitable approximators from families of pa- 

rameterized elementary functions that are known to be dense in a Hilbert space of functions. 

We consider and analyze published procedures, both randomized and deterministic, for se- 

lecting elements from these families that have been shown to ensure the rate of convergence 

in L 2 norm of order O (1/ N ), where N is the number of elements. We show that both random- 

ized and deterministic procedures are successful if additional information about the families 

of functions to be approximated is provided. In the absence of such additional information one 

may observe exponential growth of the number of terms needed to approximate the function 

and/or extreme sensitivity of the outcome of the approximation to parameters. Implications 

of our analysis for applications of neural networks in modeling and control are illustrated with 

examples. 

© 2015 Elsevier Inc. All rights reserved. 

 

 

 

 

 

1. Introduction 

The problem of efficient representation and modeling of data is important in many areas of science and engineering. A typical

problem in this area involves constructing quantitative models (maps) of the type 

x 1 , x 2 , . . . , x d �→ f (x 1 , x 2 , . . . , x d ), 

where x 1 , x 2 , . . . , x d , x i ∈ R , i = 1 , . . . , d are variables and f : R 

d → R is an unknown functional relation between the variables.

The total number, d , of variables, determining input data may be large, and physical models of such relations f ( ·) are not always

available. 

In the absence of acceptably detailed prior knowledge of “true” models, f ( ·), a commonly used alternative is to express the

function f ( ·) as a linear combination of known functions, ϕ i ( ·), ϕ : R 

d → R : 

f (x) � f N (x) = 

N ∑ 

i =1 

c i ϕ i (x), c i ∈ R . (1)
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Numerous classes of functions ϕ i ( ·) in (1) have been proposed and analysed to date, starting from sin ( ·), cos ( ·) and polynomial

functions featured in classical Fourier, Fejer, and Weierstrass results, wavelets [32,37] , and reaching out to linear combinations

of sigmoids [7] 

f N (x) = 

N ∑ 

i =1 

c i 
1 

1 + e −(w 

T 
i 

x + b i )
, w i ∈ R 

d , b i ∈ R , (2) 

radial basis functions [27] 

f N (x) = 

N ∑ 

i =1 

c i e 
(−‖ w 

T 
i 

x + b i ‖ 2 ) w i ∈ R 

d , b i ∈ R , (3) 

and other general functions [10] that are often used in neural network literature [14] . Sometimes the values of parameters w i , b i 
may be pre-selected on the basis of additional prior knowledge, leaving only linear weights c i for training. If no prior information

is available then both nonlinear ( w i and b i ) and linear ( c i ) parameters, or weights, are typically subject to training on data specific

to the problem at hand (full network training). 

One special feature that makes full training of approximators (2), (3) particularly attractive is that in addition to their universal

approximation capabilities [7,17,27] and their homogenous structure, they are reported to be efficient when the dimension d

of input data is relatively high. In particular, if all parameters w i , c i , b i are allowed to vary, the order of convergence rate of the

approximation error of a sufficiently smooth function f ( · ) ∈ C 0 [0 , 1] d as a function of N (the number of elements in the network)

is shown to be independent of the input dimension d [4,19] . Furthermore, the achievable rate of convergence of the L 2 -norm of

f ( · ) − f N ( · ) is shown to be O (1/ N 

1/2 ). This contrasts sharply with the rate O(d −1 /N 

1 /d ) corresponding to the worst-case estimate

inherent to linear combinations (1) with ϕ i ( ·) given or (2), (3) with w i , b i fixed. In particular, it is shown in [4] that if only linear

parameters of (2), (3) are adjusted the approximation error cannot be made smaller than Cd −1 /N 

1 /d , where C is independent on

N , uniformly for functions satisfying the same smoothness constraints. 

Favorable independence of the order of convergence rates on the input dimension of the function to be approximated, how-

ever, comes at a price. Construction of such efficient models of data involves a nonlinear optimization routine searching for the

best possible values of w i , b i . The necessity to adjust parameters entering (2) nonlinearly, (3) restricts practical application of

these models in a range of relevant problems (see e.g., [25,29,38,40] for an overview of potential issues). 

An alternative to adjustment of nonlinear parameters of (2), (3) has been proposed in [18,26,36] and further developed in

[30,31] (see also earlier work by Rosenblatt [33] in which he discussed perceptrons with random weights). In these works the

nonlinear parameters w i and b i are proposed to be set randomly at the initialization, rather than through training. The only

trainable parameters are those which enter the network equation linearly, c i . Random selection of weights in the hidden lay-

ers is supposed to generate a set of (basis) functions that is sufficiently rich to approximate a given function by mere linear

combinations from this set. This crucially simplifies training in systems featuring such approximators, and renders an otherwise

computationally complex nonlinear optimization problem into a much simpler linear one. Moreover, the rate of error conver-

gence is argued to be O (1/ N 

1/2 ) [18,30,31] . 

This brings us to a paradoxical contradiction: on the one hand the reported convergence rate O (1/ N 

1/2 ) which a randomized

approximator is supposed to achieve contradicts to the earlier worst-case estimate O(d −1 /N 

1 /d ) obtained in [4] . On the other

hand numerous studies report successful application of such randomization ideas (see also comments [23] ) in a variety of intel-

ligent control applications [15,21,22,24,35] as well as in machine learning (see e.g. [1,41] and references therein). The question,

therefore, is if it is possible to resolve such an apparent controversy? Answering to this question is the main purpose of this

contribution. 

The paper is organized as follows. We begin the analysis with Section 3 in which we review basic reasoning in [18] and

compare these results with [4,19] . We show that, although these results may seem inconsistent, they have been derived for

different performance criteria. The worst-case estimate in [4] is “crisp”, whereas the convergence rate in [18] is probabilistic.

That is it involves a measure function with respect to which the rate O (1/ N 

1/2 ) is assured. Introduction of measure into the

problem brings out a range of interesting consequences that is discussed and analyzed in Section 4 . There we approach data

approximation problem as that of representation of a given vector by a linear combination of randomly chosen vectors in high

dimensions. A simple logic suggests that if one takes m ≤ n random vectors in R 

n then it can be expected that with probability

one these vectors will be linearly independent because the set of linearly dependent corteges { x 1 , . . . , x m 

} ( m ≤ n ) is a proper

algebraic subset in the space of corteges (R 

n )m . We can select n random vectors, and with probability one it will be a basis. Every

given data vector y can be represented by coordinates in this basis. If these n vectors are (accidentally) too close to dependence

we can generate few more vectors that will enable us to represent the data vector y . We will show, however, that this simple

and correct reasoning loses its credibility in high dimensions. We show that in an n -dimensional unit cube [ −1 , 1] n a randomly

generated vector x will be almost orthogonal to a given data vector y (the angle between x and y will be close to π /2 with

probability close to one). To compensate for this waist concentration effect [11–13] one needs to generate exponentially many

random vectors. Typicality of such exponential growth is an inherent feature of high-dimensional data representation, including

problems of data approximation and modeling. Moreover, for high-dimensional data representation the following two seemingly

contradictory situations are typical in some sense: 

• with probability close to one linear combinations of n − k random vectors approximate any normalized vector with accuracy ε if
k 	 n and no constraints on the values of coefficients in linear combinations are imposed (and this probability is one, if k = 0 ); 
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• with probability close to one an exponentially large number N of random vectors are pairwise almost orthogonal and do not span

an arbitrarily selected normalized vector if coefficients in linear combinations are not allowed to be arbitrarily large. 

The approach to assess effective dimensionality of spaces based on ε- quasiorthogonality was introduced in [16,20] . The au-

thors demonstrated that in high dimensions there exist exponentially large sets of quasiorthogonal vectors. This observation has

been exploited in the random indexing literature [34] . Here we show that not only such sets exist, but also that they are typical

in some sense. Implications of our analysis are illustrated in Section 5 followed by few examples presented in Section 6 . Section 7

concludes the paper. 

