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Handling of missed data is one of the main tasks in data preprocessing especially in large public service
datasets. We have analysed data from the Trauma Audit and Research Network (TARN) database, the
largest trauma database in Europe. For the analysis we used 165,559 trauma cases. Among them, there
are 19,289 cases (11.35%) with unknown outcome. We have demonstrated that these outcomes are not
missed ‘completely at random’ and, hence, it is impossible just to exclude these cases from analysis
despite the large amount of available data. We have developed a system of non-stationary Markov
models for the handling of missed outcomes and validated these models on the data of 15,437 patients
which arrived into TARN hospitals later than 24 h but within 30 days from injury. We used these Markov
models for the analysis of mortality. In particular, we corrected the observed fraction of death. Two naïve
approaches give 7.20% (available case study) or 6.36% (if we assume that all unknown outcomes are
‘alive’). The corrected value is 6.78%. Following the seminal paper of Trunkey (1983 [15]) the multi-
modality of mortality curves has become a much discussed idea. For the whole analysed TARN dataset
the coefficient of mortality monotonically decreases in time but the stratified analysis of the mortality
gives a different result: for lower severities the coefficient of mortality is a non-monotonic function of the
time after injury and may have maxima at the second and third weeks. The approach developed here can
be applied to various healthcare datasets which experience the problem of lost patients and missed
outcomes.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Enthusiasm for the use of big data in the improvement of
health service is huge but there is a concern that without proper
attention to some specific challenges the mountain of big data
efforts will bring forth a mouse [1]. Now, there is no technical
problem with ‘big’ in healthcare. Electronic health records include
hundreds of millions of outpatient visits and tens of millions of
hospitalisations, and these numbers grow exponentially. The main
problem is in quality of data.

‘Big data’ very often means ‘dirty data’ and the fraction of data
inaccuracies increases with data volume growth. Human inspec-
tion at the big data scale is impossible and there is a desperate
need for intelligent tools for accuracy and believability control.

The second big challenge of big data in healthcare is missed
information. There may be many reasons for data incompleteness.
c61@le.ac.uk (T.J. Coats),
).
One of them is in health service ‘fragmentation’. This problem can
be solved partially by the national and international unification of
the electronic health records (see, for example, Health Level Seven
International (HL7) standards [2] or discussion of the template for
uniform reporting of trauma data [3]). However, some fragmen-
tation is unavoidable due to the diverse structure of the health
service. In particular, the modern tendency for personalisation of
medicine can lead to highly individualised sets of attributes for
different patients or patient groups. There are several universal
technologies for the handling of missing data [4–10]. Nevertheless,
the problem of handling missed values in large healthcare datasets
is certainly not completely solved. It continues to attract the efforts
of many researchers (see, for example, [11]) because the popular
universal tools can lead to bias or loss of statistical power [12,13].
For each system, it is desirable to combine various existing ap-
proaches for the handling of missing data (or to invent new ones)
to minimise the damage to the results of data analysis. For the best
possible solution, we have to take into account the peculiarities of
each database and to specify the further use of the cleaned data (it
is desirable to understand in advance how we will use the
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preprocessed data).
In our work we analyse missed values in the TARN database

[14]. We use the preprocessed data for:

� the evaluation of the risk of death,
� the identification of the patterns of mortality,
� approaching several old problems like the Trunkey hypothesis

about the trimodal distribution of trauma mortality [15].

The ‘two stage lottery’ non-stationary Markov model developed
in the sequel can be used for the analysis of missing outcomes in a
much wider context than the TARN database and could be applied
to the handling of data gaps in healthcare datasets which experi-
ence the problem of transferred and lost patients and missing
outcomes.

In this paper we analyse the unknown outcomes. The next task
will be the analysis of missed data in the most common ‘input’
attributes.
2. Data set

There are more than 200 hospitals which send information to
TARN (TARN hospitals). This network is gradually increasing. Par-
ticipation in TARN is recommended by the Royal College of Sur-
geons of England and the Department of Health. More than 93% of
hospitals across England and Wales submit their data to TARN.
TARN also receives data from Dublin, Waterford (Eire), Copenha-
gen, and Bern.

We use TARN data collected from 01.01.2008 (start of treat-
ment) to 05.05.2014 (date of discharge). The database contains
192,623 records and more than 200 attributes. Sometimes several
records correspond to the same trauma case because the patients
may be transferred between TARN hospitals. We join these re-
cords. The resulting database includes data of 182,252 different
trauma cases with various injuries.

16,693 records correspond to patients, who arrived (transferred
from other institutions) to TARN hospitals later than 24 h after
injury. This sample is biased, for example the Fraction Of Dead
(FOD) outcomes for this sample are 3.34% and FOD for all data is
6.05%. This difference is very significant for such a big sample. (If
all the outcomes in a group of the trauma cases are known then
we use the simple definition of FOD in the group: the ratio of the
number of registered deaths in this group to the total number of
patients there. Such a definition is not always applicable. The de-
tailed and more sophisticated analysis of this notion follows in the
next section.) We remove these 16,693 trauma cases from analysis
but use them later for validation of the ‘mortality after transfer’
model. Among them, there are 15,437 patients who arrived at a
TARN hospital within 30 days after injury. We call this group ‘IN30’
for short (Fig. 1).

As a result we have 165,559 records for analysis (‘Main group’).
This main group consists of two subgroups: 146,270 patients from
this group approached TARN during the first day of injury and
remained in TARN hospitals or discharged to a final destination
during the first 30 days after injury. We call this group the
‘Available within 30 days after injury’ cases (or ‘Available W30D’
for short). The other 19,289 patients have been transferred within
30 days after injury to a hospital or institution (or unknown des-
tination) who did not return data to the TARN system. We call
them ‘Transferred OUT OF TARN within 30 days after injury’ or just
‘OUT30’ (Fig. 1).

The patients with the non-final discharge destinations ‘Other
Acute hospital’ and ‘Other institution’ were transferred from a
TARN hospital to a hospital (institution) outside TARN and did not
return to the TARN hospitals within 30 days after injury.
The database includes several indicators for evaluation of the
severity of the trauma case, in particular, Abbreviated Injury Scale
(AIS), Injury Severity Score (ISS) and New Injury Severity Score
(NISS). For a detailed description and comparison of the scores we
refer readers to reviews [16,17]. The comparative study of pre-
dictive ability of different scores has a long history [18–21]. The
scores are used for mortality predictions and are tested on dif-
ferent datasets [22–25]. In the database, there exist no gaps in AIS
(and hence ISS and NISS) values even for patients rapidly dying.
Most severely injured patients have a CT ‘pan-scan’ within the first
hour or two of injury which is likely to define all life-threatening
injuries. In addition the report from the post-mortem examination
is used in the compilation of an injuries’ list which is the basis of
AIS, and hence ISS and NISS, scoring.
3. Definitions and distributions of outcomes

The widely used definition of the endpoint outcome in trauma
research is survival or death within 30 days after injury [25–27].

A substantial number of TARN in-hospital deaths following
trauma occur after 30 days: there are 957 such cases (or 8% of
TARN in-hospital death) among 11,900 cases with ‘Mortuary’ dis-
charge destination. This proportion is practically the same in the
main group (165,559 cases): 894 deaths after 30 days in hospital
(or 7.9%) among 11,347 cases with ‘Mortuary’ discharge
destination.

Death later than 30 days after injury may be considered as
caused by co-morbidity rather than the direct consequence of the
injury [25]. These later deaths are not very interesting from the
perspective of an acute trauma care system (as we cannot influ-
ence them), but they might be very interesting from the per-
spective of a geriatric rehabilitation centre or of an injury pre-
vention program for elderly patients.

On the other hand, when ‘end of acute care’ is used as an
outcome definition then a significant portion of deaths remains
unnoticed. For example, in the 3332 trauma cases treated in the
Ulleval University Hospital (Oslo, Norway, 2000–2004) 18% of
deaths occurred after discharge from the hospital [27].

The question of whether it is possible to neglect trauma caused
mortality within 30 days after trauma for the patients with the
discharge destination ‘Home’, ‘Rehabilitation’ and other ‘recovery’
outcomes is not trivial [27]. Moreover, here are two questions:

� How do we collect all the necessary data after discharge within
30 days after trauma – a technical question?

