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Abstract A pseudo-outcrop visualization is demonstrated for borehole and full-
diameter rock core images to augment the ubiquitous unwrapped cylinder view and
thereby assist nonspecialist interpreters. The pseudo-outcrop visualization is equiva-
lent to a nonlinear projection of the image from borehole to earth frame of reference
that creates a solid volume sliced longitudinally to reveal two or more faces in which
the orientations of geological features indicate what is observed in the subsurface.
A proxy for grain size is used to modulate the external dimensions of the plot to
mimic profiles seen in real outcrops. The volume is created from a mixture of geo-
logical boundary elements and texture, the latter being the residue after the sum of
boundary elements is subtracted from the original data. In the case of measurements
from wireline microresistivity tools, whose circumferential coverage is substantially
<100%, the missing circumferential data are first inpainted using multiscale direc-
tional transforms, which decompose the image into its elemental building structures,
before reconstructing the full image. The pseudo-outcrop view enables direct observa-
tion of the angular relationships between features and aids visual comparison between
borehole and core images, especially for the interested nonspecialist.
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1 Introduction

A common starting point for geological analysis of circumferential images from bore-
holes and full-diameter cores is identification of the types and orientations of bed
boundaries and other discontinuities (Rider and Kennedy 2011). Analysts determine
the orientation of individual features and examine the ways in which the orientation of
successive boundaries evolves over depth to delineate local structures and infer depo-
sitional environments. In combination with other data at a variety of scales, image data
help refine geological models and define flow units and baffles in reservoir models.
Image data also correlate with variations in mineralogy, porosity, and fluid content,
making them useful in petrophysical analysis (Xu and Torres-Verdín 2013; Fu et al.
2016). Additional textural information may be available from optical surface scans
of full-diameter rock cores; correlating these with borehole images in the same well
allows the core and its features to be oriented in the earth’s frame of reference via
orientation data acquired by the logging tool.

High-resolution borehole images are routinely recorded, yet they are largely under-
utilized because of a lack of understanding of the data (Joubert et al. 2016). A
contributing factor is the way in which the data are visualized; note that similar visu-
alizations are applied to circumferential scans of full-diameter cores. Both types of
image are commonly displayed as unwrapped cylinders inwhich planar features appear
as sinusoids, and appropriate software is needed to compute their individual orienta-
tions. The cylinder view has the advantage of being straightforward to generate, but it
requires a mental transformation to visualize the angular relationships that would be
observed in outcrops.

To observe boundary orientations in the earth’s frame of reference, a solid volume
corresponding to the material removed from the borehole must be constructed and
sliced vertically in two planes. Modulating the external dimensions with a proxy for
grain size gives a two-sided pseudo-outcrop view in which planar features are seen
to be planar (rather than sinusoidal), and the angular relationships between them are
observed directly without reference to other plots. All the information available to the
reconstruction is located on the borehole wall or core surface; the interior has not been
sampled. This differs from the typical three-dimensional (3D) inpainting problem in
which the interior of an object is partially sampled. Aspect ratio is another differentiat-
ing characteristic, because borehole images are long relative to their diameter. Image
logs from a typical 0.2-m-diameter well commonly exceed 1000m in length; for the
datasets examined here, the depth sample increment is 2mm with 176 circumferential
samples. It is desirable to visualize these data quickly.

In the case of wireline tool microresistivity measurements, current flows from indi-
vidual 4-mm-diameter electrodes arranged in rows and inlaid in pads pressed against
the borehole wall (Fig. 1a). In small-diameter wells, the rows overlap circumferen-
tially to give full coverage, but when the well diameter exceeds approximately 150mm
(Fig. 1c), the space between pads creates longitudinal gaps in the image (Fig. 1b). The
gaps are bound by linear margins in the tool’s frame of reference. Any 3D inpainting
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Fig. 1 Microresistivity borehole imaging tool: pad section (a), unwrapped image (b), and circumferential
coverage as function of borehole diameter (c)

solution must handle the gaps directly; alternatively, a two-dimensional (2D) inpaint-
ing solution must be applied as a preprocessing step.

