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a b s t r a c t

The entropy maximum approach (Maxent) was developed as a minimization of the
subjective uncertainty measured by the Boltzmann–Gibbs–Shannon entropy. Many new
entropies have been invented in the second half of the 20th century. Now there exists a
rich choice of entropies for fitting needs. This diversity of entropies gave rise to a Maxent
‘‘anarchism’’. The Maxent approach is now the conditional maximization of an appropriate
entropy for the evaluation of the probability distribution when our information is partial
and incomplete. The rich choice of non-classical entropies causes a new problem: which
entropy is better for a given class of applications? We understand entropy as a measure of
uncertainty which increases in Markov processes. In this work, we describe the most general
ordering of the distribution space, with respect to which all continuous-time Markov
processes are monotonic (theMarkov order). For inference, this approach results in a set of
conditionally ‘‘most random’’ distributions. Each distribution from this set is a maximizer
of its own entropy. This ‘‘uncertainty of uncertainty’’ is unavoidable in the analysis of non-
equilibrium systems. Surprisingly, the constructive description of this set of maximizers
is possible. Two decomposition theorems for Markov processes provide a tool for this
description.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Entropy was born in the 19th century as a daughter of energy: dS = δQ/T . Clausius [1], Boltzmann [2] and Gibbs [3]
(and others) had developed the physical notion of entropy. At the same time, the famous Boltzmann’s formula S = k logW
had opened the informational interpretation of entropy. In the 20th century, Hartley [4] and Shannon [5] introduced a
logarithmic measure of information in electronic communication in order ‘‘to eliminate the psychological factors involved
and to establish a measure of information in terms of purely physical quantities’’ [4, p. 536]. Information theory is focused
on entropy as a measure of uncertainty of subjective choice. This understanding of entropy was returned from information
theory to statistical mechanics by Jaynes [6] as a basis of ‘‘subjective’’ statistical mechanics: ‘‘Information theory provides
a constructive criterion for setting up probability distributions on the basis of partial knowledge, and leads to a type
of statistical inference which is called the maximum entropy estimate. It is least biased estimate possible on the given
information; i.e., it is maximally noncommittal with regard tomissing information. That is to say, when characterizing some
unknown events with a statistical model, we should always choose the one that has Maximum Entropy’’. This is the brief
manifesto of the Maxent (maximum of entropy) methodology.

Entropy is used for measurement of uncertainty in a probability distribution. The Maxent method finds the maximally
uncertain distribution under given values of some moments. After Jaynes, this approach became very popular in physics
[7,8], statistics [9,10], econometrics [11,12] and other disciplines.
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The non-classical entropies were invented by Rényi [13] in the middle of the 20th century, simultaneously with
the expansion of the Maxent approach. This invention introduced additional uncertainty in the uncertainty evaluation.
Maximization of different entropies produces different probability distributions under the same conditions. Now, one has
to select the proper entropy functional to use in the Maxent approach. This choice may be non-obvious. The beautiful and
transparent understanding of the Maxent distribution as a unique ‘‘least biased estimate possible on the given information’’
is now destroyed by non-classical entropies. If we consider the non-classical entropies seriously then we have to select the
proper entropy for each problem.

If we do not find solid reasons for the entropy selection then we have to accept this ‘‘Uncertainty of Uncertainty’’ (UoU)
as the nature of things. In this case, the set of all the Maxent distributions for different entropies will evaluate the unknown
‘‘maximally uncertain’’ distribution under given conditions. We call this method of handling the UoU the ‘‘maximization of
all entropies’’ or Maxallent. If there are some reasons for selection of a class of entropy function then we have to select the
conditional maximizer of the entropies from this class.

The widest class of entropies we use in this paper are the Csiszár–Morimoto conditional entropies (f -divergencies). They
were introduced by Rényi in his famous work [13] where he proposed also the ‘‘Rényi entropy’’. The f -divergencies were
studied further by Csiszar [14] and T. Morimoto [15]. For a discrete probability distribution P = (pi) and the positive
‘‘equilibrium distribution’’ P∗

= (p∗

i ), p
∗

i > 0 the general form of the f -divergence is

Hh(P ∥ P∗) =


i

p∗

i h


pi
p∗

i


, (1)

where h(x) is a convex function defined on the open (x > 0) or closed (x ≥ 0) semi-axis.Weuse here the notationHh(P ∥ P∗)
to stress the dependence of Hh both on pi and p∗

i .
In some practical problems, it is convenient to use a convex function h(x) with singularity at x = 0, for example,

h(x) = − ln x (the Burg relative entropy [16]). Therefore, we assume that the function Hh(P ∥ P∗) is defined for positive P
and P∗. Convexity of h(x) implies convexity of Hh(P ∥ P∗) as a function of P . It achieves its minimal value on the equilibrium
probability, P = P∗


under conditions


i pi = 1, and pi > 0


. If h(x) is strictly convex then Hh(P ∥ P∗) is also strictly

convex and this minimizer (the equilibrium) is unique.

1.1. Maxallent, approach #1: parametrization by monotonic function of one variable

The standard settings for the Maxent approach are: an event space Ω , a divergency Hh(P ∥ P∗) and a set of moments
Mr(P) (r = 1, . . . , k) are given. Here, P is a probability distribution, P∗ is the ‘‘maximally disordered’’ probability distribution
(‘‘equilibrium’’) and Hh(P ∥ P∗) measures the deviation of P from P∗. Of course, for general probability spaces we have to
assume that P is absolutely continuous with respect to P∗ and that it is possible to compute the divergence Hh(P ∥ P∗). The
Maxent problem is: for given values of the moments Mr(P) (r = 1, . . . , k) find the minimizers of Hh(P ∥ P∗). That is, on
the set of probability distributions with given values of Mr(P) (r = 1, . . . , k) find the distributions that are the closest to
the equilibrium P∗ if we measure the deviation by Hh(P ∥ P∗). The terminological mess (Maxent and minimizers) appears
due to historical reasons. Divergences measure the differences between distributions and we always look for minimizers of
them.

To avoid the irrelevant technicalities we consider discrete distributions. LetΩ = {A1, A2, . . . , An} be a finite event space
with probability distributions P = (pi). The set of probability distribution is the standard simplex ∆n−1 in Rn. The set of
positive distribution (pi > 0) is∆n−1

+ , the relative interior of the standard simplex.
The Maxent problem for Hh(P ∥ P∗) and given values of moments


j mrjpj = Mr (r = 1, . . . , k) reads: find P ∈ ∆n−1

such that

Hh(P ∥ P∗) → min, subject to


j

mrjpj = Mr .

The total probability condition gives


j m0jpj = 1 (m0j = 1,M0 = 1). Assume that k + 1 < n and

rank(mrj) = k + 1 (r = 0, 1, . . . , k; j = 1, 2, . . . , n).

If rank(mrj) < k + 1 then just exclude some moments.
The method of Lagrange multipliers gives for P ∈ ∆n−1

+

h′


pj
p∗

j


=

k
r=0

λrmrj (j = 1, . . . , n). (2)

The derivative h′ is a monotonic function. Let h be strictly convex. Then the inverse function g(y) exists, g(h′(x)) = x (for
positive x). We can apply the function g to both sides of (2) and write the expression of P and the equations for the Lagrange
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multipliers λr that are just the moment conditions


j mrjpj = Mr :

pj = p∗

j g


k

r=0

λrmrj


(j = 1, . . . , n);


j

mρjp∗

j g


k

r=0

λrmrj


= Mρ (ρ = 0, . . . , k).

(3)

Therefore, for the class of the strictly convex functions h all the positive solutions of the Maxent problem for all f -
divergencies are parametrized (3) by the monotonic function g .

The function g should be defined on a real interval (a, b) = h′((0,∞)) (it might be that a = −∞ or b = ∞). The
image of g should be the real semi-axis (0,∞) because p/p∗ may be any positive number. Therefore, limy→a g(y) = 0
and for finite a the function g is defined on [a, b). For each monotonically increasing function g on a real interval (a, b)
with im g = (0,∞), the corresponding solution of the Maxent problem is given by the distribution (3), where λi are the
solutions of the corresponding equation. This solution of theMaxent problem is the conditionalminimizer ofHh(P ∥ P∗)with
h(x) =


h′(x)dx, where h′(x) is the inverse function of g(y), i.e. h′(x) = y, where y is the solution to the equation g(y) = x.

The additive constant in

h′(x)dx does not affect the solution of any Maxent problems and may be chosen arbitrarily. Thus,

we present the parametric description of theminimizers of all strictly convex divergencesHh(P ∥ P∗). Amonotonic function
g with the values range (0,∞) serves as a parameter in this description.

For the existence of a positive distribution P which satisfies (3) the moment conditions


j mrjpj = Mr (ρ = 0, . . . , k)
should be compatible with the positivity of pi. Of course, for arbitrary g this may be not sufficient for the existence of such
a positive distribution. To guarantee the existence of a positive Maxent distribution it is sufficient to add to the function
h(x) a term εx ln x with arbitrarily small positive ε. This term creates a logarithmic singularity of h′(x) at zero. It is easy to
check that this singularity guarantees the existence of a positive solution of (3) if the moment conditions are compatible
with the positivity of pi. For some applied purposes an additional term −ε ln x may be even more convenient [17] because
it guarantees the logarithmic singularity of entropy and h′(x) has the singularity ∼ −1/x at zero.