2. Notation 

Throughout the paper the following notational agreements are used 

• R denotes the field of real number; 

• R 

n stands for the n -dimensional linear space over the field of reals; 

• let x ∈ R 

n , then ‖ x ‖ is the Euclidean norm of x : ‖ x ‖ = 

√ 

x 2 
1 

+ · · · + x 2 n ; 

• if x , y are two non-zero vectors from R 

n then � ( x , y ) denotes an angle between these vectors; 

• symbol | · | R n is reserved to denote an arbitrary norm in R 

n ; 

• S n −1 (R) denotes an n − 1 -sphere of radius R centred at 0: S n −1 (R) = { x ∈ R 

n | ‖ x ‖ = R } 
• μ is the normalized Lebesgue measure on S m −1 (1 ): μ(S m −1 (1 )) = 1 . 

• B 

n (R) denotes a n -ball of radius R centered at 0: B 

n (R) = { x ∈ R 

n | ‖ x ‖ ≤ R } 
• V(�) is the Lebesgue volume of � ⊂ R 

n . 

• D 

n −1 (R) stands for a n − 1 -disc in the n -ball B 

n (R) corresponding to its largest equator, and D 

n −1 
δ

(R) is its δ-thickening. 

• Let f : [0 , 1] d → R be a continuous function, then 

‖ f ‖ 

2 = 〈 f, f 〉 = 

∫ 
[0 , 1] d 

f (x) f (x)dx, 

denotes the L 2 -norm of f . 

3. Preliminary analysis and motivation 

In this section we review and compare the so-called greedy approximation upon which the famous Barron’s construction is

based [4] and the Random Vector Functional-Link (RVFL) network [18] in which the basis functions are randomly chosen, and

only their linear parameters are optimized. As we show below, despite the error convergence rates appear to be of the same

order, they are in essence dramatically different. One rate is crisp in the sense that it is a worst-case estimate for all functions

from a given class. The other one is probabilistic in nature, and hence holds in probability. The consequences of the latter are

further investigated in Section 4 . 

Consider the following class of problems. Suppose that g : R → R be a function such that 

‖ g‖ ≤ M, M ∈ R > 0 , 

and 

G = { g(w 

T x + b)} , w ∈ R 

d , b ∈ R , 

be a family of parameterized functions g ( ·). Let f ∈ C 0 ([0 , 1] n ), and let f belong to a convex hull of G. In other words there is a

sequence of w i , b i , and c i such that 

f (x) = 

∞ ∑ 

i =1 

c i g(w 

T 
i x + b i ), 

∞ ∑ 

i =1 

c i = 1 , c i ≥ 0 . 

We are interested in approximating f by the finite sum 

f N (x) = 

N ∑ 

i =1 

c i g(w 

T 
i x + b i ). (4)

It is important to know how approximation errors, defined in some meaningful sense, may decay with N , and what the compu-

tational costs for achieving this rate of decay are? 

3.1. Greedy approximation and Jones Lemma 

In order to answer the question above one needs first to determine the error of approximation. It is natural for functions from

L 2 to define the approximation error as follows: 

e N = ‖ f N − f‖ (5)
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The classical Jones iteration [19] (refined later by Barron [4] ) provides us with the following estimate of achievable conver-

gence rate: 

e 2 N ≤
M 

′ 2 e 2 0 

Ne 2 
0 

+ M 

′ 2 , M 

′ > sup 

g∈G 
‖ g‖ + ‖ f‖ . (6) 

The rate of convergence depends on d only through the L 2 -norms of f 0 , g , and f . The iteration itself is deterministic and can be

described as follows: 

f N+1 (x) = (1 − αN ) f N (x) + αN g(w 

T 
N x + b N )

αN = 

e N 
2 

M 

′′ 2 + e N 2 
, M 

′′ > M 

′ (7) 

where parameters w N , b N of g are chosen such that the following condition holds 

〈 f N − f, g(w 

T 
N · + b N ) − f 〉 < 

((M 

′′ )2 − (M 

′ )2 )e 2 N 

2 (M 

′′ )2 
, (8) 

This choice is always possible (see [19] for details) as long as the function f is in the convex hull of G. 

According to (6) the rate of convergence of such approximators is estimated as 

e 2 N = O(1 /N). 

This convergence estimate is guaranteed because it is the upper bound for the approximation error at the N th step of iteration

(7) . 

3.2. Approximation by linear combinations of functions with randomly chosen parameters 

We now turn our attention to the result in [18] . In this approximator the original function f ( ·) is assumed to have the following

integral representation 

2 

f (x) = lim 

α→∞ 

lim 

	→∞ 

∫ 
W 

d 

F α, 	(ω)g(αw 

T x + b)dω, (9) 

where g : R → R is a non-trivial function from L 2 : 

0 < 

∫ 
R 

g 2 (s)ds < ∞ , (10) 

where ω = (y, w, u) ∈ R 

d × R 

d × [ −	, 	] , 	 ∈ R > 0 , W 

d = [ −2	; 2	] × I d × V d , V d = [0 ;	] × [ −	;	] d−1 , b = −(αw 

T y + u)
and 

F α, 	(ω) ∼ α
∏ d 

i =1 w i 

	d 2 

d−1 
f (y) cos 	 (u), cos 	 (u) = 

{
cos (u), u ∈ [ −	, 	] 
0 , u / ∈ [ −	, 	] 

(see [18,23] for more detailed description). Function g ( ·) induces a parameterized basis. Indeed if we were to take integral (9)

in quadratures for sufficiently large values of α and 	, we would then express f ( x ) by the following sums of parameterized

g(αw 

T x + b) [18] : 

f (x) � 

∑ 

c i g(αw 

T 
i x + b i ), b i = −α(w 

T 
i y i + u i ). (11)

The summation in (11) is taken over points ω i in W 

d , and c i are weighting coefficients. Variables α in (9) and αN in (7) play

different roles in each approximation scheme. In (7) the value of αN is set to ensure that the approximation error is decreasing

with every iteration, and in (9) it stands for a scaling factor of random sampling. 

The main idea of [18] is to approximate integral representation (9) of f ( x ) using the Monte-Carlo integration method as 

f (x) � 

4	d 

N 

lim 

α→∞ 

lim 

	→∞ 

N ∑ 

k =1 

F α, 	(ω k )g(αw 

T 
k x + b k )

= lim 

α→∞ 

lim 

	→∞ 

N ∑ 

k =1 

c k, 	(α, ω k )g(αw 

T 
k x + b k )

= f N,ω, 	(x), (12) 

where the coefficients c k ( α, ω k ) are defined as 

c k, 	(α, ω k ) = 

1 

N 

4 α
∏ d 

i =1 w k,i 

2 

d−1 
cos 	 (u k ) f (y k ) (13) 

and ω k = (y k , w k , u k ) are randomly sampled in W 

d (domain of parameters, i.e., weights and biases of the network). 
2 We keep the original notation of [18] which uses both ω and w for the sake of consistency. 
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When the number of samples, N , i.e., the network size , is large, then 

E ω (N) = 

√ 

E ω 

∫ 
K 

| f (x) − f N,ω, 	(x)| 2 dx , K ⊂ [0 , 1] d , (14)

converges to zero asymptotically for large N . In particular: 

Theorem 1 (Igel’nik and Pao [18] ) . For any compact K , K ⊂ [0, 1] d , K � = [0, 1] d and any absolutely integrable function g satisfying (10)

there exists a sequence of f N , ω, 	 and a sequence probability measures { μN , 	, α} such that 

lim 

N→∞ 

E ω (N) = 0 . 

Furthermore, under some additional restrictions on the functions g , f the expectation E ω ( N ) is shown to obey ( Theorem 3 in

[18] ): 

E ω (N ) ≤ C 

N 

1 / 2 
. (15)

Similar results have been reported in [31] . There the authors look at the following classes of functions: 

F p = { f (x) = 

∫ 
	

α(ω )φ(x, ω )dω | | α(ω )| ≤ Cp(ω)} , sup 

x,w 

| φ(x, w)| ≤ 1 , 

where p is a distribution on 	, and 

F ω = { f (x) = 

N ∑ 

k =1 

αk φ(x, ω k ) || αk | ≤ C/N} . 