In general, there are two classes of algorithms for filling holes in digital images:
texture synthesis and inpainting (Criminisi et al. 2004). The former has been demon-
strated for repeating patterns with some stochasticity, and the latter for linear and
curvilinear structures such as object contours. Both classes of algorithm have been
applied to borehole images. The statistical properties of the measured parts were used
by Hurley and Zhang (2011) to generate realizations for filling the gaps in microre-
sistivity images. This method can be appropriate for images dominated by textural
features, such as vugs typical of carbonate rock formations, but achieving continuity
across gap boundaries can be problematic, whichmakes it less well suited to images of
rocks with complex curvilinear structures. This limitation is addressed by constraining
the selection of realizations with structural information from locally adapted kernel
regression (Takeda et al. 2007; Zhang et al. 2016). An inpainting method based on
compressed sensing has been shown to successfully reconstruct full circumferential
coverage in borehole images with up to 30% coverage loss and up to 50% in favorable
cases (Assous et al. 2014). The inpainting method builds on the general idea of mini-
mizing the data required to represent information, which it seeks to do with the fewest
multiscale directional transform coefficients such that reversing the process recovers
the full data, including parts missing from the original samples (Elad et al. 2005). The
images are decomposed into elemental building structures (textures and piecewise-
smooth parts) that are combined to represent observed features (Starck et al. 2005).
This method is well suited to images containing bedding surfaces, fractures, slumps,
clasts, and other curvilinear features typical of clastic rock formations and (depending
on the choice of directional transform) is also able to handle textural elements.

Two-dimensional inpainting techniques have been extended to three dimensions
for a variety of applications. In particular, multipoint geostatistics has been applied
to filling gaps in micro-computed tomography scans of porous rocks by extracting
characteristics from a training image to generate a database of characteristics from
which structures are selected to complete the missing parts in the target image (Zhang
and Du 2014). Statistical methods have also been applied to the creation of volumetric
textures from 2D samples (Chen and Wang 2010; Urs et al. 2014). The compressed
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sensing approach has also been extended to three dimensions; new multiscale direc-
tional transforms that enable the true geometry of 3D objects to be captured have been
designed (while avoiding the risk of misrepresentation from slice-by-slice processing)
(Woiselle et al. 2011).

An alternative method is designed to be useful for images in which the primary
structural elements are planar or subplanar at borehole/core scale. This is the case
in many hydrocarbon-bearing siliciclastic rocks logged by microresistivity imaging
tools. The method will propagate solid textures but not necessarily in an optimal way.
It can be easily combined with any advanced method of texture analysis if textural
elements are the primary interest (such as in vuggy carbonates). It is tested on several
real-life examples.

This paper comprises three sections: “Description of the Method,” “Results,” and
“Conclusions.”

2 Description of the Method

The principal steps in constructing the 3D volume are as follows:

1. Divide the log into overlapping depth windows. In each window, identify the
dominant set of planar/subplanar geological features and remove them from the
image. This is level 1 decomposition.

2. Identify the dominant planar feature set within the residual image and subtract
it. This is level 2 decomposition. Repeat the process several times until all of the
subsidiary planar geological features are identified and the final residual image
contains only nonplanar features. The image may include strongly nonplanar fea-
tures and a host of other features that are localized azimuthally and will be referred
to as residual texture.

3. Identify functions to represent the shape of the primary geological feature and each
subsidiary feature for all the levels of decomposition, and use these to construct a
synthesized volume.

4. Propagate the residual textures through the volume.

Once created, the volume is visualized by, for example, making two longitudi-
nal cuts through the oriented volume to expose a wedge of material, which allows
examination of the orientations of geological features and their relationships in the
earth’s frame of reference. Additional information from the image measurement can
be encoded as variations in the external dimensions of the wedge.