In this paper, the question about existence of the positive Maxent distribution is not important. We need only the
conditions (3) which are necessary and sufficient for a positive distribution P = (pi) to provide a minimizer of the given
f -divergency under moment conditions.

1.2. Maxallent, approach #2: the Markov order

Any Markov process with equilibrium P∗ increases disorder. The classical Boltzmann–Gibbs–Shannon entropy grows in
Markov processes. This theorem (the ‘‘data processing lemma’’) was proved in the first paper of Shannon [5] but of course
the entropy growth in kineticswas known before (Boltzmann’sH-theorem [2] and its generalization for the systemswithout
detailed balance [18]).

A. Rényi proved in the first paper about the non-classical entropies [13] that all f -divergencies (1) decrease in Markov
processes with equilibrium P∗. Later on, it was demonstrated that this property characterizes f -divergencies among all
functions which can be presented in the form of the sum over states (the ‘‘trace form’’) [19–21].

The generalized data processing lemma was proven [22,23]: For every two positive probability distributions P,Q the
divergence Hh(P ∥ Q ) decreases under action of a stochastic matrix A = (aij)

Hh(AP ∥ AQ ) ≤ α(A)Hh(P ∥ Q ),

where

α(A) =
1
2
max
i,k


j

|aij − akj|


is the ergodicity contraction coefficient, 0 ≤ α(A) ≤ 1.

A second method of handling the UoU is based on a simple remark: ‘‘uncertainty of a probability distribution should
increase in Markov processes’’. More precisely, let the most uncertain distribution P∗ be given (the equilibrium). If a
distribution P ′ can be obtained from a distribution P in a Markov process with equilibrium P∗ then we can assume:

uncertainty of P ≤ uncertainty of P ′.

Thus, we do not care about the values of the uncertainty measure, we just compare the uncertainty of distributions: P ′ is
more uncertain than P under given equilibrium P∗ (in this sense, the values vanish but the (pre)order appears [21]).

In the Maxent approach, the entropy is used as a (pre)order in the distribution space, not as a function, and the values
are not important because any monotonically increasing transformation of the entropy does not change the solution of
the Maxent problem. Of course, in some other applications the values of entropy are important: in coding theory (bits per
symbol) and in thermodynamics (dU = TdS) the values of the entropy have a specific important sense. Nevertheless, when
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L L

a b
P0 P0

Q(P0 , P*) Q(P0 , P*)

Fig. 1. The local condition (4): P0 may be an extremely disordered distribution on the condition linear manifold L if the set P0
+ Q(P0, P∗) intersects

the linear manifold of conditions at the only point P0; (a) (P0
+ Q(P, P∗)) ∩ L = {P0

} and P0 may be an extremely disordered distribution on L; (b)
(P0

+ Q(P, P∗)) ∩ L ' {P0
} and P0 has no chance to be an extremely disordered distribution on L. In case (b), there are more disordered distributions on L

achievable by the Markov processes from the initial distribution P0 .

we discuss the entropy as a measure of uncertainty and work with the huge population of non-classical entropies, these
entropies are, in their essence, (pre)orders on the space of distributions.

We consider the continuous time Markov processes with a given equilibrium distribution P∗. By definition, the equilibrium
is the unconditionally maximally uncertain distribution. To add the moment conditions we define a linear manifold in the
space of distributions. For every non-equilibrium distribution P each Markov process with the equilibrium distribution P∗

determines the direction of P evolution, dP/dt . In this direction, the distribution becomes more uncertain. Let us take this
property as a definition of the uncertainty. Instead of an entropy functional we use the transitive closure of this relation,
define an order on the space of distributions and call it the ‘‘Markov order’’ [21].

Let Q(P, P∗) be a cone of possible time derivatives dP/dt for a given probability distribution P , the equilibrium P∗, and
all Markov processes with equilibrium P∗.

For fixed values of moments,Mr , the conditionally linear manifold L in the space of the probability distributions is given
by equations


j mrjpj = Mr (r = 0, . . . , k). We can consider P0

∈ L as a possibly extremely disordered distribution on L, if
for any Markov process with equilibrium P∗ the solution P(t) of the Kolmogorov equation with initial condition P(0) = P0

has no points on the conditionally linear manifold L for t > 0 (we assume that P0 is not a steady state for this process).
Instead of this global condition, we consider the local condition (Fig. 1).

Definition 1. The distribution P0
∈ L ∩∆n−1

+ is a local minimum of the Markov order on L ∩∆n−1
+ if

(P0
+ Q(P0, P∗)) ∩ L = {P0

}. (4)

Further, for short, we can omit ∆n−1
+ and call P0 ‘‘a local minimum of the Markov order on L’’. In this definition, we

substitute the trajectories P(t) by their tangent directions at point P0, dP(t)/dt ∈ Q(P0, P∗). In Section 2 we justify this
substitution and prove that the local condition (4) holds if and only if for every Markov process with equilibrium P∗ the
solution P(t) of the Kolmogorov equation with initial condition P(0) = P0 has no points on the condition linear manifold L
for t > 0 (if P0 is not a steady state for the process).

For applications, we need the local minima condition formalized by Definition 1 and the local order generated by the
cone Q(P0, P∗) only. The general notion of (global) Markov order appears later, in Section 3, where we prove equivalence
of the Maxima of all entropies and the Markov order approaches. Surprisingly, the set of the conditional minimizers of all
f -divergencies and the set of the conditionally minimal elements of the Markov order coincide for the same conditions
(Section 3). These sets include all reasonable hypotheses about conditionally most uncertain distributions. Let us call the
problem of description of all the conditional minima of the Markov order theMaxallent problem.

1.3. Main tool: decomposition theorems

The main tools for constructive work with the Markov orders are the decomposition theorems for Markov chains. The
first decomposition theorem states that every Markov chain with a positive equilibrium distribution is a convex combination
of the simple directed cyclicMarkov chainswith the same equilibrium. The coefficients in this decomposition do not depend
on the current probability distribution: the vector field dP/dt for a general Markov chain is a convex combination of these
vector fields for simple cyclic Markov chains with the same positive equilibrium.

The second decomposition theorem states that for every Markov chain with a positive equilibrium distribution and for any
non-equilibriumdistribution P the velocity vector dP/dt is a convex combination of the velocity vectors for the simple cyclic
Markov chains of the length two with the same equilibrium (i.e. of the reversible transitions between two states, Ai 
 Aj).
The coefficients in this decomposition typically depend on the current probability distribution.

The idea of the first decomposition theoremwasused byBoltzmann in 1882 [18] in his proof of theH-theorem for systems
without detailed balance. (This was his answer to the Lorentz objections [24].) He did not formulate this theorem separately
but efficiently used the cycle decomposition for generalization of detailed balance. Later on, his extension of the detailed
balance conditions were analyzed by many authors under different names as ‘‘cyclic balance’’, ‘‘semi-detailed balance’’ or
‘‘complex balance’’ (see, for example, the review [25]). Now, the theory of the cycle decomposition is a well developed area
of the theory and applications of the random processes [26].
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The second decomposition theorem is less known. We found this theorem in the analysis of the Markov order [21]. This
decomposition means that for the general first-order kinetics and an arbitrary non-equilibrium probability distribution P
there exists a system with detailed balance and the same equilibrium that has the same velocity dP/dt at point P [27]: the
classes of the general Markov processes and the Markov processes with detailed balance are pointwise equivalent.

The decomposition theorems are discussed in Appendix B in more detail.

2. Local minima of Markov order

Let us consider continuous time Markov chains with n states A1, . . . , An. The Kolmogorov equation (or master equation)
for the probability distribution P = (pi) is

dpi
dt

=


j, j≠i

(qijpj − qjipi) (i = 1, . . . , n), (5)

where qij (i, j = 1, . . . , n, i ≠ j) are non-negative.
In this notation, qij is the rate constant for the transition Aj → Ai. Any non-negative values of the coefficients qij (i ≠ j)

correspond to a master equation. Therefore, the set of all the Kolmogorov equations (5) may be considered as the positive
orthant Rn(n−1)

+ in Rn(n−1) with coordinates qij (i ≠ j).
Now, let us restrict our consideration to the set of the Markov chains with the given positive equilibrium distribution

P∗ (p∗

i > 0).


j, j≠i

qijp∗

j =


j, j≠i

qji


p∗

i for all i = 1, . . . , n. (6)

This system of uniform linear equations define a cone of the qij (i, j = 1, . . . , n, i ≠ j) in Rn(n−1)
+ .

Under the balance condition (6), the Kolmogorov equations (5) may be rewritten in a convenient equivalent form:

dpi
dt

=


j, j≠i

qijp∗

j


pj
p∗

j
−

pi
p∗

i


(i = 1, . . . , n). (7)

We use below one of the f -divergencies (1) with h(x) = (x − 1)2. It is a quadratic divergence, the weighted l2 distance
between P and P∗:

H2(P ∥ P∗) =


i

(pi − p∗

i )
2

p∗

i
.

