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Allowed and forbidden regimes of entropy balance in lattice Boltzmann collisions
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We study the possibility of modifying collisions in the lattice Boltzmann method to keep the proper entropy
balance. We demonstrate that in the space of distributions operated on by lattice Boltzmann methods which respect
a Boltzmann type H theorem, there exists a vicinity of the equilibrium where collisions with entropy balance
are possible and, at the same time, there exists a region of nonequilibrium distributions where such collisions are
impossible. In particular, for a strictly concave and uniformly bounded entropy function with positive equilibria,
we show that proper entropy balance is always possible sufficiently close to the local equilibrium and it is
impossible sufficiently far from it, where additional dissipation has to appear. We also present some nonclassical
entropies that do not share this concern. The cases where the distribution enters the region far from equilibrium
typically occur in flows with low viscosity and/or high Mach number flows and in simulations on coarse grids.
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The problem of proper entropy balance is crucial in many
areas of computational physics. For classical computational
methods, including various versions of finite difference and
finite element methods, many efforts were applied to create
methods that guarantee proper values of entropy production
[1,2]. This problem persists because any new family of
methods requires an analysis of entropy balance and significant
efforts may be necessary to provide proper entropy production.

Lattice Boltzmann schemes are a type of discrete algorithm
which can be used to simulate fluid dynamics and more [3,4].
The problem of entropy balance in lattice Boltzmann methods
(LBMs) attracted much attention during the past decades [5–9]
and still remains unsolvable, and even a solvability of this
problem for many versions of LBM is now not completely
clear. In this Rapid Communication we demonstrate that
near a positive equilibrium which respects a strictly convex
and uniformly bounded H function there always exists a
vicinity where it is possible to introduce LBM collisions with
proper entropy balance. At the same time, we prove that there
always exist areas of nonequilibrium distributions where LBM
collisions with the proper entropy balance are impossible. The
distribution function may regularly enter these regions in low
viscosity or high Mach number fluids and in simulations on
coarse grids. In these regions we cannot redefine the collisions
for proper entropy balance and always have to introduce
additional dissipation. We calculate and graphically represent
these areas for some simple models of entropic collisions.
We provide the analysis in the frame of the entropic lattice
Boltzmann method (ELBM). It was invented in 1998 as a
tool for the construction of single relaxation time lattice
Boltzman models which respects an H theorem [5,6,10].
For this purpose, instead of the mirror image with a local
equilibrium as the reflection center, the entropic involution
was proposed, which preserves the entropy value. Later, it was
called the Karlin-Succi involution [11]. An ELBM usually
involves an evaluation of a Boltzmann type entropy function,
which does not exist for negative populations, hence such
an ELBM cannot ever tolerate a negative population value.
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Due to this there are population values for which an entropic
involution cannot be performed.

We discuss enhanced entropic collisions and demonstrate
that they provide the proper balance of entropy under wider
conditions because they do not require existence of the
entropic involution and use the entropic contraction instead.
We demonstrate also that two one-parametric distinguished
families of nonclassical entropies with singularity at the
boundary of positivity allow us to perform entropic collisions
without restrictions.

LBGK, ELBGK and enhanced entropic collisions. The
lattice Boltzmann discrete algorithm consists of two alter-
nating steps, advection and collision, which are applied to n

single particle distribution functions fi ≡ fi(x,t)(i = 1 . . . n),
each of which corresponds with a discrete velocity vector vi

(i = 1 . . . m). The values fi are also sometimes known as
populations or densities. The advection operation is simply
free flight for the discrete time step ε in the direction of
the corresponding velocity vector. The collision operation
is instantaneous and can be different for each distribution
function but depends on every distribution function. Collisions
do not change the macroscopic variables (moments). The
standard hydrodynamic moments are given by

ρ =
∑

i

fi, ρu =
∑

i

vifi, ρu2 + ρT =
∑

i

v2
i fi .