An image of a borehole wall is presented in several coordinate systems in Fig. 2. Let
us consider one of the overlapping depth windows as a cylinder (Fig. 2c). Before the
earth frame transformation begins, the raw image-log data are processed in the usual
way and stored in an array fi j , where i = 1, . . . , H are rows corresponding to depth
and j = 1, . . . , N are columns corresponding to circumferential location (Fig. 2a).
These 2D arrays correspond to the surface of a cylinder (Fig. 2c). The borehole has
nominal radius R, and the step between rows is h. Note that the data are discrete
with step h in the vertical direction, and fi j is the restriction of a scalar field f to the
surface of the borehole. Each position (i, j) in the array fi j corresponds to the space
radius-vector ri j from the origin O to the point on the cylinder surface.
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Fig. 2 Standard 2D borehole
image (a), 2D image after
subtraction of the dominant dip
sinusoid from the ordinate (b),
and cylindrical borehole surface
in 3D coordinate system (c)

Some of the fi j may correspond to missing or bad measurements, so a mask mi j is
used to identify the locations of valid values, in which a value of 1 is used if a given
fi j is known and 0 is used if fi j is unknown. At this point it may be advantageous to
construct a full circumferential coverage image by application of the morphological
components analysis method (Assous et al. 2014).

The planar structure shown in Fig. 3 is an important part of the method. Two angles,
φ and ψ , describe the planes relative to a reference direction (True North in this case),
and a distance coordinate identifies the stack of planes by sequence number. The
fragment of the borehole between two neighboring planes is called a slice. The polar
angle φ ∈ [0, π/2] is the angle that the normal vector n to the planes makes with the
vertical axis. The azimuthal angle ψ ∈ [0, 2π ] is the angle that the projection of the
normal onto the base of the cylinder makes with True North. For the degenerate case
of zero φ, the value of ψ is set to zero. Three examples illustrate the idea in Fig. 3,
with Fig. 3a being a reference configuration. In Fig. 3b an increase in φ corresponds
to a higher angle of dip, and in (Fig. 3c) the angleψ has decreased such that the planes
have the same dip but the high point of the planes is rotated to a different position. All
slices that have substantially the same angles φ and ψ are designated as a slice family
Sφψ .

In the Cartesian coordinate system (Fig. 4), the origin O is located at the center of
the upper base of a cylinder, the y-axis is directed towards True North, and the x and
y coordinates of the point fi j are defined as

xi j = R sin α j , yi j = R cosα j , (1)
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Fig. 3 Reference slope and orientation of planes (a), steeper planes with increased φ (b), and rotated planes
with decreased ψ (c)

where α j is the angle between the y-axis and the point fi j for the j column and is
defined as

α j = 2π j

N
. (2)

The z-axis is directed downward, and the z-coordinate of the point fi j is given by

zi j = h(i − 1). (3)

Assuming that all slices in the family have the same constant thickness equal to the
spacing h between adjacent members of the slice family, it is possible to enumerate
the slices in the slice family by distance from the origin O . The Cartesian form of the
unit normal vector n is

xn = sin φ sinψ, yn = sin φ cosψ, zn = cosφ. (4)

The directed length of the projection of the vector ri j on the unit normal vector is
the dot product of the unit normal vector n and the vector ri j

pi j = n · ri j = R sin φ cos(ψ − α j ) + h(i − 1) cosφ. (5)
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Fig. 4 Cartesian coordinate system (a), True North reference (b), and planar slices (c)

The enumeration of the slice is then this length divided by the depth of one slice h

νi j =
[ pi j
h

]
=

[
R

h
sin φ cos(ψ − α j ) + (i − 1) cosφ

]
, (6)

where [·] is rounding to the nearest integer. This describes the slice family and the
number of the slice within the family.