With the master equation in the form (7), it is straightforward to calculate the time derivative of H2(P ∥ P∗)

dH2(P ∥ P∗)

dt
= −


i,j, j≠i

qijp∗

j


pi
p∗

i
−

pj
p∗

j

2

≤ 0. (8)

Each term in the sum is non-negative. The time derivative (8) is strictly negative if for a transition Aj → Ai the rate constant
is positive, qij > 0, and pi

p∗
i

≠
pj
p∗
j
. Hence, if the state P is not an equilibrium (i.e., the right hand side in (7) is not zero) then

dH2(P∥P∗)

dt < 0.
An important class of the Markov chains is formed by reversible chains with detailed balance. The detailed balance

condition reads:

qijp∗

j = qjip∗

i for all i, j = 1, . . . , n. (9)

Under this condition, there are only n(n−1)
2 independent coefficients among n(n − 1) numbers qij. For example, we can

arbitrarily select qij ≥ 0 for i > j and then take qij = qji
p∗
i

p∗
j
for i < j. So, for given P∗, the cone of the detailed balance systems

(9) is a positive orthant in R
n(n−1)

2 embedded in Rn(n−1)
+ . The equilibrium fluxes

w∗

ij = qijp∗

j = qjip∗

i (i > j)

are the convenient coordinates in R
n(n−1)

2 for a description of systems with detailed balance.
Let Q(P, P∗) be the set of all possible velocities dP/dt at a non-equilibrium distribution P for all Markov chains which

obey a given positive equilibrium P∗. According to the second decomposition theorem, the set of all possible velocities dP/dt
for the chains with detailed balance and the same equilibrium is the same cone Q(P, P∗). Therefore, Q(P, P∗) is a convex
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polyhedral cone and its extreme rays consist of the velocity vectors for two-state Markov chains Ai 
 Aj with rate constants
qji = κ/p∗

j , qji = κ/p∗

i (κ > 0).
The construction of the cones of possible velocities was proposed in 1979 [28] for systems with detailed balance in

the general setting, for nonlinear chemical kinetics. These systems are represented by stoichiometric equations of the
elementary reactions coupled with the reverse reactions:

αρ1A1 + · · · + αρnAn 
 βρ1A1 + · · · + βρnAn, (10)

where αρi, βρi ≥ 0 are the stoichiometric coefficient, ρ is the reaction number (ρ = 1, . . . ,m). The stoichiometric vector of
the ρth reaction is an n dimensional vector γρ with coordinates γρi = βρi −αρi. The reaction rate iswρ = w+

ρ −w−
ρ , where

w+
ρ is the rate of the direct elementary reaction andw−

ρ is the rate of the reverse reaction.
The equilibria of the ρth pair of reactions (10) form a hypersurface in the space of concentrations. The intersection of

these surfaces for all ρ is the equilibrium (with detailed balance). Each surface of the equilibria of a pair of elementary
reactions (10) divides the non-negative orthant of concentrations into three sets: (i)wρ > 0, (ii)wρ = 0 (the surface of the
equilibria) and (iii) wρ < 0. All the surfaces of equilibria (wρ = 0) divide the non-negative orthant of concentrations into
compartments. In each compartment, the dominant direction of each reaction (10) is fixed and, hence, the cone of possible
velocities is also constant. It is a piecewise constant function of concentrations:

Q = cone{γρsign(wρ)|ρ = 1, . . . ,m},

where ‘‘cone’’ stands for the conic hull, that is the set of all linear combinations with non-negative coefficients. Here and
below we use the three-valued sign function (with values ±1 and 0).

Let us apply this construction to Markov chains with detailed balance. Let us join the transitions Ai 
 Aj in pairs (say,
i > j) and introduce the stoichiometric vectors γ ji with coordinates:

γ
ji
k =


−1 if k = j,
1 if k = i,
0 otherwise.

(11)

Let us rewrite the Kolmogorov equation for the Markov process with detailed balance (9) in the quasichemical form:

dP
dt

=


i>j

w∗

ij


pj
p∗

j
−

pi
p∗

i


γ ji. (12)

Here,w∗

ij = qijp∗

j = qjip∗

i is the equilibrium flux from Ai to Aj and back.
The cone of possible velocities for (12) is

Q(P, P∗) = cone


γ jisign


pj
p∗

j
−

pi
p∗

i

 i > j


. (13)

The standard simplex of distributions P is divided by linearmanifolds pi
p∗
i

=
pj
p∗
j
into compartments. They are the polyhedra

where the cone of the local Markov order Q(P, P∗) is constant. The compartments for the Markov chains with the positive
equilibrium P∗ correspond to various partial orders on the finite set {pi/p∗

i } (i = 1, . . . , n).
Let us describe the compartments and cones in more detail following [21]. For every natural number k ≤ n − 1 the k-

dimensional compartments are enumerated by surjective functions σ : {1, 2, . . . , n} → {1, 2, . . . , k + 1}. Such a function
defines the partial ordering of quantities pj

p∗
j
inside the compartment:

pi
p∗

i
>

pj
p∗

j
if σ(i) < σ(j);

pi
p∗

i
=

pj
p∗

j
if σ(i) = σ(j). (14)

Let Cσ be the corresponding compartment and Qσ be the corresponding local Markov order cone (Q(P, P∗) = Qσ if P ∈ Cσ ).
For a given surjection σ the compartment Cσ and the cone Qσ have the following description:

Cσ =


P
 pi
p∗

i
=

pj
p∗

j
for σ(i) = σ(j) and

pi
p∗

i
>

pj
p∗

j
for σ(j) = σ(i)+ 1


;

Qσ = cone{γ ij
|σ(j) = σ(i)+ 1}.

(15)

In Fig. 2, the partition of the standarddistribution simplex into compartments, and the cones (angles) of possible velocities
are presented for theMarkov chainswith three states. In the construction of this cone, reversible chainswith detailed balance
are used. Due to the second decomposition theorem, this construction of the cone of possible velocities is valid for the class
of general Markov chains (and not only for reversible chains) with the same equilibrium. It seems quite surprising that the
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A2

A1 A3

Fig. 2. The cones of possible velocitiesQ for allMarkov chainswith three states and equilibrium equidistribution (p∗

i = 1/3). The triangle of the probability
distributions (p1, p2, p3) (pi ≥ 0, p1 + p2 + p3 = 1) has the vertices Ai , where pi = 1 and other probabilities are zeros. Equilibrium is the center of the
triangle. This triangle is divided by three lines of partial equilibria (Ai 
 Ai) into 12 compartments and the equilibriumpoint. Six compartments are triangles
and six other compartments are segments. For all compartments the cones (here the angles) of possible velocities are shown. Each cone is connected with
the corresponding compartment by a dashed line. In each cone, the vectors γ jisign


pj
p∗
j

−
pi
p∗
i


are presented. For the 2D (triangle) compartments all three

vectors are non-zero. For the 1D compartments (segments) only two these vectors are non-zero. The vectors γ ji are presented separately, in the top left
corner.

L Extreme points
of the Markov

order on L

L
Extreme points
of the Markov

order on L

L Extreme points
of the Markov

order on L

cba

Fig. 3. (a) and (b) Extreme points of the Markov order for the Markov chain with three states and different positions of the condition line L. (c) Extreme
points of the Markov order coincide with the partial equilibria, when the moments are just some of pi .

Markov order for general Markov chains is generated by the reversible Markov chains which satisfy the detailed balance
principle.

Let L be a linear manifold in the probability distribution space. Due to Definition 1, P0
∈ L ∩∆n−1

+ is a local minimum of
the Markov order on L ∩∆n−1

+ if the condition (4) holds.
In Fig. 3 the sets of conditional minimizers are presented for the Markov order on the straight line L for the Markov chain

with three states and symmetric equilibrium (p∗

i = 1/3). Two general positions of L in the probability triangle are used
(Fig. 3(a) and (b)). If L is parallel to one side of the triangle (Fig. 3(c)) then the moments are just some of the pi and the
extreme points of the Markov order on L ∩∆n−1

+ coincide with the partial equilibria.
Let J be a set of pairs of indexes (i, j) (i > j) and KJ be the class of kinetic equations (12) with w∗

ij = 0 for (i, j) ∉ J and
w∗

ij ≥ 0 for (i, j) ∈ J (i ≠ j). We define ΦJ(P0) for an initial distribution P0 as a set of all values P(t) (t > 0) for solutions
P(t) of all equations from the class KJ with initial value P(0) = P0.

Consider a cone of possible velocities for the set of transitions Ai 
 Aj, (i, j) ∈ J:

QJ(P, P∗) = cone


γ jisign


pj
p∗

j
−

pi
p∗

i

 (i, j) ∈ J


.
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The following proposition states that in a vicinity of the distribution P0 the setsΦJ(P0) and P0
+QJ(P0, P∗) coincide. This

gives a justification of the use of the cone of the tangent directions QJ(P0, P∗) in the definition of the local minima of the
Markov order (4).

Proposition 1. Let pj
p∗
j

−
pi
p∗
i

≠ 0 ((i, j) ∈ J) for a distribution P = P0. There exists a vicinity U of P0 where P0
+ QJ(P0, P∗)

coincides withΦJ(P0):

(P0
+ QJ(P0, P∗)) ∩ U = ΦJ(P0) ∩ U .