� How do we classify the death cases after discharge within
30 days after trauma; are they consequences of the trauma or
should they be considered as comorbidity with some additional
reasons?

The best possible answer to the first question requires the special
combination of technical and business process to integrate data
from different sources. The recent linkage from TARN to the Office
for National Statistics (ONS) gives the possibility to access the in-
formation about the dates of death in many cases. It is expected
that the further data integration process will recover many gaps in
the outcome data.

The last question is far beyond the scope of data management
and analysis and may be approached from different perspectives.
Whether or not the late deaths are important in a model depends
on the question being asked. From the data management per-
spective, we have to give the formal definition of the outcome in
terms of the available database fields. It is impossible to use the
standard definition as survival or death within 30 days after injury
because these data are absent. We define the outcome ‘Alive



Fig. 1. The groups of the patients for analysis of mortality. FOD in the group ‘Available W30D’ can be calculated from the data directly. Mortality in the group ‘OUT30’ will be
evaluated on the basis of the non-stationary Markov model. The group of 16,693 patients which arrived (were transferred from other institutions) to TARN hospitals later
than 24 h after injury was excluded from the mortality analysis. Its subgroup ‘IN30’ of 15,437 patients is used for validation of the Markov model for ‘OUT30’ group. The
subgroups with age <65 and age ≥65 should be separated because for age ≥65 the following isolated traumas are excluded from the database: Acetabulum fractures (AIS
8562xx), Pelvic/Acetabulum fractures (AIS 8563xx), Pelvic ring fractures (AIS 8561xx), Pubic rami and Femoral neck fractures (AIS 85316x).

Table 1
Distribution of outcomes in the main group (W30D means within 30 days after
injury).

Subgroup Alive W30D Dead W30D Unknown Total

Available W30D 135,733 10,537 0 146,270
OUT30 0a 0a 19,279 19,289
Total 135,733 10,537 19,289 165,559

a No known survival or deaths.
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W30D’ for the TARN database being as close to the standard de-
finition as it is possible.

In the TARN database discharge destinations ‘Home (own)’,
‘Home (relative or other carer)’, ‘Nursing Home’, and ‘Rehabilita-
tion’ are considered as final. If we assume that these trauma cases
have the outcome ‘Alive W30D’ then we lose some cases of death.
From the acute care perspective these cases can be considered as
irrelevant. Let us accept this definition. There still remain many
cases with unknown outcome. For analysis of these cases we in-
troduce the outcome category ‘Transferred’. In this category we
include the cases which left the TARN registry to a hospital or
other institution outside TARN, or to an unknown destination
within 30 days. The relations between the discharge destinations
and these three outcomes are presented in Table 1.

As we can see from Table 1, 19,289 trauma cases (or 11.35% of all
cases) have unknown outcome. The first standard question is: can
we delete these data and apply available case analysis? For this
purpose we have to consider these outcome data as ‘Missing
Completely at Random’ (MCAR) [28,4,6,7]. This is definitely not the
case. The group with unknown outcomes is exactly the ‘OUT30’
group. The probability of belonging to this group depends, for ex-
ample, on the severity of injury (which can be measured, by the
maximal severity, by NISS, by GCS or by another severity score). The
χ2 test of independence shows that transfer depends on the severity
with p-value < −p 10 300 (this is the probability that such a strong
dependence might appear by chance). The most practical (or ‘pur-
poseful’ [29]) idea is to consider the missed outcome data as ‘Mis-
sed at Random’ (MAR). The assumption of MAR does not imply that
the data are missing randomly, but rather that the missing values
are correlated with variables recorded in the dataset [29].

One can consider all these cases as alive because these patients
have been alive at the point of discharge from TARN hospitals. If
we consider all transferred as alive then the FOD is 6.35%. If we
delete all the transferred patients (study only the Available W30D
group) then the FOD is 7.2%. If we test this hypothesis on 15,437
patients of the group ‘IN30’ transferred to TARN hospitals from
outside the network within 30 days after injury then we find that
the nonzero mortality for them (3.10%).

The data table with known outcomes is necessary for further
machine learning and the main goal is outcome prediction and
risk evaluation.
We choose to remove the OUT30D group from data table but
simultaneously to adjust the weights of the retained cases to
compensate for the removal. The information about the OUT30D
cases will be used in the construction of the weights. It is neces-
sary to evaluate the mortality of the patients transferred from
TARN before removing their records and reweighting of the rest. In
the next section we develop, identify and validate Markov models
for the analysis of the mortality of transferred patients.

Another method for handling missed outcomes is multiple
imputation of the outcomes (about multiple imputations see, for
example, [9]). Both methods use similar stochastic models of
mortality and transfer. The large number of cases allows us to use
the reweighting approach. A significant majority of the evaluated
weights are between 0.9 and 1.1 (see Section 6).
4. Non-stationary Markov model for the analysis of missing
outcomes

4.1. Structure of model

We propose a system of Markov models for evaluation of
mortality in trauma datasets. In these models each day each pa-
tient can participate in two ‘lotteries’ (Fig. 2). The first lottery
(recovery/death), Fig. 2a, has three outcomes: ‘R’ (recovery), ‘D’
(death), and ‘H’ (remains in a TARN hospital). The second lottery
(of transfer), Fig. 2b, has two outcomes: ‘H’ (remains in a TARN
hospital) and ‘L’ (transfer from the TARN hospital to a hospital or
‘other institution’ outside TARN). The probabilities of outcomes
depend on the time from the injury t and on the state of the patient
after injury s. It is important to stress that s in our models



Fig. 2. (a) The basic Markov model of mortality (‘recovery/death lottery’) with two
absorbing states (states from which patients do not leave), ‘D’ (death) and ‘R’ (re-
covery). b) The ‘lottery of transfer’ (from the TARN network) with one absorbing
state ‘L’ (‘left’). The transition probabilities α α= ( )t s, , ν ν= ( )t s, and μ ( )t s, depend
on the time after injury t and on the state of the patient on the first day after
trauma presented by the values of attributes s.

Fig. 4. The Markov model of mortality and transfer from TARN hospitals to hos-
pitals outside TARN for the limit case of ‘retarded transfer’, when the lottery of
transfer (Fig. 2b) occurs every day after the lottery of survival (Fig. 2a). It has the
same states as the model with advanced transfer (Fig. 3) but different transition
probabilities.
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characterises the state of the patient on the first day after trauma
and may include severity, type of injury (blunt/penetrating), lo-
calisation of traumas, age, gender, airway status, systolic and dia-
stolic blood pressure, etc., but cannot change in time.

The description of state s may vary in the level of details de-
pending on the available information. We have fitted and tested
two models based on the severity of trauma: the maximal severity
model and the (binned) NISS model. In Section 5 we demonstrate
that it is necessary to refine the model and to include the age
group in s for low severities. For different purposes the mortality
model can include more detail.

The lotteries (Fig. 2) do not commute. We consider two limit
cases: ‘advanced transfer’ (Fig. 3) and ‘retarded transfer’ (Fig. 4). In
models with advanced transfer the lottery of transfer (Fig. 2b) each
day precedes the lottery of recovery/death (Fig. 2a). In models
with retarded transfer, conversely, the lottery of recovery/death
precedes the lottery of transfer.