For the chosen classes of functions they establish the following 

Theorem 2 (cf. Lemma 1 in [31]) . Let f be a function from F p and w 1 , . . . , w N be drawn iid from p. Then for any 1 > δ > 0 with

probability at least 1 − δ over w 1 , . . . , w N there exists a function f N from F ω so that 

‖ f − f N ‖ ≤ C √ 

N 

( 

1 + 2 

√ 

log 
1 

δ

) 

. (16)

At the first glance errors (5), (14), (16) and their respective convergence rates look very similar. Yet, they are fundamentally

different in that (5) is deterministic and its convergence rate is crisp, whereas the other two estimates have an additional element

- a probability measure - characterizing their convergence rate. Introduction of this measure enables to “ignore” worst-case

elements corresponding to the rate of convergence O(d −1 /N 

1 /d ). At the same time, it imposes some limitations too since there

always is a non-zero probability of an unlucky draw from the probability distribution which will require re-initialization at some

stage of approximation. Furthermore, explicit presence of 1/ δ in (16) 3 suggest that this rapid convergence of order 1/ N 

1/2 is

assured only up to a given and fixed tolerance. These features of randomized approximators should thus be considered with

special care in applications. 

There is one additional point that is inherent to all randomized approximators and yet it is rarely addressed in practice. This

is a measure concentration effect that we will present and consider in detail in the next section. 

4. Randomized data approximation and measure concentration 

So far we considered the problem of data approximation and modelling from the function approximation point of view.

Let us, however, look at this problem from a slightly different perspective (cf. [41] ). Suppose that the data points, x , are la-

beled by real numbers t i so that each i th data point is uniquely determined by its label t i . This means that the problem

can be rephrased as that of representing a combined vector y = ( f (x(t 1 )), f (x(t 2 )), . . . , f (x(t n ))) by linear combinations of

h i = (g(w 

T 
i 

x(t 1 ) + b i ), g(w 

T 
i 

x(t 2 ) + b i ), . . . , g(w 

T 
i 

x(t n ) + b i )) so that the error 

y −
m ∑ 

i =1 

c i h i 

is minimized. If our choice of vectors h 1 , . . . , h m 

is good enough to represent an arbitrary vector y with acceptable precision then

we can be assured that the above approximation model is viable. The questions, however, are 

(1) If the choice of h i is randomized then how many vectors one must choose to ensure desired universality and accuracy? 

(2) How robust such representations are with respect to small perturbation of data? 

These questions are addressed in the next sections. For simplicity we ignore that the vectors h i are in fact generated by

functions g ( ·) and proceed assuming that they are simply sampled randomly in a hypercube. 
3 The very same term is implicit in the error rate derived for Monte-Carlo inspired approach in [18] . This follows immediately from the Chebyshev inequality. 

Indeed, if X 1 , . . . , X N are iid random variables with the same mean, μ and variance σ 2 then the probability that | (X 1 + · · · + X N )/N − μ| ≥ δ is assured to be at 

most σ 2 /( δ2 N ). 
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4.1. Linear dependence and independence and related elementary properties 

Let us first recall standard notions of linear dependence and independence. 

Definition 1 (Linear Dependence) . A system of vectors h 1 , h 2 , . . . , h m 

, h i ∈ R 

n , i = 1 , . . . , m is said to be linearly dependent if

there exist c 1 , c 2 , . . . , c m 

, c i ∈ R , i = 1 , . . . , m such that 

h 1 c 1 + h 2 c 2 + · · · + c m 

h m 

= 0 

and at least one of c 1 , c 2 , . . . , c m 

is not equal to zero. 

The same definition can be rewritten in the vector-matrix notation as 

∃ c ∈ R 

m , c � = 0 : Hc = 0 , (17)

where 

H = (h 1 h 2 · · · h m 

)

is an n × m matrix formed by h 1 , . . . , h m 

. 

Definition 2 (Linear Independence) . A system of vectors h 1 , h 2 , . . . , h m 

, h i ∈ R 

n , i = 1 , . . . , m is said to be linearly dependent if it

is not linearly independent. In other words, 

Hc � = 0 ∀ c ∈ R 

m : c � = 0 . (18)

A very simple fact follows immediately from Definition 2 . 

Proposition 1. Consider a system of vectors h 1 , . . . , h m 

, and let H = (h 1 h 2 . . . h m 

) . Let | ·| 
R n be a norm on R 

n , then the system

h 1 , . . . , h m 

is linearly independent if there exists an ε > 0 such that 

| Hx | 
R n 

> ε ∀ x ∈ S m −1 (1 ). (19) 

Proof. Suppose first that the system h 1 , . . . , h m 

is linearly independent. Hence (18) holds, and given that x � = 0 for all x ∈ S m −1 (1 )
we thus obtain that | Hx | 

R n > 0 for all x ∈ S m −1 (1 ). Noticing that | ·| 
R n is continuous and S m −1 (1 ) is compact we conclude that

| ·| 
R n takes minimal and maximal values on S m −1 (1 ). Let 

ε = min 

x ∈S m −1 (1 )
| Hx | 

R n 
. 

The minimum of | ·| 
R n on S m −1 (1 ) is separated away from 0 since otherwise there exists a x ∈ S m −1 (1 ) such that Hx = 0 . Thus

(19) holds. 

Let us now show that (19) implies (18) . Indeed, for any c ∈ R 

m , c � = 0 there is an x ∈ S m −1 (1 ) and an α ∈ R , α � = 0 such that

c = αx . Hence | Hc | 
R n = | α| | Hx | 

R n > | α| ε > 0 , which automatically assures that (18) holds. �

4.2. Quantification of linear independence 

Standard notions of linear dependence and independence are, unfortunately, not always easy to assess numerically when the

values of ε in (19) are small. Further, checking that for a given system of vectors h 1 , . . . , h m 

, some ε, and all x ∈ S m −1 (1 ) the

following holds 

| Hx | 
R n 

> ε (20) 

may not always be feasible or desirable. 

Two ways to relax and quantify the conventional notion of linear independence are obviated in Proposition 1 . These are (1)

the value of ε in (19) , and (2) a possibility of introducing a finite measure on S m −1 (1 ) that determines a proportion of x from

S m −1 (1 ) which satisfy (20) . 

Definition 3 (Almost Linear Independence) . Let h 1 , . . . , h m 

be a system of m normalized vectors from R 

n : | h i | R n = 1 , i = 1 , . . . , m .

We will say that the system is ( ε, θ )-linearly independent (almost linearly independent) with respect to μ if 

μ({ x ∈ S m −1 (1 ) | | Hx | 
R n 

≥ ε} ) ≥ 1 − θ . (21) 

Similarly, one can define an alternative quantification of linear dependence: 

Definition 4 (Almost Linear Dependence) . Let h 1 , . . . , h m 

be a system of m normalized vectors from R 

n : | h i | R n = 1 , i = 1 , . . . , m .

We will say that the system is ( ε, θ )-linearly dependent (almost linearly dependent) with respect to μ if 

μ({ x ∈ S m −1 (1 ) | | Hx | 
R n 

≤ ε} ) ≥ 1 − θ . 

Notice that the notions of almost linear independence and almost linear dependence introduced in Definitions 3, 4 are consis-

tent with conventional notions in the sense that the latter can be viewed as limiting cases of the former. Indeed, if μ is a surface

area then setting θ = 0 in Definition 3 and picking ε small enough one obtains an equivalent of Definition 2 . 
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The above measure, or “probabilistic”, quantification of linear independence has significant implications for data representa-

tion in applications. As we shall see in the next sections two seemingly exclusive extremes are likely to hold in higher dimen-

sions. First, almost all points of an n -ball concentrate in an ε-thickening of an n − 1 -disc. This means that for m sufficiently large

a family of randomly and independently chosen vectors h 1 , h 2 , . . . , h m 

becomes almost linearly dependent. This phenomenon is

well-known in the literature (see e.g. [11–13] as well as classical works of Maxwell, Levy, and Gibbs; in Data Mining applications

measure concentration effects have been discussed in [28] ). Yet, the values of m for which almost linear independence persists

may be exponentially large. Furthermore, the latter situation holds with a probability that is close to one. This second extreme

can be rephrased as that the number of almost orthogonal vectors grows exponentially with dimension. More formal statements

and justifications are provided in Propositions 2, 3 below. 

