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Editorial

Grasping Complexity

The century of complexity has come.Many peoplewrite and speak about complexity. The statement of the great physicist
Stephen Hawking, ‘‘I think the next century will be the century of complexity’’, in his ‘millennium’ interview on January 23,
2000 (San Jose Mercury News) became a widely cited prophecy.

The face of science has changed (see cartoon in Fig. 1). Surprisingly, when we start asking about the essence of these
changes and then critically analyze the answers, the result are mostly discouraging. Why do we talk about complexity?
Somebody might answer that now we have to study non-linear systems and therefore they are complex. The answer
seems to be plausible, nonlinearity results in non-additivity of parts and in the emergence of new phenomena: ‘‘The whole
is more than the sum of its parts’’. But objection appears immediately: non-linearity has been in the focus of scientific
research already for more than a century. Poincaré and Lyapunov have studied nonlinear systems more than a century ago.
Boltzmann’s equation and Navier–Stokes equation, the great nonlinear equations are more than a century old. Many ideas
have been created andmanymethods developed. The study of non-linearity is not a symptomof the change of era.More than
a thousand years ago Aristotle had written that ‘‘the whole is something besides the parts’’ (Metaphysics, Book 8, Chapter 6)
and theWestern culture had accepted this idea from the very beginning. By the way, ‘besides’ in this translation of Aristotle
sounds much more precise than the widely spread ‘more’.

Fig. 1. Change of era: The direction is changed dramatically and the history of our motion is like a hood behind our shoulders. To describe our recent
direction we need to understand our past. Graphics byMikhail Molibog.

We need another idea to understand the recent change of era and some people add that we have to study large systems,
both large and non-linear. Does the idea of large dimension give us the key for understanding of new era? Not precisely!
The curse of dimensionality is now a well known problem and the term was proposed by Bellman in 1950s [1]. Fifty years
before, in 1900, David Hilbert in his address to the International Congress of Mathematicians in Paris has described 23major
mathematical problems to be studied in the coming century [2]. The title of one of these problems sounds very strange and
too broad ‘‘Mathematical treatment of the axioms of physics’’ but if we read beyond the title then we immediately realize
what has been the main problem for Hilbert: ‘‘As to the axioms of the theory of probabilities, it seems to me desirable
that their logical investigation should be accompanied by a rigorous and satisfactory development of the method of mean
values in mathematical physics, and in particular in the kinetic theory of gases’’. He continues: ‘‘Boltzmann’s work on the
principles of mechanics suggests the problem of developing mathematically the limiting processes, there merely indicated,
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Fig. 2. The flight from miracle: Einstein’s road.

which lead from the atomistic view to the laws of motion of continua’’. In the modern scientific jargon, Hilbert had asked
about the correct methods of level jumping andmodel reduction, from large number of interacting particles tomechanics of
continua. For this purpose, he proposed to develop the theory of probability and other related disciplines. This is the struggle
with complexity of large nonlinear systems recognized as one of the most important problems for mathematics of the 20th
century.

It is normal when the change of epochs under close examination looks as a continuous development, not as a jump. But
we talk about a new century of complexity and suddenly find that it was started more than a century ago. Perhaps, the idea
‘nonlinearity+large dimension’ cannot separate the new era in spite of its attractiveness and clearness. To understand the
essence of changes we have to ask not only what appears but also what has gone (Fig. 1).

What have been the most important scientific achievements of the 20th century? The new great laws: the great parade
of the great discoveries, from the relativity and quantum mechanics to genetics and DNA. One of the main players of this
great period, Albert Einstein, has described the discovery of the new laws as a ‘‘flight from miracle’’: ‘‘The development of
this world of thought is in a certain sense a continuous flight from the ‘miracle’.’’ [‘‘Die Entwicklung dieser Gedankenwelt
ist in gewissem Sinn eine beständige Flucht aus dem ‘Wunder’, ’’ [3].] What does it mean? Let us imagine: we have the laws,
beautiful and simple (theNewtonmechanics, for example).We find a phenomenon thatwe cannot describe using these laws.
This is a miracle, a phenomenon that contradicts the basis laws. We trust in these laws, we know that they are supported
by the previous development of science, we like them and try to use them again and again to describe the miracle. If we fail
then we have to use another way. We like our laws but we like the rationality more, therefore we fly from the miracle by
inventing new laws, which are beautiful, simple and, at the same time, allow us to describe the phenomenon. After that, the
miracle disappears and we have new laws, beautiful and simple (Fig. 2).

