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Domain and notations
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Scaled variables: £ = el (x — OW) for |§ =1, N




Two-dimensional elasticity, Green’s
tensors

Now we proceed with the formulation of the problem of Green’s tensor for 2D
elasticity with the Dirichlet boundary conditions. In this case we consider the
1sotropic Lamé operator

L(8/0x) = Ay + (A + 1)V (Vi- ) .

Here M\ and [L are elastic moduli.

2
We also have the fundamental solution 72[7pq] pg=1 for the Lamé operator
whose entries are given by

Yo%, y) = (A4 3p)(drp(N+2p)) " (—log |x — ¥y
A+ )N+ 3p) Hap — ) (@ —yg)Ix —y[72) .




Green’s tensor in a domain with several voids

For Green’s tensor, the first column gives displacements corresponding
to a force acting parallel to horizontal axis and the second column gives
displacements for the case of the force acting parallel to the vertical axis
at an arbitrary fixed point in an elastic body.

a) b)
a) Configuration for first column b) Configuration for second column



Theorem 1: Green’s tensor for the
two-dimensional solid with several voids

Green’s tensor for the Lamé operator in {2 . admits the representation

N
G.(x,y) = Gxy)+)Y gV .n) - Ny "%y
=1
N

+ 2 {PYAVPI () = (U(E) = (D) + (L'}
j=1

N

-3 ¥ POx)GOM,09) P (y) 1 Of),

=1 k#j
1<k<N

uniformly with respect to X, Y& Q2. , where

AW = (N4 3p)(drp(N+ 2u)) Hogel, + H(OW, OW) — ¢




Example 1: The regular part of Green’s tensor. An elastic half-plane

with five circular voids
We consider the right half-plane with five circular voids. Here the point force acts

at (250,50)and \ = i = 5.6 x 101 (Cast Iron).
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Figure 1  a) Numerical solution produced in FEMLAB on a mesh containing
66480 elements, b) Computations based on the asymptotic formula for the
first column of ‘H., when ¢ = 0.32.




Example 1: An elastic half-plane with five circular voids
(continued)
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Figure 2: a) Numerical solution produced in FEMLAB on a mesh containing
66480 elements, b) Computations based on the asymptotic formula for the
second column of ‘H., when ¢ = 0.32.




Example 1: An elastic half-plane with five circular voids
(continued)
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Figure 3: a) Absolute error between computations given in FEMLAB and
those by the asymptotic formula for a) the first column and b) the second
column of H. when ¢ = 0.32 in the vicinity of the inclusions. In a) the
maximum absolute error is 2.285 x 107!, which occurs on boundary of the
inclusion with centre (200, -125), and in b) the maximum absolute error is
1.697 x 10713, which occurs on boundary of the inclusion with centre (400,
-350).




Green’s function for the

case of anti-plane shear
(sketch of technical
derivations)



Green’s function in Q, for the operator —A

We first consider Green’s function G for the Laplacian in the domain
Q. . The function (G, is a solution of

_AXG€(X7Y) — 5<X o Y) , X, ¥ ¢€ QE )
G(x,y)=0, x€d.,yeq..




Green’s functions in Q and C@"”

Let G and g denote Green’s functions for the Laplacian in the
domains €2 and C@") respectively. The function G solves the
following

-AG(xy)=0x-y), xy€e,
Gx,y)=0, x€dye,

and the functions £ are a solution of

_AEQ(J)<€]>77]> — 6(53 o T’j) ) £j7 nj S O@(j) )
gV(&m;) =0, & €dcoV n; e CaV,

also this formulation is also supplied with the following condition at
infinity

g(j>(€j,nj) 1s bounded as \fj] — 00 ,1); € Col)




Green’s functions in Q and C®"”
(continued)

We represent (G and g() as

Glx,y)= —(2n) 'log|x—y| —H(xy), (&) = —(2m) " log|g;—n,|-hV(&;m)) |

fundamental solution for —A

where H and h\ are the regular parts of G and g\ , respectively.
For the asymptotic algorithm we need the following Lemma

Lemma 1 For |§;| > 2 andn, € CoY) the following estimate holds

(5 m;) = —(2m) " og [€5] = ¢V (n;) + Ol 7).,
forg=1,...,N.

Here ( (7) s the limit of Green’s function g at infinity.