Proof. There exists a Euclidean ball Br around P0 where pj
p∗
j

−
pi
p∗
i

≠ 0 ((i, j) ∈ J). Due to (8), inside Br , the divergence

H2(P ∥ P∗) strictly decreases with λ increasing along any ray P0
+ λe, e ∈ QJ(P, P∗) (λ > 0). For each ray, we can find the

minimum of H2(P ∥ P∗) in Br . Let the maximum of these minima be hr(P0):

hr(P0) = max
e∈QJ (P,P∗)


min
λ>0

{H2(P0
+ λe ∥ P∗)|P0

+ λe ∈ Br}


.

By construction, H2(P0
∥ P∗) > hr(P0). The set

U = {P ∈ Br |H2(P ∥ P∗) > hr(P0)}

is a vicinity of P0. The intersection (P0
+ QJ(P0, P∗)) ∩ U is

(P0
+ QJ(P0, P∗)) ∩ U = {P ∈ (P0

+ QJ(P0, P∗))|H2(P ∥ P∗) > hr(P0)}.

For any system fromKJ on Br and for any distribution P ∈ (P0
+QJ(P0, P∗)) the velocity vector dP/dt belongs toQJ(P0, P∗).

Obviously, (P +QJ(P0, P∗)) ⊂ (P0
+QJ(P0, P∗)). Therefore, the solution of this system with the initial condition P(0) = P0

may leave the intersection (P0
+ QJ(P0, P∗)) ∩ U through the level surface H2(P0

∥ P∗) = hr(P0) only. After that, the
solution cannot return to U because in U the values of H2(P0

∥ P∗) are bigger, H2(P0
∥ P∗) > hr(P0), and H2(P(t) ∥ P∗)

should decrease in time along every solution of any system from KJ . Thus, one inclusion is proven,

(P0
+ QJ(P0, P∗)) ∩ U ⊇ ΦJ(P0) ∩ U .

To prove the second inclusion, (P0
+ QJ(P0, P∗)) ∩ U ⊆ ΦJ(P0) ∩ U , we have to demonstrate that the solutions

P(t) (P(0) = P0, t ≥ 0) of the equations from KJ cover (P0
+ QJ(P0, P∗)) in some vicinity of P0.

The polyhedral cone QJ(P0, P∗) is covered by the simplicial cones spanned by the sets of linearly independent vectors

γ jisign


p0j
p∗
j

−
p0i
p∗
i


. Therefore, it is sufficient to prove the second inclusion for the simplicial cones QJ(P0, P∗).

Let the vectors {γ ji
|(i, j) ∈ J} be linearly independent. For the simplicity of notation, let us enumerate the states in the

order of the values of p0j /p
∗

j :

p01
p∗

1
≥

p02
p∗

2
≥ · · · ≥

p0n
p∗
n
.

In these notations, sign


p0j
p∗
j

−
p0i
p∗
i


= 1 for all (i, j) ∈ J because i > j and

p0j
p∗
j

−
p0i
p∗
i

≠ 0 for (i, j) ∈ J .

Consider a subset of the cone QJ(P0, P∗) (a ‘‘pyramid’’)

QJ(P0, P∗) =


(i,j)∈J

θijγ
ji
θij ≥ 0,


(i,j)∈J

θij < 1


. (16)

The ‘‘base’’ of this pyramid is a simplex

BJ(P0, P∗) =


(i,j)∈J

θijγ
ji
θij ≥ 0,


(i,j)∈J

θij = 1


.

Let α > 0 be sufficiently small and, therefore, pj
p∗
j

−
pi
p∗
i

≠ 0 ((i, j) ∈ J) in P0
+ αQJ(P0, P∗). For this α, a solution

P(t) (t ≥ 0) of an equation from the class KJ with initial data P(0) = P0 may leave P0
+ αQJ(P0, P∗) only through its base,

P0
+ αBJ(P, P∗).
Let us prove that if α is sufficiently small then for each point y ∈ BJ(P, P∗) there exists a system in KJ whose solution

P(t) (t > 0, P(0) = P0) leaves P0
+ aQJ(P0, P∗) through the point P0

+ αy. This means that P(t1) = P0
+ αx for some

t1 > 0 and P(t) ∈ QJ(P, P∗) for 0 < t < t1.
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Each vector x ∈ BJ(P, P∗) can be expanded into a linear combination of γ ji ((i, j) ∈ J):

x =


(i,j)∈J

θijγ
ji, θij ≥ 0 and


(i,j)∈J

θij = 1. (17)

With this expansion we define the system Kx ∈ KJ by the condition dP
dt


P=P0 = x:

dP
dt

=


(i,j)∈J

θij


p0j
p∗

j
−

p0i
p∗

i

−1 
pj
p∗

j
−

pi
p∗

i


γ ji. (18)

(Just take w∗

ij = θij


p0j
p∗
j

−
p0i
p∗
i


for (i, j) ∈ J in (12).) A solution P(t) (P(0) = P0) of this Eq. (18) can be also expanded into a

linear combination of γ ji (i, j) ∈ J (x ∈ BJ(P, P∗)):

P(t) = P0
+ tx +

t2

2
f (t, x) = P0

+


θij>0


tθij +

t2

2
νij(t, {θlm})


γ ji, (19)

where νij(t, {θlm}) are analytic functions. If x belongs to a face F of the cone QJ(P0, P∗) then P(t) ∈ P0
+ F for sufficiently

small t .
The moment t = t(α, x)when the solution P(t) (19) leaves P0

+ αQJ(P0, P∗) is a root of equation

t +
t2

2


(i,j)∈J

νij(t, {θlm}) = α.

Due to the standard inverse function theorems this root exists and the function t(α, x) is smooth for sufficiently small α for
all x ∈ BJ(P, P∗), and t(α, x) = α + o(α). The solution P(t) (19) of the system Kx (18) leaves P0

+ αQJ(P0, P∗) at the point
P(t(α, x)) = P0

+ αy(x), where y(x) ∈ BJ(P, P∗).
To prove that y(•) : BJ(P, P∗) → BJ(P, P∗) is a homeomorphism of the simplex BJ(P, P∗) onto itself, let us notice that

the map x → y(x) leaves the faces of the simplex BJ(P, P∗) invariant: vertices transform into themselves, the same for
edges, etc.

We use the following topological lemma, the multidimensional intermediate value theorem. Consider a continuous map
Ψ : ∆n → ∆n of the n-dimensional standard simplex into itself. Let each face F ⊂ ∆n be Ψ -invariant, i.e. Ψ (F) ⊂ F . Then
Ψ is surjective. The proof is possible by induction in n: for n = 0 it is obvious, for n = 1 this is just a 1D intermediate
value theorem. In all dimensions, it can be proved on the basis of the ‘‘no-retraction theorem’’ [29] and simple inductive
topological reasoning, which reduces the general case to the situation when all the faces F ⊂ ∆n consist of fixed points of
the map Ψ .

Therefore, for sufficiently small α the solutions P(t) (P(0) = P0, t ≥ 0) of the equations from KJ cover (P0
+ aQJ

(P0, P∗)) in some vicinity of P0. The second inclusion is proven. Let us combine the inclusions and reduce the vicinities,
if necessary. �

If p0i
p∗
i

≠
p0j
p∗
j
for all i, j (i ≠ j) then

Q(P0, P∗) = Q(P, P∗)

for P in some vicinity of P0. If for some pairs i, j (i ≠ j) p0i
p∗
i

=
p0j
p∗
j
(see Fig. 3(c)) then for some P ∈ P0

+ Q(P0, P∗) the cone

Q(P, P∗)may be bigger thanQ(P0, P∗) even in a small vicinity of P0. Nevertheless, the set of trajectories P(t) (t > 0, P(0) =

P0) remains in P0
+ Q(P0, P∗) for sufficiently small t . Let us prove this statement.

Let K be the class of all master equations with detailed balance with the positive equilibrium P∗ (12) withw∗

ij ≥ 0 for all
(i, j) (i > j). We defineΦ(P0) for an initial distribution P0 as a set of all values P(t) (t > 0) for solutions P(t) of all equations
from the class K with initial value P(0) = P0.

Proposition 2. For every probability distribution P0 there exists a vicinity U of P0 where P0
+ Q(P0, P∗) coincides withΦ(P0):

(P0
+ Q(P0, P∗)) ∩ U = Φ(P0) ∩ U .

Proof. The inclusion (P0
+ Q(P0, P∗)) ∩ U ⊂ Φ(P0) ∩ U is proven in the second part of the proof of Proposition 1 because

KJ ⊂ K . We have to prove the inclusion (P0
+ Q(P0, P∗)) ∩ U ⊃ Φ(P0) ∩ U .

Let us use the combinatorial description of compartments and cones (15). We assume that P0
∈ Cσ for a surjection

σ : {1, 2, . . . , n} → {1, 2, . . . , k + 1}. Let us recall that k = dimCσ . If k = n − 1 then Cσ is an open subset of the
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distribution space and the preimage of every l = 1, 2, . . . , n consists of one point. For every P ∈ Cσ the cone Q(P, P∗)
coincides with Q(P0, P∗) and due to Proposition 1 there exists a vicinity U of P0 where P0

+Q(P0, P∗) coincides withΦ(P0).
Let k < n− 1. Then for some i = 1, . . . , k+ 1 the preimage of i includes more than 1 point, |σ−1(i)| > 1. Let I be the set

of such i and Si = σ−1(i) is the preimage of i. Due to (15),

Q(P0, P∗) = cone{γ ij
|σ(j) = σ(i)+ 1}.