4.3. Measure concentration 

We begin with the following statement 

Proposition 2. Let B 

n (R) be an n-ball of radius R in R 

n , and 0 < δ < R. Then the following estimate holds: 

V(B 

n (R)) − V(B 

n (R − δ))

V(B 

n (R))
> 1 − e −

nδ
R . (22)

Proof. Noticing that V(B 

n (R)) = C n R 
n , where C n is a constant independent on R we conclude that 

V(B 

n (R)) − V(B 

n (R − δ))

V(B 

n (R))
= 1 − (R − δ)n 

R 

n 
= 1 −

(
1 − δ

R 

)n 

. 

Next we recall that the following elementary inequality holds for all 0 < x < 1: 

(1 − x)
1 

e 
< (1 − x)

1 
x < 

1 

e 
. (23)

Indeed, with respect to the right part of (23) , (1 − x)
1 
x < e −1 , we notice that (1 − x)

1 
x < e −1 ⇔ 1 − x < e −x . The function y = e −x

is strictly convex on R , and y = 1 − x is its first-order Taylor approximation at x = 0 . Thus that (1 − x)
1 
x < 

1 
e holds true for 0 < x

< 1 is the consequence of the strict convexity of the exponential e −x . 

In order to see that the left part of (23) holds true too, consider the following chain of equivalent inequalities for 0 < x < 1: 

(1 − x)e −1 < (1 − x)
1 
x ⇔ e −x < (1 − x)1 −x ⇔ −x < (1 − x) ln (1 − x). 

Again, y = (1 − x) ln (1 − x) is strictly convex on (−∞ , 1 ), and y = −x is its first Taylor approximation at x = 0 . Hence the left part

of the inequality, (1 − x)e −1 < (1 − x)
1 
x , is the consequence of strict convexity of (1 − x) ln (1 − x). 

Using (23) one can derive that [ 

e 

(
1 − δ

R 

)−1 
] − nδ

R 

< 

(
1 − δ

R 

)n 

< e −
nδ
R . 

Moreover, for δ/ R sufficiently small we obtain (
1 − δ

R 

)n 

∼ e −
nδ
R 

with accuracy estimate following from (23) . �

In accordance with Proposition 2 the volume of an n -ball of radius R , for n sufficiently large, is concentrated in a thin layer

around its surface. Furthermore, in this thin layer the volume of an n -ball is concentrated around the largest equator of the

corresponding n − 1 sphere, S n −1 (R). 

Proposition 3. Let B 

n (R) be an n-ball of radius R in R 

n , and 0 < δ < R. Let D 

n −1 
δ

(R) be a δ-thickening of an n − 1 -disc D 

n −1 (R). Then 

V(B 

n (R)) − V(D 

n −1 
δ

(R))

V(B 

n (R))
< e −

nδ2 

2 R 2 . 

Proof. Consider 

V(B 

n (R)) − V(B 

n (
√ 

R 

2 − δ2 ))

V(B 

n (R))

= 1 −
(

1 − δ2 

R 

2 

) n 
2 
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Fig. 1. Illustration to the estimate of the 2 δ-width of the waist of the sphere. For (b), n � 1. More accurate estimate with evaluation of the reminder can be 

extracted from (24), (25) . 

 

 

 

 

 

 

Using (23) we obtain 

1 −
(

1 − δ2 

R 

2 

) n 
2 

> 1 − e −
nδ2 

2 R 2 , 

and the result follows automatically from 

V(B 

n (R)) − V(D 

n −1 
δ

(R)) ≤ V(B 

n (
√ 

R 

2 − δ2 )). 

�
In high dimension the volume of the ball is concentrated in a thin layer near the sphere. Therefore, the estimate of the

volume of the disk automatically provides an estimate of the surface of the corresponding waist of the sphere. Let us produce

this estimate explicitly. The proportion of S n −1 (1 ) belonging to the cap (shaded part of the sphere in Fig. 1 ) equals the proportion

of the solid ball that lies in the corresponding spherical cone (cf. [3] , Fig. 11). The latter consist of two parts: one is the cone of

height δ and radius of the base 
√ 

1 − δ2 . The volume of the second part can be bounded from above by the half of the volume of

the ball with radius 
√ 

1 − δ2 . If we use the Stirling formula for the volume of high-dimensional ball V n (R) ∼ 1 √ 

nπ

(
2 πe 

n 

)n/ 2 
R n then

we obtain that the fraction of the waist of the width 2 δ is 1 − (1 + O(δ/ 
√ 

n ))e −
nδ2 

2 . Indeed 

V n (R) = 

πn/ 2 

�( n 
2 

+ 1 )
R 

n , V n (R) = 2 π

(
R √ 

n 

)2 

V n −2 (R), 

V n (R) = R 

√ 

π
�( n +1 

2 
)

�( n +1 
2 

+ 

1 
2 
)

V n −1 (R). (24) 

The estimate now follows from 

�(x) = x x −
1 
2 e −x 

√ 

2 π
(

1 + 

1 

12 x 
+ R 2 (x)

)
, 

where the reminder R 2 ( x ) can be bounded as 

| R 2 (x)| ≤ 1 + 

1 
6 
π2 

2 π3 x 2 
(25) 

(see (3.11) from [5] for details). This estimate improves the textbook estimate 1 − 2 e −
nδ2 

2 for large n [3] . 
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The concentration effect described in Proposition 3 implies that in high dimensions nearly all independently and randomly

drawn vectors will belong to a δ-thickening of a set of vectors that are linearly dependent: the n − 1 -disc D 

n −1 (R). On the other

hand a set of n − 1 vectors with probability close to one spans almost all vectors. We note that the latter property holds for

systems of n − k, k > 1 vectors too which follows immediately from [2] : 

Theorem 3 (Theorem 3.1 in [2]) . Let E k be a k-dimensional subspace of R 

n , and denote by μ(( E k ) ε ) the Haar measure on the sphere

S(1 ) of the set of points within a geodesic distance smaller than ε of E k . We write k = λn . Fix 0 < ε < π /2 and 0 < λ < 1 . The following

estimates hold as n → ∞ 

(i) If sin 

2 ε > 1 − λ, then 

μ((E k )ε ) � 1 − 1 √ 

nπ

√ 

λ(1 − λ)

sin 

2 ε − (1 − λ)
e 

n 
2 u(λ,ε). 

(ii) If sin 

2 ε < 1 − λ, then 

μ((E k )ε ) � 

1 √ 

nπ

√ 

λ(1 − λ)

(1 − λ) − sin 

2 ε 

where u(λ, ε) = (1 − λ) log 1 −λ

sin 2 ε 
+ λ log λ

cos 2 ε 
. 

Since nearly all vectors in B 

n (1 ) are concentrated in an ε-disc it is interesting to know how many pairwise almost orthogonal

vectors can be found in this set. It turns out that this number is exponentially large. Detailed analysis and derivations are provided

in the next section. 

4.4. Almost orthogonality in high dimensions 

Select two small positive numbers, ε and ϑ. Let us generate randomly and independently N vectors x 1 , . . . , x N on S n −1 (1 ). We

are interested in the probability P that all N random vectors are pairwise ε-orthogonal, i.e. |( x i , x j )| < ε for i, j = 1 , . . . , N, i � = j . For

which N this P > 1 − ϑ? 

Propositions 2, 3 and subsequent discussion suggest that for n � 1 almost all volume of an n -ball B 

n (1 ) is concentrated in an

ε-thickening of its largest equator. Moreover for an arbitrarily chosen point p on the surface of B 

n (1 ) almost all points of the ball

belong to the set DC n −1 
ε (1 ) comprising of the difference of a D 

n −1 
ε (1 ) with the corresponding spherical cones (see Fig. 1 ). For the

given choice of p and DC n −1 
ε (1 ) the following estimate holds 

| cos (∠ (p, x))| ≤ ε ∀ x ∈ DC n −1 
ε (1 ). 