The simplest single relaxation time LBM is the lattice
Bhatnagar-Gross-Krook model (LBGK),

fi(x + εvi ,t + ε) = fi(x,t) + ω
(
f

eq
i (x,t) − fi(x,t)

)
, (1)

where ε is the time step and the relaxation coefficient
ω = 2ε/(2τ + ε), τ is the continuous BGK relaxation time,
and at first order in ε, the viscosity ν = c2

s τ , where cs is
the speed of sound. ω ∈ [1,2), ω = 1 (τ = ε/2) corresponds
to equilibrating at each time step and ω = 2 corresponds
to a reflection and the zero viscosity limit. The choice of
the velocity set {v1, . . . ,vn} and the discrete equilibrium
distribution f

eq
i should provide the best approximation of

the transport equations for the moments by the discrete
scheme (1). A variation on the LBGK is the entropic LBGK
(ELBGK) [12]. In this family of methods, the equilibria are
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defined as the conditional entropy maximizers under given
values of macroscopic variables (entropic equilibria). The
entropies have been constructed in a lattice dependent fashion
in Ref. [13]. Some conditions for nonexistence of the entropic
representation for given equilibria were found, and this class
[8,9] includes standard polynomial equilibria. As well it was
shown Ref. [9] that other types of equilibria only satisfy a
H theorem under some additional constraints on the Mach
number. Nevertheless, if the entropy is given, then, in some
range of the constraints, the corresponding entropic equilibria
exist. For the entropic lattice Boltzmann algorithm,

fi(x + εvi ,t + ε) = fi(x,t) + αβ
(
f

eq
i (x,t) − fi(x,t)

)
. (2)

The single parameter ω is replaced by a composite parameter
αβ. With knowledge of the entropy function S, α is found as
the nontrivial root of the equation

S(f) = S(f + α(feq − f)). (3)

The trivial root α = 0 returns the entropy value of the
original populations. ELBGK then finds the nontrivial α such
that (3) holds and the limit of the collision operation is
zero entropy production, and β = ω/2 controls how much
entropy is produced. A solution of (3) must be found
at every time step and lattice site. The ELBGK collision
obviously respects the second law (if β � 1), and a simple
analysis of entropy production gives the proper evaluation of
viscosity.

We also introduce a different form of the ELBGK col-
lision operation, which we call enhanced entropic colli-
sions (EECs). We directly search for the distribution func-
tion f′ = f + α(feq − f) (α � 1) which satisfies the equation
(1 � ω < 2)

S(f′) − S(feq) = √
ω − 1(S(f) − S(feq)). (4)

The parameter ω directly controls the amount of entropy to be
added into the system, and the coefficient

√
ω − 1 is used due

to the essentially quadratic nature of the entropy function S

near the equilibrium feq. Hence, where the entropic involution
exists, solutions of (4) and (3) coincide to the second order
in f − feq. If ω is close to 2, then EEC approaches ELBGK
collisions. If f is close to feq, then both EEC and ELBGK
coincide with the simple LBGK in the main order. If ω is
close to 1, then EEC coincides with LBGK. This is not true for
ELBGK because the nontrivial solution to (3) may not exist. Its
existence does not depend on ω but only on the populations.
Attempting to solve (3) assumes that the entropic reflection
exists, which is a strong requirement of existence of collisions
with preservation of entropy, whereas we just need a proper
entropy balance.

It has been shown [14] that, inside the region where the
entropy balance exists, the ELBGK produces a nonlinear
viscosity correction proportional to the strain rate tensor.
This type of correction must necessarily occur when the
relaxation parameter depends on the nonequilibrium part of
the distribution and has led to ELBM being characterized as a
subgrid method [14,15].

The main idea in the entropic collisions is the direct control
of local entropy production. Recently, this idea was developed
in various directions [16], such as entropic limiters [17] or

the entropy viscosity method [18] where a nonlinear viscosity
based on the local amount of entropy production is added to
the numerical discretization.

Regions of existence and nonexistence of entropic colli-
sions. Let us study the entropic involution in the distribution
simplex 	 given by

∑
fi = const > 0, fi � 0. Let us prove

that under very natural assumptions about some properties of
the entropy the simplex of distributions can be split into two
subsets A and B: In set A the entropic involution exists, and
for distributions from set B, Eq. (3) has no nontrivial solutions.
Both sets A and B have nonempty interiors (apart from a trivial
symmetric degenerated case).