For a sufficiently small ball Ur with the center P0 and P ∈ (P0
+Q(P0, P∗))∩U the cone Q(P, P∗)may include also some γ ij

with σ(i) = σ(j) but

Q(P, P∗) ⊂ cone{γ ij
|σ(j) = σ(i)+ 1 or σ(j) = σ(i)}. (20)

Let us prove that for any Markov chain with equilibrium P∗ for sufficiently small time τ > 0 and a ball Ur/2 with the
center P0 the solutions of the Kolmogorov equations P(t) do not leave P0

+ Q(P0, P∗) during the time interval [0, τ ] if
P(0) ∈ (P0

+ Q(P0, P∗)) ∩ Ur/2.
A set V is positively invariant with respect to a dynamical system if every motion that starts in V at t = 0 remains there

for t > 0. Let a convex set V be positively invariant with respect to several dynamical system given by Lipschitz vector
fields w1, . . . ,wr . Then V is positively invariant with respect to any combination w =


j fjwj, where fj are non-negative

functions andw is a Lipschitz vector field. Therefore, the problem of positive invariance of a convex set with respect to such
combinations of vector fields can be ‘‘split’’ into problems of the positive invariance of V with respect to summands wj.
Due to the second decomposition theorem, we can always assume that the vector field of the Kolmogorov equation for the
Markov kinetics is a linear combination of the vector fields of the pairs of elementary transitions Ai 
 Aj with the same
equilibrium. The coefficients in these combinations are non-negative functions.

The motion P(t)with P(0) ∈ (P0
+Q(P0, P∗)) does not leave (P0

+Q(P0, P∗)) in time t ∈ [0, τ ] if dP(t)/dt ∈ Q(P0, P∗)
on [0, τ ].

The cone Q(P0, P∗) is generated by vectors γ ij with σ(j) = σ(i) + 1. To generate a cone Q(P, P∗) for a point P ∈ Ur we
have to add to the set of γ ij (σ (j) = σ(i)+ 1) some of γ ij with σ(j) = σ(i). Let us consider the pyramid (compare to (16))

Q(P0) =

 
σ(j)=σ(i)+1

θijγ
ji
θij ≥ 0,


(i,j)∈J

θij < 1


.

We will prove that the set P0
+ aQ(P0) is positively invariant with respect to any first order kinetics with transitions

Ai 
 Aj (i, j ∈ Sl) and equilibrium P∗ for any l = 1, . . . , k + 1.
It is sufficient to consider dynamics in projections on the coordinate subspace RSl with coordinates pi, i ∈ Sl for every

l ∈ I separately. In this space, vectors γ ij (i, j ∈ Sl) correspond to the standard first order kinetics like (12) with the reduced
vector P ∈ RSl but without compulsory unit balance


i∈Sl

pi = const with any const > 0

. A projection of P0 on RSl , P

0
Sl
is

an equilibrium for this first order kinetics with the balance


i∈Sl
pi =


i∈Sl

p0i because p0i
p∗
i

=
p0j
p∗
j
for i, j ∈ Sl.

The vectors γ ij that generate Q(P0, P∗) (σ (j) = σ(i) + 1) (20) have non-zero projections on RSl if and only if either
l = σ(j) = σ(i)+ 1 or σ(j) = σ(i)+ 1 = l + 1. In the first case, l = σ(j) = σ(i)+ 1, vector γ ij is the standard basis vector
ej in RSl . In the second case, σ(j) = σ(i)+ 1 = l + 1, we have γ ij

= −ei. If l = 1 then only the second case is possible, and
if l = k + 1 then only the first case can take place.

Let Vl = {P ∈ RSl |pi ≥ 0,


i∈Sl
pi < 1}. The projection of the pyramid Q(P0) onto RSl is conv(Vl − Vl) if 1 < l < k + 1;

it is Vl if l = k + 1 and −Vl if l = 1. (For sets X, Y , the sum X + Y is the set of all sums x + y (x ∈ X, y ∈ Y ), the difference
X − Y is the set of all differences x − y, therefore V − V is not {0} if V includes more than one element.)

The set Vl is positively invariant with respect to the first order kinetics in RSl . Therefore, the following sets are also
positively invariant with respect to the first order kinetics in RSl with equilibrium P0

Sl
for every a > 0:

P0
Sl + aVl, (P0

Sl + aVl)− aVl, conv((P0
Sl + aVl)− aVl).

Thus, the set P0
+aQ(P0) is positively invariant with respect to any first order kinetics with transitions Ai 
 Aj (i, j ∈ Sl) and

equilibrium P∗ for any l = 1, . . . , k + 1. A combination of these statements for all l = 1, . . . , k + 1 finalizes the proof. �

This proposition finalizes the justification of the use of the cone of the tangent directions Q(P0, P∗) in the definition of
the local minimum of the Markov order (4).

3. Equivalence of the maxima of all entropies and the Markov order approaches

The cone Q(P0, P∗) is a piecewise constant function of P0: it is the same for all P0 from one compartment Cσ and, hence,
depends on σ only. Therefore, if the condition of the local minimum (4) holds for one P0

∈ L ∩ Cσ then it holds also for all
elements of L ∩ Cσ . There is a finite number of compartments Cσ .
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Let the linear manifold of conditions L be given by the values of moments


i mripi = Mr , L0 = kerm and L ∩∆n−1
+ ≠ ∅.

The set of all conditional local minima of the Markov order on the linear manifold of conditions L is
L ∩ Cσ

L ∩ Cσ ≠ ∅ and L0 ∩ Qσ = {0}

, (21)

where Cσ and Qσ are defined by (15). It is sufficient to find all σ such that L ∩ Cσ ≠ ∅ and L0 ∩ Qσ = {0} and then describe
the union of the compartments Cσ for these σ .

The approach based on theminimization of all f -divergencies seems to be very different. For all monotonically increasing
functions g wehave to solve the equations for the Lagrangemultipliers and represent the probability distribution in the form
(3). Nevertheless, these approaches are equivalent and describe the same set of the ‘‘conditionally maximally disordered
distributions’’.

Theorem 1. A positive distribution P0
∈ L satisfies the local conditional minimum conditions of the Markov order (4) if and

only if there exists a strictly monotonic function g on R with im g = (0,∞) such that the conditions (3) hold for some Lagrange
multipliers and for p0i = pi.

This means that every conditionally minimal distribution of the Markov order on the linear manifold L ∩ ∆n−1
+ is a

conditional minimum on L ∩∆n−1
+ of a strictly convex f -divergence (1).

Proof. Due to the classical theorems about separation of convex sets and linear spaces by linear functionals [30], a
distribution P0 satisfies the condition of the local minimum (4) if and only if there exists a linear functionalψ(P) =


i ψipi

such that ψ |L = ψ(P0) = const and ψ(P) > ψ(P0) for every P ∈ P0
+ Q(P0, P∗) if P ≠ P0. In other words, ψ |L0 ≡ 0

and

(ψi − ψj)


p0i
p∗

i
−

p0j
p∗

j


> 0 if

p0i
p∗

i
≠

p0j
p∗

j
(22)

according to the definition ofQ(P, P∗) (13). Conditionψ |L0 ≡ 0 is equivalent to the existence of the coefficients λr such that
for all i

ψi =


r

λrmri.

Condition (22) is equivalent to the existence of a strictly monotonic function η(x) defined for x ≥ 0 such that

ψi = η


p0i
p∗

i


.

To find such a function η(x)we can take the known values ψi for x = p0i /p
∗

i and then use, for example, linear interpolation
η(x) between p0i /p

∗

i . To extrapolate η(x) from max{p0i /p
∗

i } to +∞ we can use an increasing linear function. To extrapolate
η(x) on the interval (0,min{p0i /p

∗

i })we can use ε log x + const .
Finally, we can take h′(x) = η(x), h(x) =


η(ξ) dξ ; and g(y) is the inverse function: g(η(x)) = x for x ≥ 0. The

distribution P0 is the local minimum of Hh(P ∥ P∗) on L.
Conversely, if P0 is a minimum of a strictly convex Lyapunov function H on L and dH/dt|P0 < 0 for every Markov chain

with equilibrium P∗ for which P0 is a non-equilibrium distribution then we can take

ψi = −
∂H
∂pi


P0
.

This choice of ψi provides (22) (because H is strictly decreasing in time Lyapunov function) and ψ |L0 ≡ 0 because gradH is
orthogonal to L (the condition of local minimum). �

This equivalence of two definitions of themaximally uncertain distribution under given conditions has several important
consequences.

Let us introduce the notion of the (global)Markov order [21].

• If for distributions P0 and P1 there exists such a Markov process with equilibrium P∗ that for the solution of the
Kolmogorov equation with P(0) = P0 we have P(1) = P1 then we say that P0 and P1 are connected by the Markov
preorder [21] with equilibrium P∗ and use notation P0

≻
0
P∗ P1.