These two models are important because many other much
more general Markov models are between them in the following
exact sense. It is a very strong assumption that every day there are
two steps only: the recovery/death lottery and the transfer lottery.
It may be more realistic to assume that every day there are many
‘fractional steps’ of recovery/death and of transfer from TARN and
the result of the day is the aggregate result of all of these fractional
steps. Assume that the events of recover, death and transfer are
sampled for every day after injury t from a number M consecutive
random choices with probabilities α ν,i i for recovery/death and μi

for transfer out of TARN ( = …i M1, , ), and this chain of choices is
Fig. 3. The Markov model of mortality and transfer from TARN hospitals to hos-
pitals outside TARN for the limit case of ‘advanced transfer’, when the lottery of
transfer (Fig. 2b) occurs every day before the lottery of survival (Fig. 2a). It has six
states: ‘H’ (an alive patient in a TARN hospital), ‘L’ (an alive patient in a hospital
outside TARN), ‘D’ (death in a TARN hospital), ‘ DL ’ (death in a hospital outside
TARN), ‘R’ (recovery of a patient in a TARN hospital) and ‘RL ’ (recovery of a patient
in a hospital outside TARN). Four of them are absorbing: ‘D’, ‘DL ’, ‘R’, and ‘RL ’. The
transitions from H to DL and RL are superpositions of the same day transitions:

→ →H L DL and → →H L R .L
Markovian (the choices for a patient do not depend on the pre-
vious choices directly but only on the current state, H, R or L). It is
non-stationary because the transition probabilities depend on
time. They are different for different days after injury.

This sequence of choices is displayed as a sequence of fractional
steps:

→ → ⋯

→ →

recovery/death transfer

recovery/death transfer .M M

1 1

The probability of in-TARN death in the above model of se-
quential choice, on a given day after trauma is

∏ν ν α ν μ ν α ν μ+ ( − − )( − ) + ⋯ + ( − − )( − )
=

−

1 1 1 1 .M
i

M

i i i1 2 1 1 1
1

1

Similarly, the probability for recovery is

∏α α α ν μ α α ν μ+ ( − − )( − ) + ⋯ + ( − − )( − )
=

−

1 1 1 1 .M
i

M

i i i1 2 1 1 1
1

1

Finally, the probability of transfer to a hospital outside of TARN
is

∏ ∏

μ α ν μ μ α ν α ν

μ μ α ν

( − − ) + ( − )( − − )( − − ) + ⋯

+ ( − ) ( − − )
=

−

=

1 1 1 1

1 1 .M
i

M

i
j

M

j j

1 1 1 2 1 1 1 2 2

1

1

1

The probabilities α ν,i i for the fractional steps should be con-
sistent with the daily probabilities α ν, : if there is no transfer then
the resulting probabilities of recovery or death should be the
same:

∏

∏

∏

α α α ν α α ν α

ν ν α ν ν α ν ν

α ν α ν

+ ( − − ) + ⋯ + ( − − ) =

+ ( − − ) + ⋯ + ( − − ) = ( )

( − − ) = − −
( )

=

−

=

−

=

1 1 ,

1 1 . 1

Also, 1 1 .
.

M
i

M

i i

M
i

M

i i

i

M

i i

1 2 1 1
1

1

1 2 1 1
1

1

1

Similarly, for μi we get the conditions

∏ ∏μ μ μ μ μ μ μ

μ

+ ( − ) + ⋯ + ( − ) = ( − )

= − ( )
=

−

=
1 1 and 1

1 . 2

M
i

M

i
i

M

i1 2 1
1

1

1

Proposition 1. The probability of in-TARN death in the described
model of sequential choice for every day after trauma is between the
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probabilities for the Markovian model with advanced transfer (Fig. 3)
and the Markovian model with retarded transfer (Fig. 4):

∏

ν μ ν ν α ν μ

ν α ν μ ν

( − ) ≤ + ( − − )( − ) + ⋯

+ ( − − )( − ) ≤
( )=

−

1 1 1

1 1 .
3

M
i

M

i i i

1 2 1 1 1

1

1

Proof. According to conditions (1), (2),

∏

∏

ν μ ν ν α ν ν α ν

μ

( − ) = + ( − − ) + ⋯ + ( − − )

× ( − )
( )

=

−

=

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥1 1 1

1 .
4

M
i

M

i i

i

M

i

1 2 1 1
1

1

1

Notice that for every j ( ≤ ≤j M1 ),

∏ ∏μ μ( − ) ≤ ( − )
= =

1 1
i

M

i
i

j

i
1 1

because μ≤ − ≤0 1 1i for all probabilities μi. Therefore,

∏ ∏ ∏ν α ν μ ν α ν μ( − − ) ( − ) ≤ ( − − )( − )
= = =

1 1 1 1j
i

j

i i
k

M

k j
i

j

i i i
1 1 1

and the following inequality holds

∏

∏

∏

ν ν α ν ν α ν

μ ν ν α ν

ν α ν

+ ( − − ) + ⋯ + ( − − )

× ( − ) ≤ + ( − − ) + ⋯

+ ( − − )
( )

=

−

=

=

−

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥1 1

1 1

1 .
5

M
i

M

i i

i

M

i

M
i

M

i i

1 2 1 1
1

1

1
1 2 1 1

1

1

The left inequality in (3) is proven. The right inequality in (3)
follows from condition (1) because for every product

∏ ∏ν α ν μ ν α ν( − − )( − ) ≤ ( − − ) □
= =

1 1 1 .j
i

j

i i i j
i

j

i i
1 1

The proofs of the following propositions are very similar

Proposition 2. The probability of in-TARN recovery in the described
model of sequential choice for every day after trauma is between the
probabilities for the Markovian model with advanced transfer (Fig. 3)
and the Markovian model with retarded transfer (Fig. 4):

∏

α μ α α α ν μ

α α ν μ α

( − ) ≤ + ( − − )( − ) + ⋯

+ ( − − )( − ) ≤
( )=

−

1 1 1

1 1 .
6

M
i

M

i i i

1 2 1 1 1

1

1

Proposition 3. The probability of transfer outside TARN in the de-
scribed model of sequential choice for every day after trauma is be-
tween the probabilities for the Markovian model with advanced
transfer (Fig. 3) and the Markovian model with retarded transfer (Fig.
4):

∑ ∏μ α ν μ α ν α ν μ μ( − − ) ≤ ( − − ) ( − − )( − ) ≤
( )= =

−

1 1 1 1 .
7j

M

j j j
i

j

i i i
1 1

1

4.2. Transition probabilities and their evaluation

In the above models (Figs. 3 and 4), death and recovery of the
transferred patients have the same probabilities as for the patients
of TARN hospitals. These probabilities are defined by the state of
the patient s and by the time after injury. Of course, in reality there
is often a hope that the transfer will improve the situation and the
probability of death will decrease for the same state of the patient.
Nevertheless, in this paper we will neglect the changes of prob-
abilities after transfer (just because we have no sufficient reason for
such a change). Of course, these models could be extended to in-
clude the changes of mortality for transferred patients, if
necessary.

Another question is the definition of s. Which attributes should
be included in the ‘state’ for the models (Figs. 3, 4)? To motivate
this choice, we should take into account two considerations:

1. The models will be used to analyse data with unknown out-
comes. Trauma cases with missed outcomes make up 10–12% of
the dataset. Therefore, an error of 10% in mortality for data with
unknown outcomes will cause an error of ∼1% in mortality for
the whole dataset and it is possible to use relatively coarse
models (see below).

2. The description of the state s should include attributes whose
values are known for a significant majority of cases. This is
especially important because for cases with unknown outcomes
many of the attributes are often also unknown (a more detailed
analysis of data with missed attributes is presented in the next
section).

Formally, there are many possibilities for defining s. It could
include the initial state after trauma (characteristics of injury and
coma status, for example), age, gender, the current state (t days
after trauma), fragments of history, etc. The set of the auxiliary
variables which may be selected as potential sources of informa-
tion could be much larger. For example, for creation of the model
for imputing missing physiological data in the National Trauma
Data Bank (NTDB), USA, the following variables were used: gender,
age, components of Glasgow Coma Status, the maximum AIS or
ICISS (and, separately, the maximum AIS or ICISS for head injuries),
injury type (penetrating, blunt), prehospital intubation, duration
of mechanical ventilation, tests for alcohol and drugs, etc. [30].
Nevertheless, even the simple models identified in our paper solve
the problem of mortality correction quite well. The extension of
the set of variables will not include essential methodological no-
velty and may be performed easily for sufficiently large datasets.
For our purposes, we select, identify and compare three coarse
models:

Model 1 (The coarsest model). = ∅s .

Model 2 (The maximal severity model). =s the maximal severity
score (an integer from 1 to 6).