Some auxiliary functions

For the asymptotic formula for G, , we also introduce the function
" and the constant {7

(V(n)= lim gV(&m). (V= Tm {(W(n,) - (27) " log|n,}.

€| —o0 ;=00

We also have the following estimate for (/)

Lemma 2 For |§;| > 2, the following representation for CY) holds

V() = (2m)Mog €]+ ¢V +0(¢, ™)
forj=1,....N.




Two-dimensional equilibrium potential

Let Pfgj) be the equilibrium potential corresponding to the jth void.
The function P.” is defined as a solution of

APY(x) =0, x€O.,
PY(x)=0, xe€dN,
Ps(j)(X):5zj, XG@WéZ), Zzl,,N

Approximation of the equilibrium potential

We shall also make use of the approximation of Pg(j) . We set

P.(x) = {Pg—:(j)(X) N

j=1] -




Approximation of the equilibrium potential
(continued)

Theorem 2 The asymptotic approximation of P.(x) is given by the formula,
—1
P.(x) = ( diag {a)} — ?IR) S(x) + p:(x)
1<j<N

where | | | |
o = (27)Moge + H(OY),0V)) — ¢V
M= {(1- ) GO, 0V,
S() = {~G(x,09) + (U(g,) — (27) " log g, — (O},
and the vector p.(X) is the remainder term such that

p.(x)] < const e(loge) ™,

uniformly with respect to x € ().




Approximation of the equilibrium potential
(continued)

Associated with the preceding result 1s the asymptotic identity (which will
be used in the algorithm)




Theorem 3: A uniform asymptotic formula
for G for the operator —A in two-dimensions

Green’s function for the operator —A in Qg admits the representation

N

uniformly with respect to X,y€& (2., where

ol = (2r)loge + H(OY), OW) — ¢U)

o




Proof: The Algorithm

For the asymptotic algorithm we propose that Gz < be written as follows

G€<Xa Y> - _<27T>_110g‘X_Y‘ N H€<Xa Y> B Zh@(X? Y> )

j=1

where it is sufficient to seek the approximation the functions H.(x,y)
and 1Y (x,y) which solve

AXHE(Xa y) — O ’

x,y € €.,

H.(x,y) = —(2m) ' log|x —y] .

x € 0,y € Q). ,

H.(x,y)=0, xcdwP yecQ.,1<j<N,
and
Axhgj)(X7Y) - 0 9 X7y c QE 9
h&(:j>(X7Y):O7 XE@Q,YEQE,

héj)(x, Y) — _(27T)_1 log |X - Y‘ )
h(x,y) =0,

X € Gwék),y e Q).

X € awéj),y e .,

A<k<N k#j.




Some Remarks

The same algorithm can be applied to the case of two dimensional elasticity.
We use for the remainder estimates the result:

Let u be the displacement vector which satisfies the Dirichlet boundary
value problem in the domain 2. C R", n = 2,3

LOyux)=0, xe€., (1)
ux) = Yx), xeN, (2)
ux) = @,e'x), x¢€ dw 1< j<N, (3)

where O is the zero vector, and we assume that ¢, and % are continuous
vector functions.

Lemma 3 There exists a unique solution u € C().) of problem (1) — (3)
which satisfies the estimate

s ) < constmax{ ma {160} Wl 4




Example 2: The regular part of Green’s function. The case of a
large number of holes

We take {Q to be a disk of radius 70 centred at the origin containing 50 small
disks whose radii not exceed 0.5. The force is located at the point (-20, 15).
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Figure 4 a) Numerical solution produced in FEMLAB on a mesh containing
188112 elements, b) Computation based on the asymptotic formula for H._,
when ¢ = 0.0498.




Example 2: The case of a large number of holes

(continued)
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Figure D a) Absolute error and b) relative error between numerical solution
and the computations produced by the asymptotic formula for H., when
e = 0.0498 and the mesh contains 188112 elements. All the spikes occur on
the boundaries of the holes. Maximum absolute error is 0.1162, maximum
relative error is 0.2995, which is attained on the boundary of the inclusion
with centre (-20, 4), near the point (-20, 15) where the force is applied.