All points in slice p of an ideal slice family have the same value f (p). The best
set of planes is computed by minimizing the variance of the residual of the actual data
after subtraction of the approximation

V (φ,ψ) = var( f, Sφψ) = 1∑
i j mi j

∑
mi j=1

(
fi j − f (νi j )

)2
. (7)

It can be easily shown that the optimal slice constant f (p) is the mean of all points
fi j of this slice

f (p) =
∑

νi j=p,mi j=1 fi j∑
vi j=p mi j

. (8)

Three images of real borehole walls were selected for the case study (Fig. 5a–c).
The initial images, the dominant dip sets, the dominant dip sets plus second-, third-,
and fourth-level dips, and sums of dip sets plus residual texture (the “total” column)
are presented in Fig. 5 for all cases. The model slice family is found by minimizing the
expression (7) over all polar and azimuthal angles. Surfaces of this function, which
depends on a particular choice of angles, are presented in Fig. 6 for boreholewalls from
Fig. 5. The second (local) minimum on the bottom surface corresponds approximately
to the second dip of the case in Fig. 5c. There appear no problems discretizing the
slices when they are parallel to the borehole because of convenient parameterization.
The Nelder–Mead algorithm (Algorithm 1) (Nelder and Mead 1965) is used with
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Fig. 5 Three images for the case study: imagewith 65% circumferential coverage (a), 65% circumferential
coverage, two-dimensionally inpainted (b), and 95% coverage (c)
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Fig. 6 Two-dimensional plots of variance of residual (7) for the dominant dip calculated for the borehole
wall images in Fig. 5a–c (in the same order)

several random starts to seek the minimum of the residual (7). The random starts were
repeated until the best solution appeared twice within specified accuracy. Practically,
the global minimum of the residual variance has a large domain of attraction and
minimization is not significantly difficult or computationally expensive if the depth
of the window exceeds its circumference (the width). If the aspect ratio approaches 1
(a rare situation), then the optimization landscape becomes more noisy and a special
smoothing is needed for optimization. If the optimization landscape is smooth (Fig. 6)
and the domain of attraction for the global minimum is large, then the solution of the
optimization problem is expected to be robust with respect to small perturbations.
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Algorithm 1Minimization of function V (φ,ψ) (7)
1: α ← 1, β ← 2, γ ← 0.5, σ ← 0.5 � Initiate parameters of the Nelder–Mead algorithm
2: ψ1 ← 0, φ1 ← 0, V ∗ ← 2V (0, 0), ε ← 0.0001 � Initiate search parameters
3: repeat � Search of the second case of the best solution within specified accuracy
4: if V ∗ > V (ψ1, φ1) then
5: ψ∗ ← ψ1, φ

∗ ← φ1, V
∗ ← V (ψ1, φ1) � Save the best solution

6: ψ1 ← 2πr1, φ1 ← πr2/2 � Generate center of simplex; r1, r2 are random numbers
7: ψ2 ← ψ1 + π, φ2 ← φ1, ψ3 ← ψ1, φ3 ← φ1 + π/4 � Complete simplex
8: repeat � the Nelder–Mead search for specified initial point
9: Sort vertices to hold V (ψ1, φ1) ≤ V (ψ2, φ2) ≤ V (ψ3, φ3) � Ordering
10: ψc ← (ψ1 + ψ2)/2, φc ← (φ1 + φ2)/2 � Centroid calculation
11: ψr ← ψc + α(ψc − ψ3), φr ← φc + α(φc − φ3) � Calculate reflection point
12: if V (ψ1, φ1) ≤ V (ψr , φr ) < V (ψ2, φ2) then
13: ψ3 ← ψr , φ3 ← φr � Reflection
14: else if (V (ψr , φr ) ≤ V (ψ1, φ1)) then
15: ψe ← ψc + β(ψr − ψc), φe ← φc + β(φr − φc) � Calculate expansion point
16: if (V (ψe, φe) ≤ V (ψr , φr )) then
17: ψ3 ← ψe, φ3 ← φe � Expanding
18: else
19: ψ3 ← ψr , φ3 ← φr � Reflection
20: else � Now V (ψr , φr ) ≥ V (ψ2, φ2)