Model 3 (The binned NISS model). We use seven bins: NISS ¼ 1–3,
4–8, 9, 10–16, 17–24, 25–35, 36þ; s is the bin number (7 values).
The bins for = …s 2, , 7 have approximately equal depth whereas
the bin with s ¼ 1 (NISS¼1–3) is much smaller. (For this first bin
we found that the model should be supplemented by age.)

We observe that the cases with maximal severity 1 (or
NISS¼1–3, which is the same) are very special. First of all, the age
distributions in this group for the ‘Available W30D’ and the
‘OUT30’ subgroups are very different (Fig. 5). If we do not take into
account this difference then we overestimate mortality in this
group. The necessary refinement of the model with isolation of
elderly patients with low severity of trauma is presented in Sec-
tion 5.

Our approach may be combined with any stochastic model for
early outcome prediction (see, for example, [23,31,39]).

For the finite set of s values, evaluation of all the coefficients
α ( )t s, , ν ( )t s, , and μ ( )t s, is a particular case of a standard statistical



Fig. 5. Age distributions for two groups of low severity cases (NISS bin 1–3). The
age distribution for the low severity patients in TARN (‘Available W30D’ AND
NISS¼1–3) for age binned in five bins (0–5.5; 5.5–15.5; 15.5–54.5; 54.5–74.5; >74.5)
has clear maximum for elderly patients (age >74.5), whereas the absolute majority
of the low severity patients which left TARN without registered outcome (‘OUT30’
AND NISS¼1–3) belong to the group with age 15.5–54.5.

Table 3
Sizes of bins and fractions of patients transferred to a hospital or institution (or
unknown destination) (within 30 days after injury) for the binned NISS Models 3.

NISS bin OUT30 Total Fraction of OUT30 (%) 95% CI

1–3 1905 3005 63.39 61.66–65.10%
4–8 2078 24,982 8.32 7.98–8.67%
9 2159 36,722 5.88 5.64–6.12%
10–16 2710 29,237 9.27 8.94–9.61%
17–24 2882 25,074 11.49 11.11–11.89%
25–35 3603 23,557 15.29 14.84–15.76%
36þ 3952 22,982 17.20 16.71–17.69%
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problem of proportion estimate for each given value of s; we use
the Wilson score interval (CI) [32]:
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where p̂ is the coefficient estimate, z is the error percentile
(z¼1.96 for the 95% confidence interval), and n is the number of
degrees of freedom (for a dataset without weights this is just the
sample size).

For the coarsest model (Model 1) the fraction of patients
transferred outside TARN is 11.65%. This is just the fraction of pa-
tients transferred (within 30 days after injury) in Table 1. The 95%
CI (8) for this fraction is 11.5–11.8%. For the maximal severity
(Table 2) (Model 2) and the binned NISS (Table 3) (Model 3)
models the fraction of patients transferred outside TARN depends
on s (bins) and the CI in each bin is larger than for the total fraction
in the coarsest models (Model 1). Nevertheless, the CIs for differ-
ent bins in these models do not intersect (the only exclusion is the
CI for the smallest bin, maximal severity 6, in the maximal severity
model (Model 2), Table 2). In particular, this means that the
probability of transfer outside TARN hospitals depends strongly on
the trauma severity.

For each value of s and time after injury t the following quan-
tities are found for the analysed dataset:

� ( )H t s, – the number of patients in state s registered as alive in a
TARN hospital at any time during day t after injury (in this
number we include the patients which have stayed at a TARN
hospital during day t after injury, the patients who have died on
this day in a TARN hospital, have been discharged, or have been
transferred outside TARN on this day).

� Δ ( )D t s, – the number of patients in state s who died in TARN
hospitals on day t after injury.
Table 2
Sizes of bins and fractions of transfer out of TARN (within 30 days after injury) for
the maximal severity models.

Max severity OUT30 Total Fraction of OUT30 (%) 95% CI

1 1905 3005 63.39 61.66–65.10%
2 3094 35,109 8.81 8.52–9.11%
3 6203 77,518 8.00 7.81–8.20%
4 4535 29,603 15.32 14.91–15.73%
5 3542 20,175 17.56 17.04–18.09%
6 10 149 6.71 3.88–11.72%
� Δ ( )R t s, – the number of patients in state s who recovered
(discharged to one of the final recovery destinations) in TARN
hospitals on day t after injury.

� Δ ( )L t s, – the number of patients in state s who transferred out
of TARN hospitals to other hospitals, institutions or unknown
destinations on day t after injury.

just for control, the following identity should hold:
( + ) = ( ) − Δ ( ) − Δ ( ) − Δ ( )H t s H t s D t s R t s L t s1, , , , , because state s

in our models does not change in time.
For the model with advanced transfer from TARN hospitals the

coefficients are defined following the scheme presented in Fig. 3:
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For the model with retarded transfer from TARN hospitals the
coefficients are defined following the scheme presented in Fig. 4:
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4.3. Evaluation of FOD

Each model provides us with the corrected FOD. We use the
basic assumption that the probability of dying at time t after injury
depends on s but is the same inside and outside TARN. For each t
and s we define the specific cumulative FOD (scFOD(t,s)) as the
fraction of patients with state s who died during the time interval
[ ]t1, :

∏

ν ν α ν

ν α ν

( ) = ( ) + ( )( − ( ) − ( ))

+ ⋯ + ( ) ( − ( ) − ( ))
( )=

−

t s s s s s

t s i s i s

scFOD , 1, 2, 1 1, 1,

, 1 , , .
11i

t

1

1

The cumulative FOD at time t (cFOD(t)) for the whole model
(for all s together) is

( ) =
∑ ( ) ( )

( )
t

t s H s

H
cFOD

scFOD , 1,
,

12
s

0

where = ∑ ( )H H s1,s0 is the total number of patients in our da-
taset (in our case study, =H 165, 5590 ).

The functions cFOD(t) and scFOD(t,s) for all s, grow mono-
tonically with t.

If we define the final outcome as survival or death within
30 days after injury then the target value is FOD ¼ cFOD(30).

Let us compare two following naïve approaches to the handling
of missing outcomes with the Markov models we have created.
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� Available case analysis: Just delete all of the 19,289 cases with
the outcome ‘Transferred OUT OF TARN within 30 days after
injury’ from the dataset. In the remaining cases all outcomes are
known and the FOD is the ratio ( )Dead W30D

Total
in the reduced

dataset.
� Consider all transferred patients as alive: In this case, the total

number of patients does not change and the FOD is the ratio
( )Dead W30D

Total
, where the number ‘Dead (W30D)’ is the same but the

number ‘Total’ is calculated for the whole original dataset
(Table 1).

Remark 1. If we apply available case analysis then none of the
numbers Δ ( )D t s, and Δ ( )R t s, change but the numbers ( )H t s, of
the patients in TARN will decrease for all t and s (or do not change
if there is nothing to delete). The corresponding mortality coeffi-
cients ν ( )t s, will be larger than the coefficients (9), (10) for all the
Markov models considered before. This means that the MCAR
(Missing Completely At Random) approach to missed outcomes
always overestimates mortality, while the second naïve approach
(‘Consider all transferred patients as alive’) always underestimates
mortality.

We have created six Markov models for mortality of transferred
patients. They differ by the state variable s (the coarsest model
without s, Model 1, the maximal severity model with six states,
Model 2 and the binned NISS model with seven states, Model 3)
and by the order of the ‘recovery/death’ and ‘transfer’ lotteries
(Fig. 2). In Table 4 we compare the mortality evaluated by these
models, and by the two naïve models. We can see that the dif-
ference between all of our Markov models is not significant; we
cannot reject the hypothesis that they coincide with any one of
them (p-value is between 0.20 and 0.56). Both of the naïve models
differ significantly from all of the six Markov models. The differ-
ence between the naïve models is also significant. All the values of
mortality predicted by the Markov models belong to the interval
( )6.77%, 6.91% . The average of the six Markovian predictions is
6.84%. None of the Markov model predictions differ significantly
from this average. Both of the naïve predictions are significantly
different.