This scheme can be explained much deeper with more historical details and examples, but the main steps are clear: we
look for a miracle and find a phenomenon that seems to be in contradiction with the basic laws; we try to demystify this
miracle by rational explanations and models based on these laws; after several attempts and failings we decide that new
laws are needed and try to find new beautiful and simple laws that demystify the new phenomenon and still can explain
the other known phenomena not worse than the old laws.

A new scheme of actions became dominant in the struggle with complexity. The complexity is recognized as the
gap between the laws and the phenomena. We assume that the laws are true. We can imagine a ‘detailed’ model for
a phenomenon but because of complexity, we cannot work with this detailed model. For example, we can write the
Schrödinger equation for nuclei and electrons (formally, using indexes and signs of summation) but we cannot use them
directly for modeling of materials or large molecules. We can imagine a detailed kinetic equation for a reaction network but
cannot find reaction rate constants and cannot work with this large system even if it is true.

In some cases, bridging this gap between the laws and the phenomena can be achieved in model engineering by the
special interaction between theoretical and experimental studies, and real engineering as well. Both the basic theory and
the experiment will support the process of modelling. They may substitute for each other. For example, we can make
experiments instead of solving the extremely complicated equations. We are sure that the answer should be the same after
filtering the noise for experimental errors. We also can organise computational experiments instead of real ones. Again, we
are sure that the answer should be the same after cleaning the results from the errors. In the background of this belief there
is the fundamental assumption that the possible world of the theory coincides with the real world of our experiments and
practice (with sufficient accuracy).We can believe that somewhere else, for high energies, very small distances, or very large
distances we need new laws, but not now.

The interaction between theory and experiment in the model engineering may generate not only mathematical models
but new experimental technics as well. For example, in chemistry, non-steady-state activity screening can be based on the
technique of Temporal Analysis of Products (TAP), invented by John Gleaves in 1988. The main idea of TAP is to treat the
catalyst by a series of pulses of very small intensity relative to the amount of catalyst [4]. This infinitesimal approach can be
termed ‘chemical calculus’.
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Fig. 3. Struggle with complexity: the life battle of the model engineers.

The result of the struggle with complexity is a model that works. This is a sort of engineering: a model is a device and this
device should be functional. Applied mathematics and mathematical modelling become a sort of engineering and instead
of Einstein’s flight from miracle (Fig. 2) another scheme arises (Fig. 3): We know the laws and we have a phenomenon.
We need a model for work. For different work need different models are needed. We may combine the first principles, the
empirical data and even the active experiment to create themodel. There exist special technologies for testing and validation
of models. The structure of the whole process seems to be similar to the design of machines and it might be reasonable to
teach the students in applied mathematics the module of ‘Systems Engineering’, as a guide the engineering of complex
systems [5].

The focus has moved from the revolution in laws to the production of intellectual devices. In the context of the natural
sciences this is model making under given basic laws. On the other hand, the systems under consideration may be artificial
and instead of the basic laws we deal with the man-made plans, projects and scenarios. Such systems as the Internet, social
institutions, large plants, financial system and many other systems are now in the focus of attention together with natural
phenomena. The hybrid systems, that obey the natural laws but experience significant influence of human activity and
man-made projects are of great interest too, like climate or biosphere.

The nature does not change and there will be many new laws to discover. The application of science always exists too.
The era of complexity is in the change of the focus of the research activity. From the epoch of the great scientific revolutions
we have moved to the epoch of the intellectual devices, from the revealing the God’s or Nature plan to the intellectual
engineering at various scales that is necessary to provide tools for prediction of the results of human activity. The new
epoch may be ended some day but this is difficult to predict.

The milestones of development rarely coincide with the ends of calendar centuries. We believe that the ‘century of
scientific revolutions’ is situated between two giants, from L. Boltzmann to R.P. Feynman. Surprisingly, their contribution
in the era of complexity is also huge. We can just recall Boltzmann’s entropy [6] and Feynman’s inventions of
nanotechnology [7] or quantum computers [8].

In the struggle with complexity there are many specific problems and tools. This issue presents several slices of this
activity:

1. Measuring complexity: the curses and blessings of dimensionality;
2. Model reduction and invariant manifolds;
3. Fingerprinting, criteria, and interpretation of experiments;
4. Modelling of classes of complex systems.