The latter property means that the vector p is almost orthogonal to nearly all remaining points in B 

n (1 ). 

Another way of looking at this could be as follows. In accordance with Proposition 2 , almost all points of the ball B 

n (1 ) are

concentrated around a ε-thickening of surface. At the same time they are also concentrated in D 

n −1 
ε (1 ). Lengths of such points,

x , satisfy 1 − ε ≤ ‖ x ‖ ≤ 1 , and hence 

| cos (∠ (p, x))| ≤ | p T x | 
1 − ε 

≤ ε

1 − ε 
. 

Let us determine the number of independent random vectors which are pairwise ε-orthogonal with probability 1 − ϑ . The

volume taken by all vectors that are almost orthogonal to a given vector on a unit sphere can be estimated from Proposition 3

(up to a small correction term O(δe −
nδ2 

2 / 
√ 

n )). Consider the following products 

P (ε, N) = 

N ∏ 

k =1 

(
1 − ke −

nε2 

2 

)
. (26)

The value of P ( ε, N ) is an estimate from below of the probability of a set of N + 1 independent random vectors to be pairwise ε-

orthogonal. Indeed, for one vector h 1 the fraction of the vectors which are not ε-orthogonal to h 1 is evaluated as e −nδ2 
. Therefore,

for k vectors h 1 , . . . , h k , the fraction of the vectors which are not ε-orthogonal to h 1 , . . . , h k is at most ke −nδ2 
. The probability to

select randomly a vector h k +1 , which is ε-orthogonal to h 1 , . . . , h k , is higher than 1 − ke −nδ2 
. The vectors are selected indepen-

dently, therefore we have the estimate (26) . 

The value of P ( ε, N ) in (26) can be estimated as follows. For Ne −
nε2 

2 < 1 : 

P (ε, N) > 

(
1 − Ne −

nε2 

2 

)N 

> e −N 2 e 
− nε2 

2 
. (27)

According to (27) , if P ( ε, N ) is set to be exceed a certain value, 1 − ϑ, the number of pairwise almost orthogonal vectors in B 

n (1 )
will have the following asymptotic estimate: For 

N ≤ e 
ε2 n 

4 

[ 
log 

(
1 

1 − ϑ 

)] 1 
2 

(28)

all random vectors h 1 , . . . , h N+1 are pairwise ε-orthogonal with probability P > 1 − ϑ . 
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Estimate (27) of (26) can be refined if we apply log to the right hand side of (26) 

log P (ε, N) = 

N ∑ 

k =1 

log 

(
1 − ke −

nε2 

2 

)
, 

end estimate the above sum using the integral 

J(z) = 

∫ z 

0 

log (1 − xr)dx = 

rz − 1 

r 
log (1 − rz) − z, r = e −

nε2 

2 

Since log P ( ε, N ) is monotone for e 
nε2 

2 > N ≥ 1 we can conclude that J(N + 1 ) ≤ log P (ε, N) ≤ J(N). Furthermore, given that 

log (1 − x) ≤ − 2 x 

2 − x 
for all x ∈ [0 , 1] 

the following holds 

J(z) ≥ 2 z(rz − 1 )

rz − 2 

− z 

for all zr ∈ [0, 1]. Hence 

2 (N + 1 )(r(N + 1 ) − 1 )

r(N + 1 ) − 2 

− (N + 1 ) ≤ P (ε, N) = log (1 − ϑ). 

Transforming this equation into quadratic 

r(N + 1 )2 − log (1 − ϑ)r(N + 1 ) + 2 log (1 − ϑ) ≤ 0 

and solving for N results in 

N ≤
√ 

log 
2 (1 − ϑ)

4 

+ 2 log 
1 

1 − ϑ 

e 
nε2 

2 + 

log (1 − ϑ)

2 

(29) 

Notice that the refined estimate (29) has asymptotic exponential rate of order e ε
2 n/ 4 which is identical to the one derived in (28) .

5. Discussion 

Estimate (28), (29) derived in the previous section suggests that, for ϑ sufficiently small a set of N randomly and independently

chosen vectors in B 

n (1 ) will be pairwise ε-orthogonal with probability 1 − ϑ for 

N � e 
ε2 n 

4 ϑ 

1 
2 

Such exponential bound enables us to explain some apparent controversy [39] regarding convergence rates of approximation

schemes based on iterative greedy approximation [4,19] , and randomized choice of functions advocated in [18,30,31] . 

Both greedy approximation and systems of randomized basis functions enjoy the convergence rate of order 1/ N 

1/2 in L 2 -norm

irrespective of dimensionality of the domain on which a function that is being approximated is defined. Greedy approxima-

tion, however, requires solving nonlinear optimization problems at each step. In randomized strategies, parameters of the basis

functions/kernels are randomly drawn from a given set. This transforms the original problem into a much simpler linear one. 

Notice, however, that the constant C in the error rate O ( C / N 

1/2 ) can become rather large in these schemes. If, for example

kernels φ( x , ω) in Theorem 2 approach Dirac delta-functions, then the constant C in (16) becomes arbitrarily large. The same

problem may occur for the error rate (15) . This means that practical application of randomized approximation schemes is to

be preceded by additional analysis of the class of functions being approximated. Second, achievable rate in these schemes is in

general dependent on the values of δ, determining probability of success (cf. (16) ; see our comment on Monte-Carlo convergence

in probability too). The smaller the value of δ the higher is the probability of achieving the rate O ( C / N 

1/2 ). That rate, however,

is proportional to a strictly monotone function of 1/ δ. This might be acceptable in many practical applications. Nevertheless, if

particularly high accuracy is desirable one needs to take this into account. 

An insight into the slowing-down of convergence of randomized approximators due to either increased C or due to the need

to keep δ small can be gained by considering measure concentration effects discussed in Propositions 2, 3, Theorem 3 and in

Section 4.4 . Indeed, in accordance with the analysis presented a system of n − k, k ≥ 1 vectors spans almost all vectors in a ball

B 

n (1 ). This system, however, is almost linearly dependent. This means that the coefficients in corresponding linear combinations

could become arbitrary large. Large coefficients, in turn, make the representation sensitive to small inaccuracies which is of

course generally not very desirable. This observation of typicality of large coefficients in randomized choice of relatively short

bases is consistent with our earlier remarks about growth of C and influence of 1/ δ. On the other hand, if a representation of data

is needed in which all coefficients are to be within certain bounds then the number of randomized basis vectors may become

exponentially large. 

To overcome potential danger of exponential growth of the number of elements needed to achieve acceptable level of per-

formance of a randomized approximator one may constrain dimensionality of randomization by “binning” or partitioning the
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space of original problem into a set of spaces of smaller dimensions. An example of such an optimization would be to use e.g.

multi-scale basis functions, followed by randomization at each scale. Cascading, multi-grid, frequency separation, localization

could all be used for the same purposes. The achieved efficiency will of course be determined by suitability of each of these

“binning” approaches for a problem at hand. Of course such a binning will violate isotropy of the space. Violation of isotropy can

make random approximation much more efficient. For example [6] proved that if the vectors of signals are sparse in a fixed basis ,

then it is possible to reconstruct these signals with very high accuracy from a small number of random measurements. 

6. Examples 

6.1. Error convergence rate. Deterministic vs Randomized approaches 

In order to illustrate the main difference between greedy and RVFL approximators, we consider the following example in

which a simple function is approximated by both methods, greedy approximation (4) –(7) and approximation based on random-

ized choice of bases. Let f ( x ) be defined as follows: 

f (x) = 0 . 2 e −(10 x −4 )2 + 0 . 5 e −(80 x −40 )2 + 0 . 3 e −(80 x −20 )2 

The function f ( x ) is shown in Fig. 2 , top panel. Clearly, f ( ·) belongs to the convex hull of G , and hence to its closure. 