4.4. Validation of the models on the excluded trauma cases: patients
transferred to TARN (‘IN30’)

For each type of model the coefficients μ, α and ν are evaluated
using the dataset of 165,559 patients entering TARN in the first day
of injury (Fig. 1, Main Group). Let us test the models with eval-
uated coefficients we have described here on data we have not
used before. These data consist of the 16,693 cases who came to
TARN hospitals more than one day after injury, which we deleted
from the original set before modelling. This is a special and biased
sample, ‘IN30’ (see Fig. 1). We now apply the models developed
Table 4
FOD for different models. Here, the p-value is the probability of observing ‘by
chance’ equal or greater deviation of FOD from the value FOD¼6.85% given by the
coarsest advanced model’, under the condition that the expectations of FOD is
6.85%.

Model Alive Dead FOD (%) p-value

Available case study 135,733 10,537 7.20 × −1.3 10 8

All transferred are alive 155,022 10,537 6.36 × −5.0 10 15

Coarsest advanced 154,217 11,342 6.85 1.00
Coarsest retarded 154,350 11,209 6.77 0.20
Max severity, advanced 154,120 11,439 6.91 0.34
Max severity, retarded 154,266 11,293 6.82 0.41
NISS binned, advanced 154,145 11,414 6.89 0.48
NISS binned, retarded 154,292 11,267 6.81 0.57
and identified in the previous subsections to analyse this sample.
We expect that there should be some similarity between the
groups of patients transferred from TARN (‘OUT30’) and the pa-
tients transferred to TARN (‘IN30’) (Fig. 1). We do not expect
quantitative coincidence of the results for the groups ‘OUT30’ and
‘IN30’ because there is no precise symmetry between the patients
moved to TARN and the patients moved from TARN. The hospitals
in TARN are those with a special interest in trauma – in particular
the large major trauma centres, so the transfers in (mainly for
acute specialist care) will not be the same as those transferred out
(mainly for complex rehabilitation, or special geriatric care, etc.).

Therefore, the estimated behaviour of the mortality of the
group transferred from TARN can be qualitatively validated using
the observed mortality in the group who moved to TARN.

We consider survival during the first 30 days. Hence we have to
use the records which correspond to this period only. There are
15,437 such records among the 16,693 in ‘IN30’.

In these estimates of the FOD we explicitly use the empirical
fluxes into and from TARN hospitals. For each t s, we have the
following quantities:

� ( )L t s,in – the number of patients in state s which came to TARN
on day t after injury.

� ( )L t s,out – the number of patients in state s from ‘IN30’ which
were transferred from TARN on day t after injury.

� ( )h t s,IN30 – the number of patients in IN30 in state s on day t
after injury.

� ( )D t s,IN30 – the number of deaths in TARN of the patients from
IN30 in state s by day t after injury (cumulative).

� ( )R t s,IN30 – the number of patients in ‘IN30’ in state s who re-
covered by day t after injury (cumulative).

We use the values ( )L t s,in and ( )L t s,out from the database, evaluate
( )h t s,IN30 , ( )D t s,IN30 , and ( )R t s,IN30 for every model and then

compare the resulting outcomes (evaluated numbers of death in
TARN of the patients from ‘IN30’ within 30 days of injury,
∑ ( )D s30,s IN30 ) to empirical data from TARN records.

For each model with advanced transfer the variables ( )h t s,IN30 ,
( )D t s,IN30 , and ( )R t s,IN30 are evaluated by recurrence formulas:
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For each model with retarded transfer the variables ( )h t s,IN30 ,
( )D t s,IN30 , and ( )R t s,IN30 are evaluated by recurrence formulas:
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For each model, the coefficients α ( )t s, and ν ( )t s, are evaluated
using the previously analysed dataset (without IN30) by formulas
(9) and (10). The results are presented in Table 5.

We can see that all the models overestimate mortality in ‘IN30’.
The available case analysis demonstrates the worst performance



Table 5
Comparison of the models with the empirical data about patients from ‘IN30’.

Model Alive Dead Total FOD (%) CI 95

Empirical data 13,038.00 417.00 13,455.00 3.10 2.82–3.41%
Coarsest advanced 12,834.55 620.45 13,455.00 4.61 4.27–4.98%
Coarsest retarded 12,933.67 521.33 13,455.00 3.87 3.56–4.21%
Max severity, advanced 12,824.90 630.10 13,455.00 4.68 4.34–5.05%
Max severity, retarded 12,920.71 534.29 13,455.00 3.97 3.65–4.31%
NISS binned, advanced 12,885.93 569.07 13,455.00 4.23 3.90–4.58%
NISS binned, retarded 12,971.22 483.78 13,455.00 3.60 3.29–3.92%
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(the relative error exceeds 100% of empirical mortality). Models
with retarded transfer perform better in this test than the models
with advanced transfer. The NISS binned model with retarded
transfer is the best (the relative error in prediction of FOD is 16% of
the empirical data and, at least, the 95% confidence intervals for
the result of this model and for the empirical data intersect). There
exist further possibilities for improving the models presented but
already the relative error of 16% for ‘IN30’ in the estimation for the
total database will give the input in the relative error in the FOD
≲1% (or absolute error ≲0.07%). That is much better than the errors
of the available case evaluations or of the approach ‘all are alive’ to
the evaluation of mortality of transferred patients.

4.5. Validation of the model for the mortality prediction in the
‘Available W30D’ group of TARN patients on ‘real death – simulated
transfer’ data

The successful test on the group ‘IN30’ of patients transferred to
TARN supports the approach developed in this work. Nevertheless,
transfer to TARN hospitals differs from transfer from TARN quali-
tatively because of a qualitative difference between hospitals in-
cluded and not included in TARN. In this section, we provide ad-
ditional validation of the Markov models on the mortality pre-
diction in the ‘Available W30D’ group of TARN patients with
known outcomes (Fig. 6). We created a statistical model for imi-
tation of patient transfer and used the known outcomes. This
means, we use ‘real death – simulated transfer’ data.

� Firstly, using the main group, we evaluated the transfer prob-
ability for each day in hospital as a function of NISS for 7 NISS
bins, separately for age <65 and age ≥65. For example, a his-
togram of the number of transferred patients for the first day
after trauma is presented in Fig. 6.

� Secondly, we take the ‘Available W30D’ group and separate it
into the ‘training set’ and ‘test set’. Random selection of the
patients for the test set models transfers from TARN using
probabilities evaluated at the previous step utilising the real
data.
Fig. 6. Patients transferred from TARN during the first day after trauma (a) and the fract
≥65). Note the scale difference between the fraction histogram for NISS¼1–3 (b) and fo
� Thirdly, we create a Markov chain model using the training set
and test the mortality in the whole ‘Available W30D’ group,
which was not given during the modelling.

The random separation of the ‘Available W30D’ group into
training and test sets was performed 100 times. We evaluated the
mortality for each such separation by two naïve models (available
case study and ‘all transferred alive’ assumption) and the Markov
‘NISS binned, retarded’. The results were compared in Table 6. The
fraction of death in the whole ‘Available W30D’ group is 7.2%.
‘Available case study’ overestimates mortality (all the mortality
values given by this approach in 100 trials are in the interval
[ ]7.59%, 7.67% , which does not even include the true value 7.2%),
the ‘all transferred are alive’ hypothesis underestimates mortality
(all the mortality values given by this approach in 100 trials are in
the interval [ ]6.83%, 6.86% , which also does not include the true
value 7.2%). All the values given by the Markov ‘NISS binned, re-
tarded’ model belong to the interval [ ]7.18%, 7.24% around the true
value with mean 7.21% and standard deviation 0.0146%. The re-
lative error of this mortality prediction is small. It is less than
0.003 (or 0.3%). This test on the ‘real death – simulated transfer’
data demonstrates the performance of the proposed method.
5. Model refinement

We use a coarse model based on the severity of trauma for the
evaluation of FOD in the group ‘OUT30’. The reason for selection of
such a coarse model is that a fraction of cases in this ‘OUT30’ co-
hort is relatively small with respect to the ‘Available W30D’ cases.
As we can see from Table 3, this fraction is relatively small in all
cells except small severities with NISS¼1–3 (see also Fig. 6 for the
first day transfer). For refinement of the Markov model for this
cell, we compare the age structure of the ‘Available W30D’ and the
‘OUT30’ fractions of this severity bin (Fig. 5). We see that the
fraction of elderly patients with low severities in TARN hospitals is
high, whereas for patients transferred from TARN this fraction is
much lower. Mortality in the group of patients 74.5þ is much
higher than in the adult group, therefore the model overestimates
mortality in the low severity states. To refine the model let us use
two cells for low severity: ‘NISS 1–3 y’ (NISS bin 1–3 and age <54.5)
and ‘NISS 1–3 o’ (NISS bin 1–3 and age >54.5). This refined model
gives a significantly different FOD for NISS 1–3. In the cell ‘NISS 1–3
y’ the corrected FOD is 0.54% and in the cell ‘NISS 1–3 o’ it is 4.08%
(almost eight times greater). The corrected overall FOD for NISS 1–
3 is 1.42% versus 2.68% in the NISS retarded model without the
above refinement.