Let the entropy S be a strictly concave continuous function
in the distribution simplex 	. We assume also that S is
twice differentiable, the Hessian of S, ∂2S/∂fi∂fj , is negative
definite in the interior of the simplex, 	+, where

∑
fi = const,

fi > 0, and the global maximizer of S, the equilibrium,
belongs to the interior of the simplex. For example, the rela-
tive Boltzmann entropy, S = −∑

fi[ln(fi/Wi) − 1], Wi > 0,
satisfies these conditions, because f ln f → 0 when f → 0
and ∂2S/∂fi∂fj = −δij /fi , whereas the relative Burg entropy
S = ∑

Wi[ln(fi/Wi)] does not satisfy these conditions be-
cause it does not exist on the border of the simplex (where
some fi → 0).

The sets of distributions f with given values of the
macroscopic variables in the simplex 	 are polyhedra, and
intersections of 	 with linear manifolds with the given
values of moments. We assume that in any such polyhedron
the entropy achieves its (conditionally) global maximum at
an internal point (equilibrium). This assumption holds for
the Boltzmann relative entropy because of the logarithmic
singularity of the “chemical potentials” μi = ln(fi/Wi) on
the border of positivity. If f is sufficiently close to a positive
equilibrium, then, due to the implicit function theorem, the
nontrivial solution to Eq. (3) exists and it gives α = 2 +
o(f − feq). The value α = 2 corresponds to the mirror image,
and the small term o(f − feq) gives the corrections to the
value α = 2. Therefore, in some vicinity of the equilibrium
the entropic involution exists.

To prove the existence of the area where entropic involution
is impossible, let us consider a polyhedron with given values
of the macroscopic variables and a positive equilibrium. The
local minima of the entropy in this polyhedron are situated
at the vertices. At least one of them is a global minimum.
Let this vertex be fv. Let us draw a straight line l through
points fv and feq. The intersection l ∩ 	 is an interval and S

achieves its global minimum on this interval at the point fv.
If the dimension of the polyhedron is more than one, then the
opposite end of this interval is not even a local minimum of
S in the polyhedron and the entropic involution does not exist
for fv and some vicinity around it. A special degeneration
is possible when the polyhedra are one dimensional (1D),
i.e., intervals, and the values of the entropy at both ends
of each interval coincide. For example, for two-dimensional
distributions, f+,f−, the entropy S = −f+ ln f+ − f− ln f−
and the macroscopic variable ρ = f+ + f−. Apart from such
symmetric one-dimensional cases there exists an area near
the maximally nonequilibrium vertex fv where the entropic
involution cannot be defined. Such an area may also exist near
some other vertices.
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The entropic involution is always possible for two families
of entropies [20]: the convex combinations of the Boltzmann
and the Burg relative entropies S = −∑

[αfi ln(fi/Wi) −
(1 − α)Wi ln(Wi/fi)] (0 � α < 1). The same is true for the
relative entropy of the form S = −β−1 ∑

Wi((Wi/fi)β − 1)
(β > 0) that tends to the Burg entropy when β → 0. This
negative branch of the relative Tsallis entropy is less known
then the usual positive branch [19]. These two families of
entropies are defined by the following conditions [20]: (i) They
increase in Markov processes, (ii) they have the form of the
sum over states (the trace from condition), (iii) there exist a
monotonic transformation that makes these entropies additive
with respect to joining of independent subsystems, and (iv)
they tend to −∞ at the border of positivity.

We now demonstrate the population function values where
the involution cannot be performed for some simple examples.
We use the standard 1D lattice with velocities v = (−c,0,c)
and corresponding populations f = (f−,f0,f+). The explicit
Boltzmann style entropy function is [13]

S(f) = −f− log(f−) − f0 log(f0/4) − f+ log(f+). (5)

We begin with an LBM with only one conserved moment in
collision, namely, density. The equilibrium is f

eq
− = ρ

6 , f
eq
0 =

2ρ

3 , f
eq
+ = ρ

6 . In Fig. 1(a), the simplex 	 of positive pop-
ulations with a fixed density ρ = 1 is the triangle given by
the intersection of three half planes, f + � 0,f − � 0, and
1 − f + − f − � 0. Within that region we plot several entropy
level contours S(f) = c and the unique equilibrium point. The
region is divided into the parts where the entropic involution is
possible (around the equilibrium) and where it is impossible.
Additionally the extended possibility boundary given by using
the EEC for ω = 1.2 is given.