First, we implemented greedy approximation (4) –(7) in which we searched for g n in the following set of functions 

G = { e −(w 

T x + b)2 } , 
where w ∈ [0 , 200] , b ∈ [ −100 , 0] . The procedure for constructing f n was as follows. Assuming f 0 (x) = 0 , e 0 = − f we started with

searching for w 1 , b 1 such that 

〈 0 − f (x), g(w 1 x + b) − f (x)〉 
= −〈 f (x), g(w 1 x + b)〉 + ‖ f (x)‖ 

2 < ε. (30)

where ε was set to be small ( ε = 10 −6 in our case). When searching for a solution of (30) (which exists because the function f

is in the convex hull of G [19] ), we did not utilize any specific optimization routine. We sampled the space of parameters w i , b i
randomly and picked the first values of w i , b i which satisfy (30) . Integral (30) was evaluated in quadratures over a uniform grid

of 10 0 0 points in [0, 1]. 
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Fig. 2. Practical speed of convergence of function approximators that use greedy algorithm (panel (b)) and Monte-Carlo based random choice of basis functions 

(panel (c)). The target function is shown in panel (a). 
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The values of α1 and the function f 1 were chosen in accordance with (7) with M 

′′ = 2 , M 

′ = 1 . 5 (these values are chosen to

assure M 

′′ > M 

′ > sup g∈G ‖ g‖ + ‖ f‖ ). The iteration was repeated, resulting in the following sequence of functions 

f n (x) = 

N ∑ 

i =1 

c i g(w 

T 
i x + b i ), 

c i = αi (1 − αi +1 )(1 − αi +2 ) · · · (1 − αN )

Evolution of the normalized approximation error 

ē N = 

e 2 N 

‖ f‖ 

2 
= 

‖ f N − f‖ 

2 

‖ f‖ 

2 
(31) 

for 100 trials is shown in Fig. 2 (middle panel). Each trial consisted of 100 iterations (4) –(7) , thus leading to the networks of

100 elements at the 100th step. We observe that the values of ē N monotonically decrease as O (1/ N ), with the behavior of this

approximation procedure consistent across trials. 

Second, we implemented an approximator based on the Monte-Carlo integration. At the N th step of the approximation pro-

cedure we pick randomly an element from G , where w ∈ [0 , 200] , b ∈ [ −200 , 200] (uniform distribution). After an element is

selected, we add it to the current pool of basis functions 

{ g(w 

T 
1 x + b 1 ), . . . , g(w N−1 x + b N−1 )} . 

Then the weights c i in the superposition 

f N = 

N ∑ 

i =1 

c i g(w 

T 
i x + b i )

are optimized so that ‖ f N − f‖ → min . Evolution of the normalized approximation error ē N (31) over 100 trials is shown in Fig. 2

(panel (c)). As can be observed from the figure, even though the values of ē N form a monotonically decreasing sequence, they are

far from 1/ N , at least for 1 ≤ N ≤ 100. Behavior across trials is not consistent, at least for the networks smaller than 100 elements,

as indicated by a significant spread among the curves. 

Overall comparison of these two methods is provided in Fig. 3 , in which the errors ē N are presented in the form of a box plot.

Black solid curves depict the median of the error as a function of the number of elements, N , in the network; blue boxes contain
1
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Fig. 3. Box plots of convergence rates for function approximators that use greedy algorithm (panel (a)) and Monte-Carlo random choice of basis functions (panels 

(b) and (c)). Panel (b) corresponds to the case in which the basis functions leading to ill-conditioning were discarded. Panel (c) shows performance of the MLP 

trained by the method in [9] which is effective at counteracting ill-conditioning while adjusting the linear weights only. The red curve shows the upper bound 

for ̄e N calculated in accordance with (6) . We duplicated the average performance of the greedy algorithm (grey solid curve) in the middle and bottom panels for 

convenience of comparison. 
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Fig. 4. Measure concentration in high dimensions. Panel (a) shows histogram of angles between a randomly chosen feature vector in the set of “faces” and the 

rest of the vectors in the class. Panel (b) shows histogram of angels between a randomly chosen feature vector in the set of “non-faces” (negatives) and the rest 

of vectors in this class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50% of the data points in all trials; “whiskers” delimit the areas containing 75% of data, and red crosses show the remaining

part of the data. As we can see from these plots, random basis function approximators, such as the RVFL networks, mostly do

not match performance of greedy approximators for networks of reasonable size. Perhaps, employing integration methods with

variance minimization could improve the performance. This, however, would amount to using prior knowledge about the target

function f , making it difficult to apply the RVFL networks to problems in which the function f is uncertain. 

Now we demonstrate performance of an MLP trained to approximate this target function. The NN is trained by a gra-

dient based method described in [9] . At first, the full network training is carried out for several network sizes N = 20 , 40,

60, 80 and 100 and input samples randomly drawn from x ∈ [0, 1]. The values of ē N are 1 . 5 · 10 −4 for all the network sizes

(as confirmed in many training trials repeated to assess sensitivity to weight initialization). This suggests that training and

performance of much smaller networks should be examined. The networks with N = 2 , 4 , 6 , 8 , 10 are trained, resulting in

ē N = 0 . 5749 , 0 . 1416 , 0 . 0193 , 0 . 0011 , 0 . 0 0 04 , respectively, averaged over 100 trials per the network size. Next, we train only the

linear weights ( c i in (2) ) of the MLP, fixing the nonlinear weights w i and b i to random values. The results for ē N averaged over 100

trials are shown in Fig. 3 , bottom panel (black curve). Remarkably, the results of random basis network with N = 100 are worse

than those of the MLP with N ≥ 4 and full network training. These results indicate that both the greedy and the Monte-Carlo ap-

proximation results shown in Fig. 3 are quite conservative. Furthermore, the best of those two, i.e., the greedy approximation’s,

can be dramatically improved by a practical gradient based training. 

6.2. Measure concentration effects 

Measure concentration effects, as presented in Section 4 , have been discussed for idealized objects such as S n −1 (R) and B 

n (R).

The phenomenon, however, broadly applies to other objects whose geometric and formal description is not limited to the former.

In order to illustrate this point we analysed a database of HOG feature vectors [8] containing representations of images

of faces 4 as well as the negatives (non-faces). Each feature vector has 1920 components, and hence belongs to R 

n with n =
1920 . Vectors of each classes have been centered and normalized so that they belong to the hypercube [ −1 , 1] n . Fig. 4 shows

distributions of angles between a randomly chosen vector (1-st) and that of the rest in their respective classes. 
4 The database has been developed by Apical LTD. 
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As one can see from this figure, the angles concentrate in a vicinity of π /2 which is consistent with our derivations for points

in B 

n (1 ). 

Another interesting effect of measure concentration is exponential growth of the lengths of chains of randomly chosen vec-

tors which are pairwise almost orthogonal. In order to illustrate and assess validity of our estimates (28), (29) the following

numerical experiments have been performed. A point is first randomly selected in a hypercube [ −1 , 1] n of some given dimen-

sion. The second point is randomly chosen in the same hypercube. These two points correspond to two vectors randomly drawn

in [ −1 , 1] n . If the angle between the vectors was within π /2 ± 0.037 π /2 then the vector was retained. At the next step a new

vector is generated in the same hypercube, and its angles with the previously generated vectors are evaluated. If these angles are

within 0.037 π /2 of π /2 then the vector is retained. The process is repeated until the chain of almost orthogonality breaks, and

the number of such pairwise almost orthogonal vectors (length of the chain) is recorded. Results are shown in Fig. 5 . Red line

corresponds to the conservative theoretical estimate (28) , green curve shows refined estimate, (29) , and box plot shows lengths

of pairwise almost orthogonal chains as a function of dimension. The value of ϑwas set to 0.1 for both theoretical estimates, and

our choice of precision margins π /2 ± 0.037 π /2 corresponds to ε = cos (0 . 963 π/ 2 ) = 0 . 0581 . As we can see from this figure our

empirical observations are well aligned with theoretical predictions. 
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Fig. 5. Lengths N of pairwise almost orthogonal chains of vectors that are independently randomly sampled from [ −1 , 1] n as a function of dimension, n . For each 

n 20 pairwise almost orthogonal chains where constructed numerically. Boxplots show the second and third quartiles of this data for each n , red bars correspond 

to the medians, and blue stars indicate means. Red curve shows theoretical bound (28) , and green curve shows refined estimate (29) . 
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Fig. 6. Errors of approximation of f ∗(x) = 1 by linear combinations f N ( x ), (32) , as functions of N . 
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6.3. Approximation of a constant: dimensionality blowup 