Example 2: The case of a large number of holes

(continued)

-0.1 .
-0.2-
-0.3.
04.
05-
-0.6 -

-0.7

0.8-L

100

-0.25

=-0.35

N -0.55

-0.65

-07

Figure 6: The computation based on the asymptotic formula for the regular
part H. of Green’s function on the refined mesh, when ¢ = 0.0498 and the

mesh contains 752448 elements.




Example 3: The configuration with holes of relatively
large size
Now we take {2 to be a disk of radius 150, again centred at the origin

with 5 circular holes whose radii where varied throughout this example.
The force now acts at the point (-25, 70)

Numerical solution Asymptotic formula
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Figure 7 a) Computations produced by FEMLAB, b) Computations pro-
duced by the asymptotic formula for H. for the case ¢ = 0.7436.




Example 3: The configuration with holes of
relatively large size (continued)

For the numerical experiments we define ¢ =m/d , as a non-dimensional
parameter, where 77 1s the maximum radius of all the holes and

d = min{ min {dist(OY,00)}, min {dist(0? O™)}}

1<j<N 1<i,k<N




Example 3: The configuration with holes of

relatively large size (continued)

Table 1: Maximum absolute and relative error corresponding to various val-

ues of e.

m € Az Rz
40 | 0.7436 0.1219 0.1991
36 | 0.6692 | 0.09741 0.157
32 105949 | 0.07637 0.1216
28 1 0.5205 | 0.05845 0.09204
24 1 0.4462 | 0.04335 0.06752
20 ] 0.3718 0.0308 0.04749
16 | 0.2974 0.0206 0.03156
12 10.2231 | 0.01298 0.02
8 | 0.1487 | 0.007266 0.0111
4 10.0744 | 0.001395 | 0.004503
2 10.0372 | 0.0006608 | 0.001991
1 ]0.0186 | 0.002993 | 0.0009269
0.5 | 0.0093 | 0.0003156 | 0.0004448
0.25 | 0.0046 | 0.0001515 | 0.0002171




Example 3: The configuration with holes of relatively
large size (continued)
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Figure 6: Plot of log(e) against log R,




Green’s tensors for three
dimensional elasticity
(the sketch of technical
derivations)



Green’s tensor for a 3D elastic solid with
several voids

Now (. isa 3x3 matrix, and is defined as a solution of

PALG (X, ¥)+ (A ) Vi (Vi Go(x,¥))H0(x=y) 3 =013, %,y €.,

G5<X7Y) =03, x¢€ aQan €l

where (2. is a 3-dimensional elastic perturbed body (with multiple voids).
As before, we shall use the notation /. for the Lamé operator.



Model problems of 3D elasticity

We once again use the model tensors (7 and g<j ) defined in Q and
Col) = R3 \G)(J ), respectively. The tensor (3 is a solution of

L(@X)G(X, y) + (5<X — y>]3 =03, x,y€efl,
G(x,y)=0I3, x€dyecQ,

and the tensors g(j ) solve the following problem

L(0¢, )99 (&;m;) +8(&; - m)ls =0, &,m; € CaY)
g<j>(€j7nj) =013, fj S 80@@)777]' e CoV :

g<j><€j7nj> — 0l3 as ‘fj‘ — 00,1, € Cwl) .




Model problems of 3D elasticity (continued)

We also represent (5 as
G(X7Y) — F(X7Y) o H(X7Y) ’

where I'(x,y) = [['y;(x,y)]; j=1 is the fundamental solution of the Lamé
operator in 3-dimensions, whose entries are given by

Cyxy) = GmuA+2u)x —y[) 7 (A p) (@ — yi) (@ — ) [x -y~
+(A+3p)d55)

and FH is the regular part of Green’s tensor (5 .



Model problems of 3D elasticity (continued)

Also let hY ) be the regular part of g<j ), then this function solves

L(agj)h(j)(€j7n]) — 0]3 ) 63’777]' € C@(j) )

h(j)(gjanj) - F(&ja”j) ) gj € 80@0)7’% € Cu—')(j) )
h(j)('ij??j) - 0[3 as ‘fj‘ - 007773' € C(D(j) )

and we have the estimate

Lemma 2 For all n; € CoY) and §; with |&;| > 2, the following estimate
for hY) holds

A&, m;) =T(€;, 0PV () + O, m, ™) |

where j =1,.... N.