A more common use of lattice Boltzmann involves a second
fixed moment, momentum. The entropic equilibria used by the

ELBGK are available explicitly as the maximum of the entropy
function (5),

f
eq
∓ = ρ

6
(∓3u− 1 + 2

√
1 + 3u2), f

eq
0 = 2ρ

3
(2 −

√
1 + 3u2).

These equilibria form a curve in the simplex ρ = const. In
Fig. 1(b) all relaxation occurs parallel to the lines of constant
u. The region where entropic involution is possible is again
given. Again the extended possibility boundary given by using
the EEC for ω = 1.2 is given.

We calculate these borders with the accuracy 10−3 guar-
anteed. The possibility boundaries in Fig. 1 are the images
of the simplex boundary under the entropic involution (3) or
the transformation (4) for all the boundary points f where
they exist. In this method we draw a straight line l through a
boundary point f and the equilibrium and find the intersection
l ∩ 	 which consists of all points on l with non-negative
coordinates. One end of this interval is f, and another end
is also a boundary point, fb. The entropic involution for f
exists if and only if S(fb) � S(f). The solution of (4) exists if
and only if S(feq) − S(fb) �

√
ω − 1[S(feq) − S(f)]. After we

check this inequality, we can solve the equations and find the
images. We choose these examples because an LBM with three
discrete velocities is simple to visualize. The analysis is equally
valid for larger velocity sets in higher dimensions, and in such
cases the dimension of the simplex 	 will increase. The shape
and size of the region A within that simplex, where entropy
balance is possible, will be dependent on the particular choice
of the conserved macroscopic moments and the equilibrium.
Without making more assumptions about the equilibrium it is
not possible to more precisely define the regions A,B than to
say that they both exist.

Conclusion. It is not always possible to perform an entropic
involution. We have demonstrated that, apart from some
special one-dimensional spaces of distributions with additional
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FIG. 1. (Color online) The simplex 	 is given by the triangle. (a) Populations relax through the equilibrium given by the single point. (b)
Populations relax through the their corresponding equilibrium point along the line u = const. In both cases the boundary of the possibility of
involution is given. The regions A (the entropic involution is possible) and B (it is impossible) divided by this boundary are presented. The
boundary of the possibility region for the EEC with ω = 1.2 is plotted.
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symmetry, there exist domains with collisions where the
preservation of entropy is not possible if the entropy is finite at
the border of positivity. We illustrated this statement by some
simple examples of ELBGK systems for which we directly
calculated the areas where entropic collisions exist and where
they do not exist. Such phenomena should be observable in
all ELBM schemes with the classical entropies: There exists
a vicinity of the equilibrium where the entropic involution is
possible, but for some areas of nonequilibrium distributions
there exists no nontrivial root of Eq. (3). A collision which
preserves entropy does not exist for this area. Therefore, for
the regimes close to equilibrium (the vicinities A of equilibria,
Fig. 1), ELBM schemes guarantee the precise balance of the
entropy. For more nonequilibrium regimes, when at some
sites the distribution belongs to sets B, ELBM schemes
work as limiters with additional dissipation. For any complete
definition of ELBM it is necessary to prescribe what to do
when the involution is not possible in the sets B. A reasonable
choice would be to over-relax the maximum amount possible
while maintaining positive population values. Such a technique

is in use as a stabilizer for lattice Boltzmann schemes (the
“positivity limiter” [17,21–24]), and this is an example of a
class of limiters applied to stabilize LB methods [16,17]. An
effect of this operation is a local increase in viscosity and in
entropy production. The use of the EEC allows the proper en-
tropy production in a wider domain of populations without the
entropic reflection necessarily existing. Our formal analysis is
valid for all types of (linear) conservation constraints including
both thermal and athermal LBM.

Our work addresses a long-lasting discussion, whether the
proper entropy balance is always possible in an LBM which
respects a H theorem. The answer for any values of the
macroscopic variables is as follows: It is always possible if the
distribution belongs to some vicinity of the local equilibrium
and, at the same time, additional dissipation always appears
for sufficiently nonequilibrium distributions. In addition, we
stress that (i) the convex combinations of the Boltzmann and
the Burg relative entropies and (ii) negative branch of the
relative Tsallis entropy allow us to perform entropic collisions
without restrictions.
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