21: ψco ← ψc + γ (ψ3 − ψc), φco ← φc + γ (φ3 − φc) � Calculate contraction point
22: if V (ψco, φco) ≤ V (ψ3, φ3) then
23: ψ3 ← ψco, φ3 ← φco � Contracting
24: else
25: ψ j ← ψ1 + σ(ψ j − ψ1), φ j ← φ1 + σ(φ j − φ1), j = 2, 3 � Shrinking

26: until mini, j |ψi − ψ j | ≤ ε and mini, j |φi − φ j | ≤ ε

27: until |ψ∗ − ψ1| ≤ ε and |φ∗ + φ1| ≤ ε

After finding the best slice family, the residual field is computed by subtracting the
values on the slice family found from the known field f

res1i j = fi j − s1i j ,∀mi j = 1,

where s1i j is the value of approximation of the field f at the point i j by the best slice

family. This value is equal to f (νi j ). The secondary slice structure s2 is found by
repeating the same procedure for the residual random field r1 instead of f . Thus,
recursively a sequence of layers s1, s2, . . . , sL can be removed until the statistics of
the residual are more or less random (or at a user-selected level), leaving behind a field
that is considered to be residual texture, denoted by ti j .

One value of the field is assigned per slice. This is the mean of all values fi j of
this slice f (p). This value is considered as a constant when extended in the modeled
volume. For each k = 1, . . . , L , the slice sk is inpainted by this value inside the
cylinder. These functions sk(x, y, z) are called below the boundary elements. The
boundary element sk+1(x, y, z) provides the best approximation of the residual

reski j = fi j −
k∑

q=1

sqi j (9)
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Fig. 7 Original image and different levels sk (k = 1, . . . , 5) of the decomposition for the case in Fig. 5b.
The values of sk are rescaled to the standard maximum and minimum

on the cylinder boundary by the function, which is constant in every slice from a
system of parallel slices. The approximation of the image is a sum of these boundary
elements (9). This sum is not constant in any slice for k > 1 for a general situation
when the original field fi j is not constant in a slice.

The first level s1 in Fig. 5 (the second column) dominates in the decomposition.
Figure 7 concerns the case in Fig. 5b. It represents the information brought from each
level separately for five levels. In this case, the variance of sk for k > 1 is much less
than the variance of s1. The residuals after subtraction of the approximations of various
levels for the same real-life case are presented in Fig. 8. The variance of the residual
decreases at each step. The final residual is used for generation of the residual texture.
It is clear from Fig. 8 that, in this example, the residual does not change significantly
after the third step.

To compute a value inside the volume, it is sufficient to identify the appropriate slices
to which the point belongs at each level of this decomposition and then to compute the
value of the residual texture inside the volume. For this purpose, modeling of residual
texture as a 3Dmoving average field (Francos and Friedlander 1998; Ojeda et al. 2010)
is employed with calibration of the results to the observed statistics on the boundary
of the borehole. Autocorrelations of this field are evaluated by its boundary values and
are used for continuation of the field inside the volume.

The problem of selecting the best number of boundary elements is very similar to
the problem of selecting the number of principal components in signal approximation,
and there are several useful heuristics for its solution Cangelosi and Goriely (2007).
Usually, the first 3–5 boundary elements approximate the field quite well, and the rest
is left for the random field of texture. In Fig. 9, fraction of variance unexplained (FUV)
plots are presented as a function of the number of layers for the images used in the case
study (Fig. 5). The variance of the residual decreases monotonically, but this decrease

123



958 Math Geosci (2017) 49:947–964

100

200

300

400

500

600

700

800

900

1000
50 150 250 50 150 250 50 150 250 50 150 250 50 150 250 50 150 250

Original Level 1 Level 2 Level 3 Level 4 Level 5

Fig. 8 Original image and residuals resk (k = 1, . . . , 5) after extraction of the approximations. The values
of resk are rescaled to the standard maximum and minimum
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Fig. 9 FUV plots for the images presented in Fig. 5 as a function of number of slices used

could be slow (see Fig. 8, where the difference between level 4 and level 5 residuals
is not obvious).