The elastic capacitary potential matrix

Let PU)(¢ ;) be the elastic capacitary potential matrix for the set Cw (7) :
defined as a solution of the following problem

L(9¢, )PV (&) =015, & € 0wV,

P(j)(fj) =13, §;¢€ Ow') |
P(j)(fj) —0I3 as |{;| — o0,

We also introduce the elastic capacity matrix B (3) " of the set C'w (9) .
This is a constant symmetric matrix.



The elastic capacitary potential matrix

We also need the following result related to the elastic capacitary potential,
for the asymptotic algorithm in 3D

Lemma 1 ) If |, > 2, then for PV, the following estimate holds

PY)(g;) =T(¢;,0)BY + 0(|&;[™)

where BY) is the sym ?Hf ic elastic capacity matriz of the set w\)
1) Tu columns PV, 1 =1,2 or 3, of the elastic capacitary potential of
the set w\), j = l\ satisfy the inequality

sup {/€; | P §)|} <const, j=1... N,
§;€CeV)




Theorem 4: A uniform asymptotic formula for
Green’s tensor for the Lamé operator
In 3-dimensions

Green’s tensor for the Lamé operator in ). C R? admits the representation

N N
Ge(x,y)=Gxy)+e ) gV m;) - NT(xy)+ ) {P<j)(£j)H<O(j)aY)

j=1 j=1

+H(x, 01 PO (n ) — PU)(¢ JH(OY),0U))PUIT (1 ) — e (x, O(j))B(j)H(O(j>,y)}

J

N N

+), ), PUEIGO™M,. 0PI ;) +0 | ) e (minflx - O] |y - OV}~ |
E——y =1
1<k<N

which is uniform with respectto (x,y) € Q. x Q. .




The Algorithm for 3D elasticity

In a similar way to the case of anti-plane shear we represent (/. as

G€(X7y) — F(X7Y) o HE(X7Y) o Z hg)(X, Y) ’

j=1

where H. and hgj ) are matrices which solve the problems

L(ax)Hg(X7Y) — OI3 ) X,y € Qs )

H.(x,y)=T(x,y), x€IQy €.,
Hox,y)=0I;, xcduw¥ yeQ,1<j<N,

and

L@)hP (x,y) =0, x,y € Qe
P (x,y) =013, xe€dye.,
P (xy) =T(x,y), xcowd yecQ,.,
M) (x,y) =0, xcow® yecQ. ,1<k< N, k#j.




Theorem 5: A uniform asymptotic formula for
Green’s function for the Laplacian in 3D

Green’s function for the operator —/\ in ). C R? admits the representation

N

Gl y) = Glxy) 7 ) 9" (& my) = Nltnlx = yl) 7+ ) {H(OY,y)PUg)

j=1

+H(x, O(j>>P(j>(77j> _ H(()(J’)7 O(j))P<j>(€-)P(j)(nj) — £ cap @(j)H<X, O(j>)H(O<j),y)}

J

N N

J=1 k#j
1<k<N

=1

which is uniform with respect to (x,y) € Q. x Q..



Example: The regular part of Green’s function in 3D. A spherical

body with five spherical voids
We consider a spherical body with five spherical voids. Here the point

force actsat 'y = (—10,—10,5) .
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Figure 1: a) Numerical solution produced in FEMLAB, b) Computations
based on the asymptotic formula for the regular part of Green’s function.




Example: The regular part of Green’s function in 3D. A spherical
body with five spherical voids (continued)
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Figure 2: Absolute error between computations given in FEMLAB and those
by the asymptotic formula for the regular part of Green’s function.




Conclusions

For the asymptotic formulae, for Green’s tensors in the
perturbed domain, we may draw these conclusions:

« The new feature of the asymptotic formulae is their uniformity
with respect to the independent spatial variables

« The asymptotic algorithm produces formulae within a theoretical
good degree of accuracy

« The asymptotic formulae give a good approximation to the
benchmark numerical computations, even in the extreme cases
considered (and in some cases are more efficient)

* Numerical results show that the error produced by the
approximation is in agreement with the theoretical prediction



Further Work

Next, we aim to extend this theory to the mixed boundary value problem for
Green’s tensors in elasticity, for the case of when Neumann conditions are
prescribed on the boundaries of the small holes and with have the Dirichlet
condition on the exterior boundary.
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