The effect of the refinement on the FOD for trauma cases is less
because the fraction of traumas with NISS severity 1–3 is relatively
small (2.0%). For the refined model with retarded transfer the FOD
ion of these patients (b, c) for seven NISS bins and two age groups (age <65 and age
r the other six bins (c).



Table 6
Test of the Markov ‘NISS binned, retarded’ model on the ‘real death – simulated
transfer’ data from ‘Available W30D’ group.

Parameters Fraction of
transferred

FOD (All
alive)

FOD (Available
case study)

FOD (Markov
model)

Min 9.84 6.83 7.59 7.18
Max 10.12 6.90 7.67 7.24
Mean 10.00 6.86 7.63 7.21
St. deviation 0.00628 0.0140 0.0153 0.0147
Width of 95% CI 0.0123 0.0274 0.0299 0.0285
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for transferred patients decreases from 3.79% (retarded transfer
NISS model) to 3.59% and the total fraction of death is changed
from 6.81% to 6.78% (compare to Table 4).
6. Weighting adjustment of death cases for further analysis

Single imputation of missed values does not reflect the un-
certainty in data properly. From the probabilistic point of view, a
datapoint with missed values should be considered as a condi-
tional probability distribution of the form

( | )P missed values known values .

two approaches utilise this idea the multiple imputation and
weighting adjustment.

In the multiple imputation approach several replicas of the
database are created, which differ in the imputed values [4,5,8,13].
The distribution of this values should reflect the conditional means
and conditional variances of the imputing attributes. It is not
completely clear, how many imputations should be generated.
Rubin claims that ‘typically as few as five multiple imputations (or
even three in some cases) is adequate under each model for
nonresponse’ [5]. Nevertheless, more recently, Graham et al. pro-
duced practical recommendations for selection of number of im-
putations m and demonstrated that a reasonable choice is ≥m 20
and for some cases m¼100 is not enough [8]. The multiple im-
putation algorithms are implemented in the standard statistical
software [33]. Sterne et al. [13] discussed use and misuse of im-
putation in epidemiological and clinical research and tried to
produce a standard for reporting of handling of missed data in
medical research.

It should be stressed that the risk prediction models which
used data with gaps and rely on multiple imputation can be
misleading, especially with many predictor variables [34]. Re-
cently, it was demonstrated that sensitivity analysis may be more
informative than multiple imputation for study of the influence of
missing data on risk prediction [34].

The weighting adjustment approach substitutes a datapoint
with missed values by a set of additional weights on the complete
datapoints [35–37]. The simplest version of this approach is the
cell weighting adjustment. This follows the assumption that com-
plete datapoints within a cell represent the incomplete datapoints
within that cell. An incomplete datapoint within the cell is sub-
stituted by the equidistribution on the complete datapoints there.
Of course, cell weighting can inflate the variances for large cells. In
this section, we use cell weighting adjustments for the handling of
missed outcomes. Cells are defined by state s and the outcome.

We will use the database for evaluation of the death risk for
trauma patients. The ‘Main Group’ selected for further analysis
includes the ‘OUT30’ subgroup with 19,289 data cases transferred
from TARN hospitals within 30 days after injury (Fig. 1). The tar-
geted outcome (alive or dead within 30 days after injury) is un-
known for these patients. Data without outcome cannot be used
for risk evaluation and should be deleted. Let us call the result of
deletion the truncated database. It is demonstrated in the previous
sections that the simple removal of the cases with unknown
outcome shifts the risk estimates; the proportion of Dead and
Alive outcomes in the truncated database differs from reality and
the risk is overestimated (the pessimistic evaluation). This bias
may be compensated by reweighting of the cases with known
outcomes. There are 146,270 such ‘Available W30D’ cases. In this
subsection we estimate weights ( )w t s, that should be assigned to
the cases of death on day t after injury with state s to hold the
probability of death for the truncated database. For the estimation
of the proper FOD that should be kept we use the Markov model of
mortality based on binned NISS (Model 3) with delayed transfer
out of TARN (after selection dead and recovered patient, see Fig. 4).
This model demonstrates the best verification results (Table 5) and
is the most plausible from the common sense point of view.

According to the model, the probability of the patient in state s
dying on day t after injury is evaluated as

( ) = Δ ( ) + Δ ( )
( )

p t s
D t s D t s

H s
,

, ,
,d

L

0

where ( ) = ( )H s H s1,0 is the initial number of patients in state s on
the first day after injury. For the truncated data with weights this
probability is evaluated as the ratio of the sums with weights:

( ) = ( )Δ ( )
( ) ( )
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w t s D t s
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15d
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∑( ) = ( ) + ( ) + ( )Δ ( )
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and the superscript w corresponds to the truncated dataset with
weights. The numbers ( )H t s, , ( )R t s, and Δ ( )D t s, are the same for
the original and truncated datasets.

The probability of dying within 30 days from injury is evaluated
as the proportion of deaths (we use the model to find ( )D s30,L )

( ) = ( ) + ( )
( )

p s
D s D s

H s
30, 30,

.d
L

0

For the truncated database pd(s) is evaluated as the proportion of
weighted deaths:
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This should be the same number. Therefore, the weighted sum of
deaths for the truncated database is:
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The last expression in the brackets is just the number of ‘Alive
within 30 days’ outcomes. Immediately we get

( ) =
− ( )
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1
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d
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The formula for the calculation of the weights of death cases in the
truncated database is

( ) =
( ) ( )
Δ ( ) ( )
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The weighting procedure changes the number of effective de-
grees of freedom can affect the statistical power of the dataset but
for the TARN dataset this change is rather minor. For example, for
the standard problem of the evaluation of the confidence interval
in the proportion estimate the number of degrees of freedom nw in
the weighted database with weights wi is
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For our dataset =n 143, 574.85w and the number of Available
W30D records is 146,270 (Fig. 1). The difference of degrees of
freedom for the non-weighted and weighted datasets is less than
2%.
7. FOD and patterns of mortality

The models we have developed allow us to evaluate the FOD
for various groups of patients. The rich TARN data give us the
chance of studying various special groups and detailed stratifica-
tions of the trauma cases: by the severities of various injuries in
combined traumas, by the age of patients, and by time (day) after
trauma. Each example below is supplemented by a medical
commentary.

7.1. Example: FOD as function of age

The age distribution of trauma cases and the dependence of
FOD on age are shown in Fig. 7. Here we find surprisingly high
accuracy of the piecewise linear approximation of FOD for adult
and elderly patients with a jump in the slope at ≈age 62.

The number of cases per year in the dataset drops down at age
65 because for age ≥65 some traumas are excluded from the da-
tabase (see Fig. 1).

Medical commentary: The increase in mortality with age is well
established. Previous versions of the standard trauma outcome
prediction system had two different models with an age cutoff at
55 years. More recent models have age as a weighted continuous
variable with an interaction term between gender and age. There
has been a dramatic change in the trauma population over the last
10 years, with a rapid increase in the number of older patients
with major injury. Understanding the effects of age on trauma care
and adapting to a changing population will be a key challenge for
trauma systems in the developed world over the next 10 years.