This version of our algorithm seeks planar dominant features, but in principle,
other geological features might be identified. Subtracting these from the original data
leaves the subsidiary (i.e., less geologically significant) features which are isolated
by an iteration of the method. Each set of subsidiary features is subtracted from the
remaining data, and the process is repeated to isolate all of the significant subsidiary
sets. A quality-of-fit test is performed on each slice family as it is identified. Examples
of the sum of two-, three-, and four-slice families are presented in the corresponding
columns of Fig. 5.

To create the synthesized volume representing the rock removed during creation of
the borehole, the main function, the 2, . . . , L subsidiary functions, and the residual
texture are summed in accordance with the expression
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f̂i j =
L∑

l=1

sli j + ti j . (10)

This equation is termed the reconstruction algorithm and is exact on the boundary.
Moreover, for an arbitrary internal point of the cylinder p = (x, y, z), the angle α is
calculated as

α = arctan (y/x) (11)

(that being an analogue to α j in Fig. 4a), then the number of the slice in each slice
family k is calculated as

νk =
[
R sin φk cos(ψk − α) + z cosφk

h

]
, (12)

where φk and ψk are the angles that specify the slice family at level k. Then, Eq. (10)
is used to calculate the value of the field at this point.

The model matches the empirical boundary values exactly and preserves the statis-
tical properties of the residual texture inside the volume. This internal residual texture
is referred to as t . If necessary, this model can be improved by a multidimensional
autoregressive moving average approach or other texture analysis algorithm. There
are many geological events which could be classified as texture. Most of them have
specific geometries and may require specific tools for modeling. All these algorithms
may be applied after extraction of the planar layer structure.

The simple and universal moving average (MA) field is used for the modeling of
residuals. Let the residual field resi j = reski j (9) on the cylindric surface be given.
A MA field T (x, y, z) is constructed by averaging of 3D white noise in a sliding
window. The sliding window is selected in the form of a rectangular parallelepiped in
such a way that the horizontal and vertical correlation radii of T (x, y, z) coincide with
the correlation radii of the residual resi j evaluated on the surface. After finding the
dominant dip for the positive squared residual field res2i j , the field resi j is considered

in the corresponding slices ν. The meanμ(ν) and variance σ 2(ν) of resi j are evaluated
in each slice ν. The values of T (x, y, z) are shifted and scaled in each slice ν to have
the same mean μ(ν) and variance σ 2(ν). The result is used for the inpainting of the
texture.

This approach works satisfactorily if the residuals reski j are small enough with
respect to the layer structure (Fig. 8). If necessary, the model could be refined by using
more advanced MA and autoregressive models (Francos and Friedlander 1998; Ojeda
et al. 2010) or other universal approaches, including wavelet analysis and its various
generalizations (Portilla and Simoncelli 2000), adapted kernel regression methods
(Zhang et al. 2016), and methods from statistical physics (Wang et al. 2017), among
others. If the residual is not small, then the (multi)layer structure

∑L
l=1 s

l
i j is not

dominant in Eq. (10) and special tools for recognition and modeling of geological
structures may be needed.

The orientation of the structural or sedimentary structures may not be constant over
the window; in addition, the well path can also vary, thus one cannot expect that the

123



960 Math Geosci (2017) 49:947–964

0

100

200

300

400

500

600

700

800

900

1000
50 150 250 0 50 100

0

100

200

300

400

500

600

700

800

900

1000

(a) (b)