In the first part,Measuring complexity: the curses and blessings of dimensionality, the general problems are approached. The
first general problem is the curse of dimensionality. V. Pestov [9] demonstrates how the curse of dimensionality affects the
nearest neighbor search and the widely used kNN classifiers. He demonstrates how the performance of the kNN classifier
in very high dimensions can become unstable. Then, he develops a procedure for the reduction of the multidimensional
statistical learning problems to a one-dimensional problem by a Borel isomorphism of the spaces with measure.

High dimensional problems are not always complex. From a certain point of view, they look much simpler: the central
limit theorem in probability and the advanced results about measure concentration [10–12] demonstrate how convex sets
in high dimension become ‘almost spheres’, and typical distribution functions look like Gaussians. This phenomenon (we
call it the blessing of dimensionality) was recognised first in statistical physics by Maxwell and Gibbs [13]. For multiparticle
systems (under some technical assumptions) the microcanonical ensemble with the given values of energy is equivalent
to the canonical one which can be represented by the entropy maximum with the same average energy. The Maximum of
Entropy (MaxEnt) approach naturally appears in the limit of high dimension.

In themiddle of the 20th century, after C. Shannon’s works [14] and E.T. Jaynes papers [15], theMaxEnt approach became
very popular as amaximization of the subjective uncertaintymeasured by the Boltzmann–Gibbs–Shannon entropy. In 1960,
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A. Rényi invented non-classical entropies [16]. Csiszár, Morimoto, Tsallis and many other researchers developed this idea
further, and now we have the rich choice of the entropies for many problems. This rich choice leads to the ‘uncertainty
of uncertainty problem’: which entropy to use for the uncertainty measurement? A.N. Gorban proposes to use all the
entropies together [18]. This approach results in a set of conditionally ‘‘most random’’ distributions. Surprisingly, this set
allows constructive description. This new ‘Maxallent’ (Maximizers of all Entropies) method is based on the understanding
of entropy as a measure of uncertainty which increases in Markov processes [17].

In the work of M. Grmela [19], the Dynamical Maximum Entropy Principle is elaborated. It covers equilibrium and
non-equilibrium thermodynamics and gives new approaches to some classical problems. In particular, the classical
Chapman–Enskog expansion in the theory of Boltzmann’s equation [20] is described by the entropy deformation.

A. Zinovyev and E. Mirkes develop the data approximation approach to measure the complexity of datasets [21].
They utilize the universal approximators, principal cubic complexes that generalize the notion of principal manifolds and
graphs [22] for datasetswith nontrivial topologies and are constructedwith a grammar of elementary graph transformations.
Three natural types of data complexity are used and tested in the case studies: the geometric, structural and construction
complexity.

Idempotent and tropical mathematics provide asymptotic versions of the classical mathematics produced by the
‘dequantization’ procedure [23]. G.L. Litvinov evaluates the complexity of the algorithms for the idempotent problems and
their interval versions and demonstrated that they may be much simpler than in the classical mathematics [24].

Model reduction is one of themajor procedures in the strugglewith complexity and sectionModel reduction and invariant
manifolds in the issue includes papers about reduction of dynamical models. M. Slemrod [25] revisits the sixth Hilbert
problem and demonstrates that the solution has to be negative for compressible gas dynamics: the hydrodynamic limit
does not lead to the classical compressible Euler or Navier–Stokes equations. This situation differs from the incompressible
limit [26]. The key to this analysis is provided by the exactly solvable reduction models discovered by A.N. Gorban and I.V.
Karlin [27,28].

Slow invariant manifolds are the main tools for model reduction in dissipative systems [29,30]. The fast manifold
traditionally attracts less attention and plays an auxiliary role. It is usedmostly for projection of amotion on an approximate
invariant manifold. V. Bykov and V. Gol’dshtein [31] demonstrate how to start model reduction procedures from fast
manifolds and develop a theory of Singularly Perturbed Vector Fields (SPVF) with the main emphasis on fast invariant
manifolds. The slow manifold appears as a by-product of this approach. The new approach is illustrated by the examples
from chemical kinetics.

The Lam and Gousis Computational Singular Perturbation (CSP) approach aims to find both fast and slowmanifolds for a
system of differential equations [32]. It was developed for application in chemical kinetics. In their paper [33], P.D. Kourdis,
A.G. Palasantz, and D.A. Goussis develop the algorithmic realization of CSP and apply it to important biochemical systems
with oscillations, the NF-κB signaling system.

The problem ofmodel reduction for systemswith symmetries is analyzed by B. Sonday, A. Singer and I.G. Kevrekidis [34].
They use the Kuramoto-Sivashinsky equation with periodic boundary conditions and a stochastic simulation of nematic
liquid crystals as examples, and apply the eigenvector-based techniques for model reduction. They also use a new technic,
Vector Diffusion Maps [35], that combines, in a single formulation, the symmetry removal step and the dimensionality
reduction step.