7.2. Example: FOD of combined traumas of various severity

Evaluation of the severity of combined traumas is a classical
problem. The very popular solution is NISS – sum of squares of
three maximal severities, + +s s s1

2
2
2

3
2 ( ≥ ≥s s s1 2 3) (see, for ex-

ample, [22–24]). The best severity score should give the best
evaluation of mortality. This is a basic and rather old idea for de-
fining and comparing trauma indices [38]. Of course, it is possible
to use three (or more) severities together as a multi-dimensional
trauma severity index (‘severity profile’ [19]) but the combination
Fig. 7. Age distribution of trauma cases in ‘Available W30D’ group and the FOD
(corrected) as a function of age. The piecewise linear segmentation of FOD (age) has
an obvious break point at ≈age 62.
in one index may be beneficial from different points of view.
The simplest method of combination is:

� Calculate FOD for every combination of severities for combined
traumas for a large database.

� Either use this FOD instead of the severity score.
� Or find and use a convenient analytic approximation for this

FOD (smoothed FOD).

Of course, such evaluation of probabilities for several input attri-
butes was used by many authors and compared to other ap-
proaches [25,39]. In this paper, we use TARN database and
evaluate FOD of combined traumas as a function of three input
attributes, three biggest severity scores ≥ ≥s s s1 2 3 (like in NISS).

We use the dataset of 146,270 ‘Available W30D’ patients ap-
proached TARN during the first day of injury and remained in
TARN or were discharged to a final destination within the first
30 days after injury (Fig. 1).

Using our models, we calculate estimates with weights which
take into account modelled mortality/survival of the patients
transferred from TARN and other patients with unknown out-
comes. Results for the maximal severity =s 51 are presented in
Table 7. The available case analysis gives qualitatively the same
results, hence, the effects we observe are not generated by the
reweighting procedure.

The results presented in Table 7 seem to be counterintuitive:
FOD for combined injuries with severities =s 51 and ≤ ≤s1 42 are
less than FOD for = =s s 02 3 and the same maximal severity =s 51 .
Similar non-monotonic behaviour is observed for other values of
the maximal severities. Elementary estimates demonstrate that
the probability p of obtaining these (or larger) deviations to below
from the FOD for single injuries ( =s 51 , = =s s 02 3 ) for all cases
with ≤ ≤s1 42 simultaneously is less than 10�10. The number of
cases used for these estimates are given in Table 8. If the second
severity coincides with the maximal one, = =s s 52 1 then the FOD
is larger than for single traumas.

It may be convenient to have formulas for estimation of FOD.
This smoothed FOD ( sFODs1) is found for = …s 2, , 51 as a linear

combination of s2,3 and s2,3
2 (19). For =s 11 the simple formulas do

not have much sense and we have to use a refined model with the
inclusion of age (Section 5). The number of cases is not sufficient
for good approximation for this extended model. For =s 61 the
number of cases is not sufficient and we use three bins for trauma
severities marked by the values of the coarse-grained variable ŝ :

≤ ≤s0 22 ( ^ =s 02 , 48 cases), ≤ ≤s3 42 ( ^ =s 12 , 53 cases), and

≤ ≤s5 62 ( ^ =s 22 , 38 cases). sFOD6 is presented as a quadratic

function of ŝ2.
Table 7
FOD for the maximal severity =s 51 and various s2 and s3 for data after reweighting.

s2 s3

0 1 2 3 4 5

0 0.3590
1 0.2324 0.2906
2 0.1566 0.1496 0.0791
3 0.2466 0.2064 0.1315 0.1439
4 0.2579 0.2881 0.1643 0.2105 0.3113
5 0.4073 0.5668 0.4067 0.3666 0.4140 0.5908



Table 8
Number of cases for the maximal severity =s 51 and various s2 and s3.

s2 s3

0 1 2 3 4 5

0 1376
1 276 101
2 302 163 332
3 577 243 645 1580
4 349 140 203 2653 2301
5 387 102 95 807 2159 1842
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( )

= + + − −

= + − + +

= − − + +

= − − + +

= − ^ + ^ 19

s s s s

s s s s

s s s s

s s s s

s s

sFOD 0.01910 0.02124 0.00037 0.01054 0.00084 ;

sFOD 0.02202 0.00256 0.00238 0.00099 0.00101 ;

sFOD 0.06571 0.02075 0.03116 0.00706 0.01086 ;

sFOD 0.35899 0.13335 0.10879 0.02963 0.02748 ;

sFOD 0.80297 0.08750 0.06102 .

2 2 3 2
2

3
2

3 2 3 2
2

3
2

4 2 3 2
2

3
2

5 2 3 2
2

3
2

6 2 2
2

All the coefficients are estimated using weighted least squares
method. The weight of the severities combination ( )s s s, ,1 2 3 is
defined as the sum of weights of the corresponding trauma cases.

Medical commentary: The complete outcome dataset derived
from this work allows all patients to be included in the analysis of
the effect of combined injuries. The counter-intuitive results from
this analysis (some combinations of injuries seem to have better
outcomes than a single injury of the same severity) provide a
fertile area for further work. It may be that the explanation is
technical, within the way that the continuum of human tissue
destruction from trauma is reduced to a simple 5 point scale. Each
point on the scale is actually a band that covers a range of tissue
damage. There might also be a true physiological explanation for
the lower lethality of combined injuries, as each injury absorbs
some of the force of impact. The same concept is used in Formula
1, where the cars are designed to break into pieces, with each
piece absorbing some of the impact. In humans there is a well
known concept that the face can act as a ‘crumple zone’ and mi-
tigate effect of force on the brain. The effect of injury combinations
shown in Table 6 is a novel finding that requires further analysis.

7.3. Example: time after trauma, non-monotone and multimodal
mortality coefficients

In the early 1980s a hypothetical statement was published that
the deaths from trauma have a trimodal distribution with the fol-
lowing peaks: immediate, early and late death [40,41]. This concept
was clearly articulated in a popular review paper in Scientific
American [15]. The motivation for this hypothesis is simple: Trunkey
[15] explains that the distribution of death is the sum of three peaks:
“The first peak (‘Immediate deaths’) corresponds to people who die
very soon after an injury; the deaths in this category are typically
caused by lacerations of the brain, the brain stem, the upper spinal
cord, the heart or one of the major blood vessels. The second peak
(‘Early deaths’) corresponds to people who die within the first few
hours after an injury; most of these deaths are attributable to major
internal hemorrhages or to multiple lesser injuries resulting in se-
vere blood loss. The third peak (‘Late deaths’) corresponds to people
who die days or weeks after an injury; these deaths are usually due
to infection or multiple organ failure.”

Strictly speaking, the sum of three peaks does not have to be a
trimodal distribution. Many groups have published refutations of
trimodality: they did not find the trimodal distribution of death. In
1995, Sauaia et al. reported that the ‘greater proportion of late
deaths due to brain injury and lack of the classic trimodal
distribution’ [42]. Wyatt et al. could not find this trimodal dis-
tribution in data from the Lothian and Borders regions of Scotland
between 1 February 1992 and 31 January 1994 [43]. They hy-
pothesised that this may be (partly) due to improvements in care.

Recently, more data has become available and many such re-
ports have been published [44–46]. The suggestion that the im-
provement in care has led to the destruction of the second and
third peaks has been advanced a number of times [45]. In 2012,
Clark et al. performed an analysis of the distribution of survival
times after injury using interval censored survival models [47].
They considered the trimodal hypothesis of Trunkey as an artifact
and provide arguments that the observed (in some works) second
peak is a result of differences in the definition of death.

Søreide et al. analysed the time distribution from injury to
death stratified by cause of death. They demonstrated that the
trimodal structure may be, probably, extracted from data but its
manifestation is model-dependent (see Fig. 6 in [48]). There were
several discussion papers published: ‘Trimodal temporal distribu-
tion of fatal trauma—fact or fiction?’ [49,50].

The trimodal hypothesis was tested on TARN data [51]. It was
demonstrated that ‘the majority of in hospital trauma deaths occur
soon after admission without further peaks in mortality’. We re-
produce the same results, indeed. But TARN database, the largest
European trauma database, allows us to make a stratified analysis
of mortality and the preliminary results demonstrate the richness
of the possible patterns of death.