• The (global) Markov order is the closed transitive closure of theMarkov preorder. For theMarkov order with equilibrium
P∗ we use notation P0

≻P∗ P1.
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The local Markov order at point P0 is just a vector order generated by the tangent cone Q(P0, P∗) [21]. We use for this
local order the notation>P0,P∗:

P >P0,P∗ P ′ if P ′
− P ∈ Q(P0, P∗).

The proofs of Propositions 1 and 2 give us the possibility to use the relation P0>P0,P∗ P1 instead of the Markov preorder for
the definition of the Markov order minimizers on linear manifolds. The relation P0>P0,P∗ P1 is defined by the local Markov
order in a vicinity of P0:

P1
− P0

∈ Q(P0, P∗).

The cone Q(P0, P∗) depends on P0, therefore, the relation P0>P0,P∗ P1 is antisymmetric locally, in a vicinity of P0.

Remark 1. It is possible to generate the Markov order by the relation P0>P0,P∗ P1. Let us specify the vicinity of P0 where
this relation is defined and introduce a new relation: P0>0

P∗ P1 if P0>P0,P∗ P1 for all i, j = 1, . . . , n and
p0i
p∗

i
−

p0j
p∗

j


p1i
p∗

i
−

p1j
p∗

j


≥ 0.

This condition means that the pairs of numbers


p0i
p∗
i
,

p0j
p∗
j


and


p1i
p∗
i
,

p1j
p∗
j


cannot have an opposite order on the real line. The

closed transitive closure of the relation P0>0
P∗ P1 is the Markov order P0

≻P∗ P1.

Let L be a linear manifold in the space of distributions. By definition, P0
∈ L is a minimal point on L ∩∆n−1

+ with respect
to the order ≻P∗ if and only if there is no point P1

∈ L ∩∆n−1
+ , P1

≠ P0 such that P0
≻P∗ P1.

Corollary 1. P0
∈ L∩∆n−1

+ is a minimal point on L∩∆n−1
+ with respect to the (global) Markov order if and only if it satisfies the

local minimum condition (4).

Proof. If P0
∈ L ∩ ∆n−1

+ is a minimal point on L ∩ ∆n−1
+ with respect to the (global) Markov order then it satisfies

the condition (4) due to the definition of the Markov order through the transitive closure of the relation P0
≻

0
P∗ P1 and

Propositions 1 and 2.
Let P0 satisfy the localminimumcondition (4). Then there exists a divergenceHh(P ∥ P∗)with strictly convex h(x) (x ≥ 0)

such that P0 is a local minimum of Hh(P ∥ P∗) on L. Because of strong convexity, this local minimum is a global one. Hh(P ∥

P∗) is a Lyapunov function for all Markov chains with equilibrium P∗. Therefore, a broken line, which is combined from
solutions of the Kolmogorov equations for such Markov chains and starts at P0, leaves a small vicinity of P0 (Propositions 1
and 2) and never returns in a sufficiently small vicinity of L. Thus, for the closed transitive closure of the relation P ≻

0
P∗ P ′,

point P0 is a minimal point on L. �

Of course, there may be infinitely many minimal points of the Markov order on L and each of them corresponds to a
different Lyapunov functions Hh(P ∥ P∗).

Another remarkable order on the space of distributions is P0>H,P∗ P1 if for all strictly convex functions h(x) (x ≥ 0)

Hh(P0
∥ P∗) > Hh(P1

∥ P∗),

that is, P1 is closer to equilibrium than P0 with respect to all divergencies Hh(P ∥ P∗).

Corollary 2. For any linear manifold L in the distribution space the minimal elements of the Markov order ≻P∗ on L ∩ ∆n−1
+

coincide with the minimal elements of the order >H,P∗ on L ∩∆n−1
+ .

Proof. We just have to combine Theorem 1 with Corollary 1. �

Thus, the minimal elements of the orders ≻P∗ and >H,P∗ on the linear manifolds coincide. Nevertheless, it is necessary
to mention the difference between these orders. Let P0 be a distribution. For>H,P∗ the set of distributions {P|P0>H,P∗ P} is
convex as an intersection of convex sets {P|Hh(P0

∥ P∗) > Hh(P ∥ P∗)} for various strictly convex h. This is not the case
for the Markov order. The set of distributions {P|P0

≻P∗ P} may be non-convex. The examples may be extracted from the
papers [28,31] (see Fig. 4).

Corollary 3. Let P0
≻P∗ P1. Then P1

∈ P0
+ Q(P0, P∗).

Proof. Let us apply Corollary 1 to all support hyperplanes L of the convex set (P0
+ Q(P0, P∗)) for which (P0

+ Q(P0, P∗))
∩ L = {P0

}. �
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a b

P0 P0

Fig. 4. The set {P|P0>H,P∗ } for different P0 and for the Markov chains with three states and equilibrium (p∗

i = 1/3): (a) {P|P0>H,P∗ } is convex, (b) it is
not convex. The border of the set {P|P0>H,P∗ } is highlighted by bold lines. The arrows on these lines correspond to the directions of the extreme rays of
the cones Q(P, P∗) (i.e. the angles represented in Fig. 2).

4. Example: generalization of the normal distribution

In this section, we discuss distributions p(x) on a continuous space of states, the non-negative real semi-axis, R+ =

{x|x ≥ 0}. We have in mind two classical examples of distributions of the quantity bounded from below: energy (physics)
and wealth (economics and microeconomics).

Let two moments be fixed, the total probability M0 =


∞

0 p(x) dx and the average quantity M1 =


∞

0 xp(x) dx. The
conditional maximization of the classical Boltzmann–Gibbs–Shannon entropy gives:

p(x)(ln p(x)− 1) dx → min for given


∞

0
p(x) = M0,


∞

0
xp(x)dx = M1;

ln p(x) = λ0 + λ1x, p(x) = exp(λ0 + λ1x), exp λ0 = −λ1 exp λ0 = M1λ
2
1;

p∗(x) =
1
M1

exp


−
x
M1


. (23)

This Boltzmann distribution appears always as a first candidate for the equilibrium distribution of an additive conserved
quantity bounded from below. Khinchin (1943) clearly explained this law as a version of the limit theorem [32].

Technically, it is not difficult to involve the higher moments and obtain the distribution of the form

p(x) = exp(λ0 + λ1x + λ2x2 + · · · + λrxr). (24)

One can expect that this extension of the set ofmomentsmay improve the description. This is a traditional belief in Extended
Irreversible Thermodynamics (EIT) [7].

Theremay bemany different approaches to evaluation of the quality of the approximation (24) but at least one important
property of these functions is wrong: the asymptotic behavior at large x is p(x) ≍ exp(−const × xr). These ‘‘super-light’’
tails of the distribution p(x) change qualitatively with the change of the order r in (24).

If we use, for example, the ‘‘regularizing’’ forth moment in the moment chain for the Boltzmann equation [33] then we
corrupt the e−const×v2 tails of the Maxwell distribution. Therefore, other approaches which do not modify the tails of the
distribution qualitatively (like [8]) may be more appreciated.

The asymptotic behavior of the distribution’s tails was thoroughly studied in many cases. Very often, the tails of the
distributions are, without a doubt, heavier than normal e−const×x2 and definitely are not cut as e−const×x4 . For example, it is
demonstrated that the distribution of money between people has the exponential tail with a possible transformation into a
heavier power tail for very rich people [34].

The general solution (3) with the Boltzmann equilibrium (23) gives the following expression instead of (24)

p(x) = g(λ0 + λ1x + λ2x2 + · · · + λrxr)
1
M1

exp


−
x
M1


,

where g is a monotonically increasing function. In particular, for the momentsM0,M1 andM2 we obtain

p(x) = g(λ0 + λ1x + λ2x2)
1
M1

exp


−
x
M1


. (25)

There are four qualitatively different cases of (25). Let λ2 ≠ 0 and µ = −
λ1
2λ2

. Then

p(x) =
f (x)
M1

exp


−
x
M1


, (26)

and
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1. if µ ≤ 0 and λ2 > 0 then f (x) is a monotonically increasing function on [0,∞);
2. if µ ≤ 0 and λ2 < 0 then f (x) is a monotonically decreasing function on [0,∞);
3. if µ > 0 and λ2 > 0 then f (x) is a monotonically increasing function on [µ,∞) and f (x) = f (2µ− x) for x ∈ [0, µ];
4. if µ > 0 and λ2 < 0 then f (x) is a monotonically decreasing function on [µ,∞) and f (x) = f (2µ− x) for x ∈ [0, µ].

Each of these ‘‘generalized normal distributions’’ (26) is aminimizer of the corresponding f -divergence. For the construction
of such a divergence in general case, it is convenient to define the convex functions h in (1) with values on an extended real
linewith additional possible value+∞. This is a natural general definition of convex functions [30]. In case 1 (µ ≤ 0, λ2 > 0,
and f increases), we can take in (25), (26) without loss of generality µ = 0, f (x) = g(x2), and g(y) = f

√
y

. The

monotonically increasing function g(y) is, therefore, defined on [0,∞) with the set of values [g, g), where g = f (0) ≥

0, g = limx→∞ f (x) > 0 and the upper limit may be finite or infinite. The inverse function ξ(z) is defined for z ∈ [g, g)with
the interval of values [0,∞). Let us take

h′(z) =

0 if z < g;
ξ(z) if z ∈ [g, g);
∞ if z ≥ g;

h(z) =


0 if z < g; z

g
ξ(ς)dς if z ∈ [g, g];

∞ if z > g.