Another, and perhaps, more interesting illustration of measure concentration and orthogonality effects belongs to the field of

function approximation. Let us suppose that we are to approximate a given continuous function defined on an interval [0, 1] by

linear combinations of the following type 

f N (x) = 

N ∑ 

i =1 

c i ϕ(a i , σi , x), (32)
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Fig. 7. Error function f ∗(x) − f N (x) for N = 5 (panel (a)), N = 50 (panel (b)), and N = 500 (panel (c)) for a typical curve from Fig. 6 . 
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where the function ϕ is defined as follows 

ϕ(a, σ, x) = 

{ 

0 , x > a + σ/ 2 

1 , a − σ/ 2 ≤ x ≤ a + σ/ 2 

0 , x < a − σ/ 2 

For simplicity we suppose that the function to be approximated, f ∗ is a constant: 

f ∗(x) = 1 ∀ x ∈ [0 , 1] . 

Linear combinations of ϕ( a i , σ i , ·) can uniformly approximate every continuous function on [0, 1]. Furthermore the chosen

function f ∗ can be represented by just a single element with a = 0 . 5 , σ = 0 . 5 : f ∗(x) = ϕ(0 . 5 , 0 . 5 , x). Since we assumed no prior

knowledge of these parameters, we approximated the function f ∗ with linear combinations (32) in which the values of a i , σ i were

chosen randomly in the interval [0, 1], and the values of c i were chosen as follows 

c 1 , . . . , c N = arg min 

c 1 , ... ,c N 

∫ 1 

0 

( f ∗(x) − f N (x))2 dx. (33) 

In order to evaluate performance of approximation as a function of N the following iterative procedure has been used. On

the first step the values of a 1 and σ 1 are randomly drawn from the interval [0, 1]. This is followed by finding the value of c 1 in

accordance with (33) (it is clear though that c 1 = 1 ). Next the values of a 2 , σ 2 are drawn from [0, 1] followed by determination

of optimal weights c 1 , c 2 . The L 2 error of approximation is recorder for each step. The process repeats until N = 500 . 

Fig. 6 presents 20 different error curves corresponding to different growing systems of functions { ϕ(a i , σi , ·)} N i =1 
. Despite that

the problem is both (a) simple and (b) admits explicit solutions with respect to the values of c 1 , . . . , c N , performance of such

approximations in terms of convergence rates is far from ideal. One can observe that initially there is a significant drop of the

approximation error for N ≤ 100. After this value, however, the error decays very slowly and its rate of decay nearly stalls for N

large. 

One of potential explanation of this effect is as follows. Fig. 7 shows functions f ∗(x) − f N (x) for N = 5 , 50, and 500 along a

single typical curve from Fig. 6 . As we can see from the these figures the error functions become more and more pitchy or spiky

with N . The individual spikes are randomly distributed on [0, 1], and their thickness is converging to zero. To compensate for

such errors one needs to be able to generate a very narrow ϕ( a i , σ i , ·) which, in addition, is to be placed in the right location.

Effectively, if error reduction at each step is sought for, this is equivalent to dimensionality growth of the problem at each step.

However, in accordance with (28) to overcome negative effect of measure concentration, one needs to accumulate exponentially

large number of samples. This is reflected in very slow convergence at the end of the process. 

7. Conclusion 

In this work we demonstrate that, despite increasing popularity of random basis function networks in control literature,

especially in the domain of intelligent/adaptive control, one needs to pay special attention to practical aspects that may affect

performance of these systems in applications. 

First, as we analyzed in Section 3 and showed in our examples, although the rate of convergence of the random basis function

approximator is qualitatively similar to that of the greedy approximator, the rate of the random basis function approximator is

statistical . In other words, small approximation errors are guaranteed here in probability . This means that, in some applications

such as e.g. practical adaptive control in which the RVFL networks are to model or compensate system uncertainties, employment

of a re-initialization with a supervisory mechanism monitoring quality of the RVFL network is necessary. Unlike network training

methods that adjust both linear and nonlinear weights of the network, such mechanism may have to be made robust against

numerical problems (ill-conditioning). 

Our conclusion about the random basis function approximators is also consistent with the following intuition. If the approxi-

mating elements (network nodes) are chosen at random and not subsequently trained, they are usually not placed in accordance

with the density of the input data. Though computationally easier than for nonlinear parameters, training of linear parameters

becomes ineffective at reducing errors “inherited” from the nonlinear part of the approximator. Thus, in order to improve effec-

tiveness of the random basis function approximators one could combine unsupervised placement of network nodes according

to the input data density with subsequent supervised or reinforcement learning values of the linear parameters of the approx-

imator. However, such a combination of methods is not-trivial because in adaptive control and modeling one often has to be

able to allocate approximation resources adaptively – and the full network training seems to be the natural way to handle such

adaptation. 

Second, we showed that in high dimensions exponentially large number of randomly and independently chosen vectors are

almost orthogonal with probability close to one. This implies that in order to represent an element of such high-dimensional

space by linear combinations of randomly and independently chosen vectors, it may often be necessary to generate samples

of exponentially large length if we use bounded coefficients in linear combinations. On the other hand, if coefficients with ar-

bitrarily large values are allowed, the number of randomly generated elements that are sufficient for approximation is even

less than dimension. In the latter case, however, we have to pay for such a significant reduction of the number of elements by

ill-conditioning of the approximation problem. 
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A simple numerical example that illustrates such behavior has been provided. Not only this example demonstrates the effect

of measure concentration in a simple approximation problem, it also highlights practical implications for other approximation

schemes that are based on randomization. 

References 

[1] M. Alhamdoosh , D.H. Wang , Fast decorrelated neural network ensembles with random weights, Inf. Sci. 264 (2014) 104–117 . 
[2] S. Artstein , Proportional concentration phenomena of the sphere, Israel J. Math. 132 (2002) 337–358 . 

[3] K. Ball , An Elementary Introduction to Modern Convex Geometry, vol. 31, Flavors of Geometry, MSRI Publications, 1997 . 

[4] A.R. Barron , Universal approximation bounds for superposition of a sigmoidal function, IEEE Trans. Inf. Theory 39 (3) (1993) 930–945 . 
[5] W.G.C. Boyd , Gamma function asymptotics by an extension of the method of steepest descents, Proc. R. Soc. Lond. A 447 (1931) (1994) 609–630 . 

[6] E.J. Candes , T. Tao , Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52 (12) (2006) 5406–5425 .
[7] G. Cybenko , Approximation by superpositions of a sigmoidal function, Math. Control, Signals Syst. 2 (1989) 303–314 . 

[8] N. Dalal , B. Triggs , Histograms of oriented gradients for human detection, in: Proceedings of the IEEE Computer Vision and Pattern Recognition Conference,
2005, pp. 886–893 . 

[9] L.A. Feldkamp , D.V. Prokhorov , C.F. Eagen , F. Yuan , Enhanced multi-stream kalman filter training for recurrent networks, in: J. Suykens, J. Vandewalle (Eds.),

Nonlinear Modeling: Advanced Black-Box Techniques, Kluwer Academic Publishers, 1998, pp. 29–53 . 
[10] A.N. Gorban , Approximation of continuous functions of several variables by an arbitrary nonlinear continuous function of one variable, linear functions, and

their superpositions, Appl. Math. Lett. 11 (3) (1998) 45–49 . 
[11] A.N. Gorban , Order-disorder separation: geometric revision, Physica A 374 (2007) 85–102 . 