Fig. 10 Dependence of variance of residual (7) (ordinate) on depth of window z (abscissa) for the dominant
dip: (a) artificial combination and (b) the real case in Fig. 5b

sinusoids for a sufficiently long borehole will be strictly parallel. If the change of
direction in the sliding window is significant, then a special segmentation procedure is
needed. Fix a sliding window of the total depth d, with internal coordinate z ∈ [0, d].
Find the optimal dominant dip in a shorter sliding window [0, z] and calculate the
variance of residual (7) for this optimal approximation as a function of z: v(z). If
this function does not vary from a constant beyond a preselected tolerance level ε,
then no segmentation is needed. If v(z) deviates from the constant average value by
more than ε and a significant slope appears, then segmentation is necessary and the
point of segmentation is the break point of the optimal piecewise-linear approximation
of v(y). For a detailed description of segmentation algorithms, refer to the classical
review by Keogh et al. (2004). Examples of the function v(y) for the borehole images
are presented in Fig. 10 for two nonuniform images with segment infrastructure: an
artificial combination of two segments (Fig. 10a) and a real example with variable
structure (Fig. 10b) taken from Fig. 5b. The segmentation algorithm utilizes the same
calculationof residuals and searchof optimal dips as the basic approximation algorithm
does.

Selection of parallel planar slices for the boundary elements formalizes the idea
about planar geological structures. The choice of slices can be modified; For example,
instead of parallel planes the families of planes can be considered, which include a
given straight line outside the cylinder. In this case, instead of the 2D optimization
problem for function (7) on a hemisphere of normal vectorsn, one has to solve the four-
dimensional optimization problem in the space of straight lines. Algebraic surfaces
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Without texture With texture Without texture With texture

Without texture With texture

(a) (b)

(c)

Fig. 11 Vertical and horizontal cross-sections at three different depths reconstructed from the images in
Fig. 5a–c in the same order, with and without texture

provide many other possible choices of the families of slices, but introduction of each
sophisticated construction needs reasonable geological justification.

3 Results

Figure 5 shows three examples of surface reconstruction from initial images with
different circumferential coverage states. The starting point for the upper set of images
is Fig. 5a with 65% coverage, typical of a well drilled with a 203-mm (8-inch) bit.
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Fig. 12 Initial 2D inpainted
circumferential image (a) and
3D volume with two orthogonal
slices (b)

Successive slice families are shown in Fig. 5b–e, and Fig. 5f shows the reconstruction
formed from the sum of slice families plus residual texture. The reconstructed image
has all of the main geological features of the original and has additionally filled the
gaps present in the initial image. Filling the gaps in this way has introduced some
noise. The middle set of images is from another part of the same well, but this time
the initial image from Fig. 5a has been inpainted with the morphological components
analysis method of Assous et al. (2014), which reconstructs data missing in the gaps
without introducing noticeable noise. The lower set of images is from a well drilled
with a smaller bit, and the circumferential coverage is 100%. This example includes
many fine fractures in addition to the crossing of planar bed boundaries.

Figure 11 shows horizontal and vertical slices through the solid images recon-
structed from the images in Fig. 5. For each case, inpainted images with and without
texture are presented.

Figure 12 shows an initial image with surface inpainting displayed in the conven-
tional cylinder view and also a solid volume view created by taking two orthogonal
slices. Note that the planar geological features appear as curves on the conventional
view, and as planes in the solid volume view. Relative to the conventional view, there-
fore, the angular relationships between geological features in the solid volume view
are more straightforward for nonexpert interpreters to understand.

Finally, the method was applied to circumferential scans of fullbore core (Fig. 13).
In this case, the external surface of the solid volume has beenmodulatedwith a function
of the grey level as a proxy for grain size (an indicator of depositional environment
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Fig. 13 Fullbore core surface
scan (a) and pseudo-outcrop
visualization (b)

in sedimentary rocks). In the case of microresistivity images, a modulation based on
resistivity value can be used.

4 Conclusions

Image volumes created from circumferential microresistivity borehole images and
optical core scans have been used to create pseudo-rock outcrop visualizations to help
nonexpert interpreters understand the earth-frame angular relationships between geo-
logical features. Modulating the external dimensions of the volume with a proxy for
grain size adds information indicating depositional environment. The method focuses
on planar geological features and textures, but it could be developed to include more
complex structures. The method has been demonstrated on images with 65% circum-
ferential coverage, typical of images acquired with pad-based sensors.
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