(27)

The improper integral
 g
g ξ(ς)dς may take finite or infinite values.

Similarly, in case 2 (µ ≤ 0 and λ2 < 0, f decreases) we define g(y) = f
√

−y

for y ∈ (−∞, 0]. The function g(y)

monotonically increases and takes values on (g, g], where g = limx→∞ f (x) and g = f (0). The inverse function ξ(z) is
defined for z ∈ (g, g] with the interval of values (−∞, 0]. In this case, we can take

h′(z) =

−∞ if z < g;
ξ(z) if z ∈ (g, g];
0 if z > g;

h(z) =


∞ if z ≤ g;

−

 g

z
ξ(ς)dς if z ∈ [g, g];

0 if z > g.

(28)

In case 3, the construction is almost the same as for the case 1 but f (x) = g((x − µ)2) and g(y) = f
√

y + µ

. In this

case, g(y) is amonotonically increasing function defined on the interval [0,∞)with the set of values [g, g), where g = f (µ)
and g = limx→∞ f (x). Similarly, for case 4, the construction of h(z) is almost the same as in case 2.

Thus, for every distribution in the form (26) we can find a f -divergence Hh(P ∥ P∗), which conditional minimization
produces this distribution. For example, if in (26) f (x) = axβ then we can take h in the form h(z) =

β

β+2 (z/a)
1+2/β .

5. Conclusion

The Maxallent approach aims to bring some order to the modern anarchy of the measures of disorder. If there is no clear
idea which entropy is better then we have to use all of them together.

The Markov order approach was also proposed as an alternative to the entropic anarchism. It is based on the idea that
the disorder has to increase in random processes with given equilibrium distribution, which is considered as the maximally
disordered state. Here, we have proved that these two approaches produce the same conditional minimizers on the planes
of given values of moments (Theorem 1).

In this paper, we have considered several relations between positive distributions:

1. P0
≻

0
P∗ P1 if there exists a Markov chain with equilibrium P∗ such that for the solution of the Kolmogorov equation P(t)

with P(0) = P0 we have P(1) = P1;
2. P0

≻P∗ P1 if there exist integrable bounded functions qij(t) (i, j = 1, . . . , n, i ≠ j, t ≥ 0) such that qij(t) satisfy the
balance condition (6) for given P∗ (p∗

i > 0) (for all t ≥ 0), and P(1) = P1 for solution P(t) of the equations

dpi
dt

=


j, j≠i

(qij(t)pj − qji(t)pi) (i = 1, . . . , n)

with P(0) = P0 (that is, ≻P∗ is the transitive closure of ≻0
P∗ );

3. P0>H,P∗ P1 if Hh(P0
∥ P∗) > Hh(P1

∥ P∗) for all strictly convex functions h(x) on a semi-axis x ≥ 0.
4. P0>P0,P∗ P1 if P1

−P0
∈ Q(P0, P∗), whereQ(P0, P∗) is the cone of possible velocities dP/dt (13) at point P0 for all Markov

chains with equilibrium P∗.

All these relations are different. Three of them are antisymmetric, and one, P0>P0,P∗ P1, is locally antisymmetric, in a vicinity
of P0. Their interrelations are described by the follows implications:

(P0
≻

0
P∗ P1) ⇒ (P0

≻P∗ P1) ⇒ (P0>H,P∗ P1) ⇒ (P0>P0,P∗ P1).
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The local Markov order P0>P∗ P1 is the weakest and the connection by a solution of the Kolmogorov equation P0
≻

0
P∗ P1

is the strongest of these relations. Nevertheless, locally, in a small vicinity of a positive non-equilibrium distribution P0,
these relations coincide and they define the same set of locally minimal distributions on a linear manifold of conditions L
(Propositions 1, 2, Theorem 1, Corollaries 1–3).

Of course, there is the other, the classical way to reduce the variability of the measures of disorder. The divergences
H(P ∥ P∗) can be defined by their main properties. This is an axiomatic approach: we postulate some ‘‘natural properties’’
of the divergence, then find the divergenceswith these properties, evaluate the result and decidewhetherwe have to change
the systemof axiomor not. The axiomatic approach to definition of entropywas used by Shannon [5] and elaborated in detail
by Khinchin [35].

Two distinguished additivity properties are important for the Maxent reasoning:

• Additivity on the algebra of states: H(P ∥ P∗) is a sum in states

H(P ∥ P∗) =


i

η(pi, p∗

i ).

• Additivitywith respect to the joining of independent subsystems. Thismeans that if P and P∗ are products of distributions
thenH(P ∥ P∗) is the sum of the corresponding entropies: if P = (pjl) = (qjrl) and P∗

= (p∗

jl) = (q∗

j r
∗

l ) thenH(P ∥ P∗) =

H(Q ∥ Q ∗)+ H(R ∥ R∗).

The first additivity property implies that the restriction of theMaxent distribution on a subset of the event spaceΩ is also
a Maxent distribution if the condition functionals are also additive on the algebra of states. The second additivity property
implies that the Maxent distribution is a product of the Maxent distributions of subsystems if the condition functionals are
additive with respect to the joining of subsystems and the equilibrium is a product of distributions. For more details we
refer, for example, to the review in [21].

If we join the first additivity property with the requirement that the divergence should be a Lyapunov function for
all Markov chains with equilibrium P∗ then we get Hh(P ∥ P∗) of the form (1) [19–21]. If we add the second additivity
property and require continuity of Hh(P ∥ P∗) for all values of P (including vectors with some pi = 0) then the classical
Boltzmann–Gibbs–Shannon relative entropy will be the only possibility (that is, Hh(P ∥ P∗) with h(x) = x ln x up to
unimportant constant factors and summand). If we relax the requirement of the continuity to the set of strictly positive
distributions then we will get the one-parametric family Hh(P ∥ P∗)with h(x) = βx ln x − (1 − β) ln x [19,21].

Let us accept the point of view that the divergency is an order. Then the values are not important and all the divergencies
connected by a monotonic transformation of a scale, H = f (H ′) (with a monotonically increasing f ), are equivalent. If the
first additivity property is valid in one scale, and the second may be valid in another one, then one more one-parametric
family appear, the Cressie–Read divergences (see Appendix A) [19,21]. The Tsallis entropy is a particular case of them. The
Boltzmann–Gibbs–Shannon relative entropy (or the Kullback–Leibler entropy, which is the same), the convex combination
of Hh(P ∥ P∗) and Hh(P∗

∥ P) for h(x) = x ln x, and the Cressie–Read divergences (including the Tsallis relative entropy)
form the ‘‘entropic aristocracy’’ distinguished mostly by the additivity properties.

If we accept the additivity on the algebra of states (i.e., the trace form) and the additivity with respect to joining
of independent subsystems, both, then we have to use some of these functions. If additivity with respect to joining of
independent subsystems seems to be too restrictive then we have to take the wider class of divergencies, for example,
Hh(P ∥ P∗) of the form (1). If we reject the requirement of the trace form then the variety of the admissible divergences
becomes even richer. This uncertainty in the choice of divergence forces us to use the Maxallent approach.

The Maxallent approach produces a set of conditionally maximally disordered distributions instead of a single
distribution that maximizes a selected distinguished entropy in the usual Maxent method. These Maxallent sets of
distributions may be considered as probabilistic analogues of the type-2 fuzzy sets introduced by L. Zadeh [36] to capture
the uncertainty of the fuzzy systems. The Maxallent approach is invented to manage the uncertainty of the measures of
uncertainty. If there is no uncertainty of uncertainty then the set of distributions reduces to a single distribution.

The decomposition theorems for Markov chains provide us with tools for the efficient calculation of the Markov order.
Following [27], we compare the general Markov chains and the reversible chains with detailed balance. For any general
chain there is a reversible chain with the same velocity vector at a given point. The classes of general and reversible chains
locally coincide because they have the same cone of possible velocities at every non-equilibrium distribution (the second
decomposition theorem, Appendix B). This theoremgives us the possibility to describe the set of the conditionallymaximally
uncertain distributions combinatorially, in the finite form (21).

For the classical Boltzmann–Gibbs–Shannon entropy the distribution on R+ with two given moments has the Gaussian
form a exp(−b(x − c)2). The class of the Maxallent distributions on R+ with two given moments is also simple (26) but
much richer. It can be produced by multiplication of the Boltzmann distribution (23) by a monotonic function or unimodal
function (with one local maximum) or by a function with one local minimum.

There exists an attractive possibility: if a distribution can be obtained in the Maxallent approach then it is a conditional
minimumof a divergence. If we find or guess a distribution of theMaxallent type for an empirical system thenwe can restore
the divergence and then use it in the standard Maxent reasoning.

The Maxallent approach is, surprisingly, efficient enough to analyze some practical problems. It gives an answer that
does not depend on the subjective choice and, therefore, returns us to the ‘‘mission’’ of information theory: ‘‘to eliminate
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the psychological factors involved . . .’’ [4]. At the same time, it has a solid basis in the theory of Lyapunov functions for the
Kolmogorov equations.