B.R. Noack, R.K. Niven [36] develop further a MaxEnt closure strategy for Galerkin systems arising from a projection of
the incompressible Navier–Stokes equation onto orthonormal expansion modes. They aim to discover and demonstrate a
new face of the turbulence closure problem.

R. Hannemann-Tamás, A. Gábor, G. Szederkényi, and K.M. Hangos formulate the model reduction problem for chemical
kinetics as a quadratic programming problem [37]. The objective function is derived from the parametric sensitivity matrix.
The method eliminates unnecessary reactions for a given level of tolerance and adjusts the rate constants of the remaining
reactions for error minimization. The efficiency of the approach is demonstrated on the known benchmarks.

The transition from dynamics to thermodynamics is the most complicated step on the stair of reduction [30]. In the
paper by T. Chumley, S. Cook, and R. Feres [38] this step is analyzed for billiard-like random systems. These systems exhibit
irreversible thermodynamics behavior, indeed.

The ideal model reduction technology starts from the detailed system and produces the reduced one. This picture
may be oversimplified. Indeed, in many practically important cases the mathematical model cannot be produced without
simplifications andmodel reduction becomes a tool formodel construction from scratch. Itmay be also used for construction
of semi-empirical methods and active theory-driven experiments. In engineering, many semi-empirical criteria were
invented to separate regimes: laminar from turbulent, shocks from smooth incompressible flows and many others. The
modern fingerprinting idea may find its logical roots in the semi-empirical criteria. ‘‘The goal of the fingerprint analysis is to
find features and characteristics of observed complex behavior, based on which it is possible to find out the model, its class
or its family, and to determine its characteristics’’ [39]. The fingerprints, patterns, signatures or motifs allow us to workwith
complex systems without extraction of deep and expensive information. Kinetic signatures in biochemical reactions [40],
motifs of genetic sequences [41] patterns in time series [42] (cardiogramms and encephalogramms, for example) give us
nice examples of fingeprinting.

The paper by D. Constales, G.S. Yablonsky, and G.B. Marin [43] opens Section Fingerprinting, criteria, and interpretation of
experiments. They study the basic patterns in simple reaction networks. This work aims to analyze appearance of some basic
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patterns in chemical kinetics, to review and extend the previous findings [44]. Authors supplement the classical notion of
complexity by ‘simplexity’ to reflect the rich diversity of patterns which can be produced even by simple systems.

A useful example of a criterion validation is given in the work by F. Xia and R.L. Axelbaum [45]. They propose to use the
local ratio C/O to classify various regimes and zones of diffusion flames. Radical pool and soot precursor zones are shown to
be clearly delineated in C/O ratio space. This ratio is validated as a criterion for interpreting flame structure.

M.J. Hankins, T. Nagy, and I.Z. Kiss [46] develop an original technology for active experiment for construction of nullcline-
based models and demonstrates its efficiency on the modelling of the electrochemical reaction. Perhaps, the first author
who proposed to use the nullcline-based models instead of detailed differential equations was A.N. Kolmogorov [47,48].
M.J. Hankins et al. use the nullcline-based models with the singular pertirbation assumption (time scale separation). Under
this assumption, the nullclinesmay be extracted from the control experiment with a combination of active and proportional
controllers acting on the fast and the slow variables.

The sectionModelling of classes of complex systems includes four papers about four classes of systems: networks, finance,
catalysis (in chemical engineering) and bioreactors. The new tools and case studies are presented. H. Sayama, I. Pestov,
J. Schmidt, B.J. Bush, C. Wong, J. Yamanoi, and T. Gross describe the methods based on adaptive networks with self-
organization of structure for modeling of complex networks like social, transportation, neural and biological networks [49].
B.E. Baaquie describes a quantum mathematics approach to financial modelling [50]. F.J. Keil presents a thorough review
about modelling in catalysis, from quantum chemical methods for calculating reactions on the active centers to transport
in porous media [51]. I. Iliuta and F. Larachi study dynamics of bacterial cells in trickle-bed bioreactors. They model the
basic processes, fluxes in multiface flows, population balance for cells and agglomerates, biomass dynamics, dynamics of
agglomeration and filtration [52].

Neither one issue of a journal, nor a large encyclopedia can capture everything about such a broad and dynamic subject
as grasping complexity, but we hope that various faces of the modern era of complexity are presented here.
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