[12] M. Gromov , Metric Structures for Riemannian and non-Riemannian Spaces. With appendices by M. Katz, P. Pansu, S. Semmes. Transpated from the French
by Sean Muchael Bates, Birkhauser, Boston, MA, 1999 . 

[13] M. Gromov , Isoperimetry of waists and concentration of maps, GAFA, Geom. Funct. Anal. 13 (2003) 178–215 . 

[14] S. Haykin , Neural Networks: A Comprehensive Foundation, Prentice Hall, 1999 . 
[15] P. He , S. Jagannathan , Reinforcement learning based output feedback control of nonlinear systems with input contraints, IEEE Trans. Syst., Man Cybern. 51

(1) (2005) 150–154 . 
[16] R. Hecht-Nielsen , Context vectors: General-purpose approximate meaning representations self-organized from raw data, in: J. Zurada, R. Marks, C. Robinson

(Eds.), Computational Intelligence: Imitating Life, IEEE Press, 1994, pp. 43–56 . 
[17] K. Hornik , K. Stinchcombe , H. White , Universal approximation of an unknown mapping and its derivatives using multilayer neural networks, Neural Netw.

3 (5) (1990) 551–560 . 

[18] B. Igelnik , Y.-H. Pao , Stochastic choice of basis functions in adaptive function approximation and the functional-link net, IEEE Trans. Neural Netw. 6 (6)
(1995) 1320–1329 . 

[19] L.K. Jones , A simple lemma on greedy approximation in Hilbert sapce and convergence rates for projection pursuit regression and neural network training,
Ann. Stat. 20 (1) (1992) 608–613 . 

[20] P.C. Kainen , V. Kurkova , Quasiorthogonal dimension of euclidian spaces, Appl. Math. Lett. 6 (3) (1993) 7–10 . 
[21] F. Lewis , J. Campos , R. Selmic , Neuro-fuzzy control of industrial systems with actuator nonlinearities, SIAM, 2002 . 

[22] F. Lewis , S. Ge , Neural networks in feedback control systems, in: M. Kutz (Ed.), Mechanical Engineers’ Handbook, vol. 2, third edition, Wiley, 2006, pp. 791–

825 . 
[23] J.Y. Lin , W.S. Chow , Comments on “stochastic choice of basis functions in adaptive function approximation and the functional-link net”, IEEE Trans. Neural

Netw. 8 (2) (1997) 452–454 . 
[24] W. Liu , J. Sarangapani , G. Venayagamoorthy , L. Liu , D. Wunsch , M. Crow , D. Cartes , Decentralized neural network-based excitation control of large-scale

power systems, Int. J. Control, Autom. Syst. 5 (5) (2007) 526–538 . 
[25] Ai-Poh Loh , A.M. Annaswamy , F.P. Skantze , Adaptation in the presence of general nonlinear parameterization: an error model approach, IEEE Trans. Autom.

Control 44 (9) (1999) 1634–1652 . 
[26] Y.H. Pao , G.H. Park , D.J. Sobajic , Learning and generalization characteristics of the random vector functional-link net, Neurocomputing 6 (2) (1994) 163–180 .

[27] J. Park , I.W. Sandberg , Approximation and radial basis function networks, Neural Comput. 5 (2) (1993) 305–316 . 

[28] V. Pestov , Is the k-nn classifier in high dimensions affected by the curse of dimensionality? Comput. Math. Appl. 65 (2013) 1427–1437 . 
[29] D.V. Prokhorov , V.A. Terekhov , I.Yu. Tyukin , On the applicability conditions for the algorithms of adaptive control in nonconvex problems, Autom. Remote

Control 63 (2) (2002) 262–279 . 
[30] A. Rahimi , B. Recht , Uniform approximation of functions with random bases, in: Proceedings of the 46th IEEE Annual Allerton Conference on Communica-

tion, Control and Computing, 2008, pp. 555–561 . 
[31] A. Rahimi , B. Recht , Weighted sums of random kitchen sinks: replacing minimization with randomization in learning, in: D. Koller, D. Schuurmans, Y. Bengio,

L. Bottou (Eds.), Advances in Neural Information Processing Systems (NIPS), vol. 2, 2008, pp. 1316–1323 . 

[32] H.L. Resnikoff, R.O. Wells , Wavelet Analysis, Springer, 2002 . 
[33] F. Rosenblatt , Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms, Spartan Books, 1962 . 

[34] M. Sahlgren, An introduction to random indexing, in: H. Witschel (Ed.), Methods and Applications of Semantic Indexing Workshop at the 7th International
Conference on Terminology and Knowledge Engineering. Vol. 87 of TermNet News: Newsletter of International Cooperation in Terminology, 2005 . http:

//www.sics.se/mange/papers/RIintro.pdf . 
[35] J. Sarangapani , Neural Network Control of Nonlinear Discrete-Time Systems, CRC Press, 2006 . 

[36] W. Schmidt , M. Kraaijveld , R. Duin , Feedforward neural networks with random weights, in: Proceedings of 11th IAPR International Conference on Pattern

Recognition Methodology and Systems, 1992, pp. 1–4 . 
[37] L.N. Trefethen , Approximation Theory and Approximation Practice, SIAM, 2013 . 

[38] I.Yu. Tyukin , D. Prokhorov , C. van Leeuwen , Adaptation and parameter estimation in systems with unstable target dynamics and nonlinear parametrization,
IEEE Trans. on Automatic Control 52 (9) (2007) 1543–1559 . 

[39] I.Yu. Tyukin , D.V. Prokhorov , Feasibility of random basis function approximators for modeling and control, in: Proceedings of the IEEE International Sympo-
sium on Intelligent Control ISIC’2009, 2009, pp. 1391–1396 . 

[40] I.Yu. Tyukin , D.V. Prokhorov , V.A. Terekhov , Adaptive control with nonconvex parameterization, IEEE Trans. Autom. Control 48 (4) (2003) 554–567 . 

[41] B. Widrow , A. Greenblatt , Y. Kim , D. Park , The no-prop algorithm: a new learning algorithm for multilayer neural networks, Neural Netw. 37 (2013) 182–188 .

http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0001
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0001
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0001
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0002
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0002
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0003
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0003
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0004
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0004
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0005
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0005
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0006
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0006
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0006
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0007
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0007
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0008
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0008
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0008
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0009
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0009
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0009
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0009
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0009
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0010
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0010
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0011
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0011
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0012
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0012
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0013
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0013
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0014
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0014
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0015
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0015
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0015
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0016
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0016
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0017
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0017
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0017
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0017
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0018
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0018
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0018
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0019
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0019
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0020
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0020
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0020
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0021
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0021
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0021
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0021
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0022
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0022
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0022
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0023
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0023
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0023
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0024
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0024
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0024
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0024
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0024
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0024
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0024
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0024
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0025
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0025
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0025
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0025
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0026
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0026
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0026
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0026
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0027
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0027
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0027
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0028
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0028
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0029
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0029
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0029
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0029
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0030
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0030
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0030
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0031
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0031
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0031
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0032
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0032
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0032
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0033
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0033
http://www.sics.se/mange/papers/RIintro.pdf
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0035
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0035
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0036
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0036
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0036
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0036
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0037
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0037
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0038
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0038
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0038
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0038
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0039
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0039
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0039
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0040
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0040
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0040
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0040
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0041
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0041
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0041
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0041
http://refhub.elsevier.com/S0020-0255(15)00675-1/sbref0041

	Approximation with random bases: Pro et Contra
	1 Introduction
	2 Notation
	3 Preliminary analysis and motivation
	3.1 Greedy approximation and Jones Lemma
	3.2 Approximation by linear combinations of functions with randomly chosen parameters

	4 Randomized data approximation and measure concentration
	4.1 Linear dependence and independence and related elementary properties
	4.2 Quantification of linear independence
	4.3 Measure concentration
	4.4 Almost orthogonality in high dimensions

	5 Discussion
	6 Examples
	6.1 Error convergence rate. Deterministic vs Randomized approaches
	6.2 Measure concentration effects
	6.3 Approximation of a constant: dimensionality blowup

	7 Conclusion
	 References