Let us test the famous Trunkey hypothesis. In Fig. 8, the daily
mortality coefficients are presented for low severities (a) (NISS
severities 1–8, 27,987 cases in database, 508 death in TARN, 3983
patients transferred from TARN within 30 days after injury), and
for the whole database (b). For the prediction of death in the
‘OUT30’ group we used the model with retarded transfer.

The non-monotonicity and peaks in the mortality for low se-
verities of injury are illustrated in Fig. 8. Further analysis of these
patterns should involve other attributes such as the age of the
patient and the type and localisation of the injury.

Medical commentary: It has been widely accepted that the
Trunkey trimodal distribution was a theoretical concept designed
to illustrate the different modes of dying following injury. Previous
analysis of trauma data has looked at all patients and has not
shown any mortality peaks, however this new analysis shows that
there are peaks (patterns) if subgroups are studied. The underlying
clinical or patient factors are not immediately obvious, but future
analysis giving a better understanding of patterns of death could
act as a stimulus to look for the clinical correlates of these patterns
–with the potential to find modifiable factors. The pattern of death
in various subgroups as shown in Fig. 7 is a novel finding that
requires further analysis.
8. Discussion

Handling of data with missed outcomes is one of the first data
cleaning tasks. For many healthcare datasets, the problem of lost
patients and missed outcomes (in 30 days, in six months or any
other period of interest) is important. There are two main ap-
proaches for solving this problem:

1. To find the lost patients in other national and international
databases;

2. To recover the distribution of the missed outcomes and all their
correlations using statistical methods, data mining and sto-
chastic modelling.

Without any doubt the first approach is preferable if it is available:
it is better to have complete information when it is possible.



Fig. 8. Daily coefficient of mortality – evaluated probability of a patient to die on day t under condition that he/she survived during days ÷ −t1 1 and remains in a hospital at
day t: (a) for NISS¼1–8, (b) for all dataset. The coefficient is filtered by moving 5-day average starting from the 3rd day. The mortality coefficients are evaluated with the
Markov models with retarded transfer. Data for age <65 and age ≥65 are represented separately.
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Nevertheless, there may be various organisational, economical and
informational restrictions. It may be too costly to find the neces-
sary information, or this information may be unavailable or even
does not exist in databases. If there are only small number of lost
cases (dozens or even hundreds) then they may be sought in-
dividually. However if there are thousands of losses then we need
either a data integration system with links to appropriate data-
bases like the whole NHS and ONS data stores (with the as-
sumption that the majority of the missed data may be taken from
these stores) or a system of models for the handling of missed
data, or both because we might not expect all missed data to be
found in other databases.

In the TARN dataset, which we analyse in this paper, the out-
come is unavailable for 19,289 patients. The available case study
paradigm cannot be applied to deal with missed outcomes be-
cause they are not missed ‘completely at random’. Non-stationary
Markov models of missed outcomes allow us to correct the frac-
tion of death. Two naïve approaches give 7.20% (available case
study) or 6.36% (if we assume that all unknown outcomes are
‘alive’). The corrected value is 6.78% (refined model with retarded
transfer). The difference between the corrected and naïve models
is significant, whereas the difference between different Markov
corrections is not significant despite the large dataset.

Non-stationary Markov models for unknown outcomes can
utilise any scheme of predictive models with using any set of
available attributes. We demonstrate the construction of such
models using maximal severity model, binned NISS model and
binned NISS supplemented by the age structure at low severities.
We use weighting adjustment to compensate for the effect of
unknown outcomes. The large TARN dataset allows us to use this
method without significant damage to the statistical power.

Analysis of mortality for a combination of injuries gives an
unexpected result. If ≥ ≥s s s1 2 3 are the three maximal severities of
injury in a trauma case then the expected mortality (FOD) is not a
monotone function of s3, s3, under given s1. For example, for

=s 4, 51 expected FOD first decreases when s2,3 grow from 0 to 1–2
and then increases when s2 approaches s1. Probably more attri-
butes, such as type of injury (blunt/penetrating), localisation of
traumas, gender, or airway status of the patient should be taken
into account for further analysis to resolve this puzzle.

Following the seminal Trunkey paper [15], multimodality of the
mortality curves is a widely discussed problem. For the complete
TARN dataset the coefficient of mortality monotonically decreases
in time but stratified analysis of the mortality gives a different
result: for lower severities FOD is a non-monotonic function of the
time after injury and may have maxima at the second and third
weeks after injury. Perhaps, this effect may be (partially) related to
geriatric traumas.

It is important to stress that both effects, non-monotone de-
pendence of mortality on the severity vector of combined traumas
and multimodality of the mortality curves for low severities, do
not depend on the method of mortality correction. These effects
manifest themselves for both naïve approaches as well as for
Markov models.

We found that the age distribution of trauma cases is strongly
multimodal (Fig. 7). This is important for healthcare planning.

The next step should be the handling of missed values of input
attributes in the TARN database. Firstly, we should follow the
‘Guidelines for reporting any analysis potentially affected by
missing data’ [13], report the number of missing values for each
variable of interest, and try to ‘clarify whether there are important
differences between individuals with complete and incomplete
data’. Already preliminary analysis of the patterns in the dis-
tribution of the missed input data in the TARN dataset demon-
strates that the gaps in data are highly correlated and need further
careful analysis. Secondly, we have to test and compare various
methods of handling missing input attributes in the TARN
database.

It is not necessary to analyse all attributes in the database for
mortality prediction and risk evaluation. It is demonstrated that
there may exist an optimal set of input attributes for mortality
prediction in emergency medicine and additional variables may
even reduce the value of predictors [52]. Therefore, before the
analysis of imputation efficiency, it is necessary to select the set of
most relevant variables of interest.

The models developed in this case study can be generalised in
several directions. Firstly, for trauma datasets, different attributes
could be included in the ‘state’ s for the non-stationary Markov
models (Figs. 3 and 4). We did not explore all such possibilities but
have studied just simple models of the maximal severity (Model 2)
and binned NISS (Model 3). An example of model refinement with
inclusion of age in the state variable s is presented in Section 5.
Secondly, the ‘two stage lottery’ non-stationary Markov model
could be used as a general solution applicable to any health da-
taset where ‘TRANSFER IN’ or ‘TRANSFER OUT’ is a feature. Transfer
between hospitals is common in healthcare, therefore, we expect
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that models of this type will be useful for all large healthcare data
repositories.
9. Summary
1. The Trauma Audit and Research Network (TARN) has collected
the largest European trauma database. We have analysed
192,623 cases from the TARN database. We excluded from the
analysis 16,693 patients (8.67%), who arrived into TARN hospi-
tals later than 24 h after injury. The other 146,270 patients
(75.94%) approached TARN during the first day of injury and
remained in TARN or discharged to a final destination within
30 days of injury. 19,289 patients (13.19%) from this group
transferred from TARN to another hospital or institution (or
unknown destination) within 30 days of injury. For this sub-
group the outcome is unknown.

2. Analysis of the missed outcomes demonstrated that they cannot
be considered as misses ‘completely at random’. Therefore, the
analysis of available cases is not applicable for the TARN data-
base. Special efforts are needed to handle data with missed
outcomes.

3. We have developed a system of non-stationary Markov models
for the handling of missed outcomes and validated these
models on the data arising from patients who moved to TARN
(and excluded from the model fitting). We have analysed mor-
tality in the TARN database using the Markov models which we
have developed and also validated.

4. The results of analysis were used for weighting adjustment in
the available cases database (reweighting of the death cases).
The database with adjusted weights can be used for further data
mining tasks and will keep the proper fraction of deaths.

5. The age distribution of trauma cases is essentially multimodal,
which is important for healthcare planning.

6. Our analysis of the mortality coefficient in the TARN database
demonstrates that (i) for complex traumas the fraction of death
is not a monotone function of all severities of injuries and (ii) for
lower severities the fraction of death is not a monotonically
decreasing function of time after injury and may have inter-
mediate peaks in the second and third weeks after injury.

7. The approach developed here can be applied to various
healthcare datasets which have the problem of lost patients,
inter-hospitals transfer and missing outcomes.
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