Now, essential mathematical work on the basic notion of entropy is needed. Gromov suggests that the natural
mathematical language for this work will involve nonstandard analysis and category theory [37]. These abstract languages
seem to be closer to the basic intuition than the set theory of Cantor and the ε − δ reasoning of the classical analysis.
Nevertheless, the basic idea of Maxallent is so simple and natural, that it should persist in the future advanced theory of
entropy: order is something that decreases in Markov processes.

Appendix A. The most popular examples of Hh(P ∥ P∗)

The most popular examples of Hh(P ∥ P∗) are [21]:

1. Let h(x) be the step function, h(x) = 0 if x = 0 and h(x) = −1 if x > 0. In this case,

Hh(P ∥ P∗) = −


i, pi>0

1. (29)

The quantity−Hh is the number of non-zero probabilities pi and does not depend on P∗. Sometimes it is called theHartley
entropy.

2. h = |x − 1|,

Hh(P ∥ P∗) =


i

|pi − p∗

i |;

this is the l1-distance between P and P∗.
3. h = x ln x,

Hh(P ∥ P∗) =


i

pi ln


pi
p∗

i


= DKL(P ∥ P∗); (30)

this is the usual Kullback–Leibler divergence or the relative Boltzmann–Gibbs–Shannon (BGS) entropy;
4. h = − ln x,

Hh(P ∥ P∗) = −


i

p∗

i ln


pi
p∗

i


= DKL(P∗

∥ P); (31)

this is the relative Burg entropy. It is obvious that this is again the Kullback–Leibler divergence, but for another order of
arguments.

5. Convex combinations of h = x ln x and h = − ln x also produces a remarkable family of divergences: h = βx ln x −

(1 − β) ln x (β ∈ [0, 1]),

Hh(P ∥ P∗) = βDKL(P ∥ P∗)+ (1 − β)DKL(P∗
∥ P); (32)

this convex combination of divergences was used by Gorban in the early 1980s [38] and studied further by Gorban and
Karlin [39]. It becomes a symmetric functional of (P, P∗) for β = 1/2. There exists a special name for this case, ‘‘Jeffreys’
entropy’’.

6. h =
(x−1)2

2 ,

Hh(P ∥ P∗) =
1
2


i

(pi − p∗

i )
2

p∗

i
= H2(P ∥ P∗); (33)

this is the quadratic term in the Taylor expansion of the relative Boltzmann–Gibbs–Shannon entropy, DKL(P ∥ P∗), near
equilibrium. We have used its time derivative in (8).

7. h =
x(xλ−1)
λ(λ+1) ,

Hh(P ∥ P∗) =
1

λ(λ+ 1)


i

pi


pi
p∗

i

λ
− 1


; (34)

this is the Cressie–Read (CR) family of power divergences [40] (the modern exposition of the history, properties and
applications of these entropies is presented in [41]). For this family we use the notation HCR λ. If λ → 0 then HCR λ →

DKL(P ∥ P∗), this is the classical BGS relative entropy; if λ → −1 then HCR λ → DKL(P∗
∥ P), this is the relative Burg

entropy.
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8. For the CR family in the limits λ → ±∞ only the maximal terms ‘‘survive’’. Exactly as we get the limit l∞ of lp norms for
p → ∞, we can use (λ(λ+ 1)HCR λ)

1/|λ| for λ → ±∞ and write in these limits:

HCR ∞(P ∥ P∗) = max
i


pi
p∗

i


− 1; (35)

HCR −∞(P ∥ P∗) = max
i


p∗

i

pi


− 1. (36)

The existence of two limiting divergences HCR ±∞ seems very natural: there may be two types of extremely non-
equilibrium states: with a high excess of current probability pi above p∗

i and, inversely, with an extremely small current
probability pi with respect to p∗

i .
9. The Tsallis relative entropy [42]: h =

(xα−x)
α−1 , α > 0,

Hh(P ∥ P∗) =
1

α − 1


i

pi


pi
p∗

i

α−1

− 1


. (37)

For this family we use notation HTs α.

Appendix B. The decomposition theorems

The first decomposition theorem. Every Markov chain with a positive equilibrium is a conic combination of simple cycles with
the same equilibrium.

Proof. If a non-zero Markov chain has a positive equilibrium then it cannot be acyclic: there exists at least one oriented
cycle of transitions with non-zero rate constants. The length of this cycle can vary from 2 to n. The set of all Markov chains
with a positive equilibrium P∗ is an intersection of a linear subspace given by the balance equations (6) with the positive
orthant Rn(n−1)

+ . This is a polyhedral cone which does not include a whole straight line. It is well known in convex geometry
that every such polyhedral cone is a convex hull of a finite number of its extreme rays [30]. A ray l with direction vector
x ≠ 0 is a set l = {κx} (κ ≥ 0). By definition, it is an extreme ray of a cone Q if for any u ∈ l and any x, y ∈ Q, whenever
u = (x + y)/2, we must have x, y ∈ l.

Any extreme ray of the cone of Markov chains with equilibrium P∗ is a simple cycle Ai1 → · · · → Aik → Ai1 with rate
constants qij+1 ij = κ/p∗

j . Indeed, let a non-zero Markov chain Q with coefficients qij belong to an extreme ray of this cone.
This chain includes a simple cycle with non-zero coefficients, Ai1 → · · · → Aik → Ai1 (k ≤ n, all the numbers i1, . . . , ik are
different, qij+1 ij > 0 for j = 1, . . . , k, and ik+1 = i1). For sufficiently small κ (0 < κ < κ0), qij+1 ij −

κ
p∗
ij
> 0 (j = 1, . . . , k). Let

Qκ be the same simple cyclewith the rate constants qij+1 ij = κ/p∗

j . Then for 0 < κ < κ0 vectorsQ±Qκ also representMarkov
chains with the equilibrium P∗. Obviously, Q =

(Q+Qκ )+(Q−Qκ )
2 , hence, Q should be proportional to Qκ , by the definition of

extreme rays.
So, any Markov chain with a positive equilibrium P∗ is a linear combination with positive coefficients of the cycles with

the same equilibrium. This decomposition is global, it does not depend on the current distribution P . �

The second decomposition theorem. For every Markov chain with a positive equilibrium P∗ and any probability distribution
P0 the vector dP/dt|P0 is a conic combination of the vectors dP/dt|P0 for the simple cycles of length two Ai 
 Aj with the same
equilibrium.

Proof. Let us start from a simple cycle A1 → A2 → · · · → An → A1 with the constants qi+1i = 1/p∗

i , where p∗

i > 0 is the
equilibrium. At a non-equilibrium distribution P the right hand side of Eq. (5) is the vector dP/dt = vn with coordinates

dpj
dt

= (vn)j =
pj−1

p∗

j−1
−

pj
p∗

j
. (38)

The flux Aj → Aj+1 is pj/p∗

j . Let us find Aj with the minimum value of this flux and, for convenience, let us put this Aj in
the first position by a cyclic permutation. We will represent the right hand side vector vn in the form

vn = vn−1 + κv2,

where vn−1 corresponds to the cycle of the length n − 1, A2 → · · · An → A2, with the rate constants qi+1i = 1/p∗

i
(and the cyclic convention n + 1 = 2), v2 corresponds to the cycle of the length 2, A1 
 A2, with the rate constants
q21 = 1/p∗

1, q12 = 1/p∗

2 , and κ ≥ 0. Both velocities vn−1 and v2 should be calculated for the same distribution P .
We find the constant κ from the conditions: vn = vn−1 + κv2 at the point P , hence, the two following reaction schemes,

(a) and (b), should have the same velocities, dP/dt:

(a) An
1/p∗

n
−−→ A1

1/p∗
1

−−→ A2 and (b) An
1/p∗

n
−−→ A2; A1

κ/p∗
1



κ/p∗

2

A2.
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From this condition,

κ =


pn
p∗
n

−
p1
p∗

1


p2
p∗

2
−

p1
p∗

1

−1

.

The inequality κ ≥ 0 holds because p1/p∗

1 is the minimal value of the flux pj/p∗

j .
We just delete the vertex with the smallest outgoing flux from the initial cycle of length n and add a cycle of the length

2 with the same equilibrium. Let us repeat this operation for the remaining cycle of length n − 1, and so on. At the end, the
left hand side vector vn will be represented as the combination with positive coefficients the vectors dP/dt for the cycles of
length 2, Ai 
 Aj with the same equilibrium. This is the system with detailed balance. We have to stress here that the set of
these transitions and the coefficients κ depend on the current distribution P .

For every distribution P , the velocity dP/dt of every cycle with equilibrium P∗ is a combination with positive coefficients
of the velocities for some cycles of the length two Ai 
 Aj with the same equilibrium. Therefore, the right hand side of the
Kolmogorov equation for any Markov chain with equilibrium P∗ also allows such a decomposition.

It is necessary to stress that the decomposition of the right hand side of the Kolmogorov equation (5) into a conic
combination of cycles of length 2 depends on the ordering of the ratios pi/p∗

i and cannot be performed for all values of
P simultaneously. �

For more details and further references see [27].
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