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Abstract— We propose a technique for improving Automatic
White Balance (AWB) settings in digital cameras on the basis
automatic classification of image fragments in pictures. Our
approach is based on constructing binary decision trees and
using them as decision-making devices for identifying and
locating patches of consistent texture in an image, such as grass,
sky etc. We demonstrate with examples that this approach can
be applied successfully to enhance color reproduction of images
in challenging light conditions. Furthermore, due to low levels
of false-positives, the method can be used in combination with
any other AWB algorithms that do not rely on color clues
obtained from the inference and analysis of content in images
taken.

I. INTRODUCTION

Consider a situation when someone takes photos of land-

scapes in strong light on a sunny day in the middle of

summer. Frames containing large patches of green grass or

blue sky or both are not unusual in these circumstances.

Every grass stem reflects sun rays, and since the relative

amount of grass is large, such reflection gives rise to an

additional source of light in the scene. This light, however,

can easily be confused with reflection from a gray object

under artificial light in standard (R/G,B/G) color metrics.

Such confusion decreases reliability and correctness of Au-

tomatic White Balance (AWB) decisions in these situations.

Furthermore, it suggests that using mere raw (R/G,B/G)

data is hardly sufficient for producing correct AWB deci-

sions. Similar scenario occurs in presence of large areas of

blue sky in images. Even though true color representation

may be distorted in such images it is nevertheless desirable

to be able to correctly represent true colors of objects in

these scenes using AWB settings.

In what follows we present a technique for improving

performance of AWB algorithms which is based on detecting

grass or sky patches in image frames. The paper is organized

as follows. Section II describes our grass/sky detection

and classification engine, Section III contains experimental

results, and Section IV demonstrates application of the

technique to AWB setting. Section V concludes the paper.

II. CLASSIFICATION ENGINE

A. Clusters configuration

Any machine learning task starts with forming and

analysing feature spaces and training sets that are available

for observation. In our task the variables available for direct

observation have been restricted to: 1) average R/G value, 2)

average B/G value, 3) variance of R/G value, 4) variance of

B/G value, 5) Illumination of scene (lux value) 6) Intensity

variation. The reason for choosing this particular set of

parameters for enhancing AWB settings is that we were

aiming at embedding developed algorithms in the available

existing image processing hardware pipeline in which these

6 characteristics of image patches were readily available.

Every photo was split into 15 × 15 pieces and for every

such piece we formed a corresponding 6D parameter/feature

vector. Each training set was built from about 100 photos,

and the total number of training 6D points was about 22500.

Training sets were organized as follows. The training set was

split into two subsets: positive (with grass featuring in the

images) and negative (no grass objects in the images). Images

in the positive training set contained large amount of different

textures of grass and foliage in different light conditions. The

size occupied by grass/foliage patches varied from one image

to another. The negative training set contained photos with

different objects and colors and, at the same time, did not

contain any grass/foliage or sharp green real world objects.

Fig. 1 shows examples of possible 2D projections of clus-

ters of the original 6D feature vectors. As we can see from

these pictures relationships between individual components

of feature vectors corresponding to different clusters is rather

complicated, with large overlapping areas in relevant 2D
projections.

B. Techniques

In order to solve the classification problem we focused

primarily on binary decision trees, mainly due to simplicity

of their implementation. Performance of the binary tree clas-

sifier was compared with that of a standard linear classifier

(Fisher linear discriminant [1]). Posterior analysis revealed

that binary decision trees were more advantageous in our

task.

1) Fisher’s linear discriminant: Out first try was to em-

ploy Fisher’s linear discriminant [1] in the space of points

(R/G,B/G) in order to determine presence of color cues,

e.g. patches of grass, in a scene. As a by-product of using

Ficher’s discriminant one can reduce dimensionality of the

classifier for this task. The main idea of this approach is
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Fig. 1: Representation of the dataset on the planes of pairs

of attributes. Green circles correspond to patches of grass,

black circles mark patches of images without grass.

to project data points onto a line so that separation of

points from different clusters to this line is maximized in

some sense. Since points are being projected on the line,

dimension of the classifier is reduced. Formally, the approach

is summarised as follows. Let N will be number of points

in each class in the training set, and x = (R/G,B/G), and

w be a normal to a discriminating hyper-plane. The vector

w determines the line to which the datum will be projected.

This vector is chosen so that variance of the projections of

points from different clusters is maximal and, at the same

time, variance of the projections of points within the same

class is minimal. The solution of this problem can formally

be expressed as [1]:

w = S−1
W (m2 −m1),

where

SW =
∑

n∈C1

(xn−m1)(xn−m1)
T+

∑

n∈C2

(xn−m2)(xn−m2)
T

m1 =
1

N

∑

n∈C1

xn, m2 =
1

N

∑

n∈C2

xn.

With respect to application of this method for determining

color cues, its performance was not overall satisfactory.

Clusters of projected data in the training and validation sets

overlapped, and classification quality for points within the

overlapping area was very poor.

2) Binary decision trees: Decision trees is a common

method in data mining. The main idea is to create a structure

that predicts the values of a target attribute based on several

input variables. In this approach data have the following

form:

(x, c) = (x1, x2, . . . , xn, c),

where xn are attributes, and c is the target variable. In

our problem c is the class of an area to which this point

belongs (“grassy” or “non-grassy”). Each node in such a tree

contains some attribute name and its threshold value. Leaves

of the tree contain values of target variables. The tree can

be constructed from training data by splitting initial cluster

into subsets determined by values of attributes. The process

continues recursively by splitting clusters into smaller subsets

until stopping conditions are reached. Each area is then

classified as follows:

c(area) =

{

grassy, Ng/(Ng +Nng) > c0
non-grassy, otherwise,

where Ng and Nng are the number of grass and non-

grass points in that area, and c0 is a threshold. Several

different algorithms exist that enable automated construction

of decision trees [5]. The simplest ones among these are the

so-called ID3 [3] and C4.5 [4]. In our work we have chosen

ID3 due to simplicity of its implementation.

The process of constructing a decision tree with ID3 can

be briefly described as follows. Let x = (x1, . . . , xn) be the

vector of attributes taking values in R, (x1,i, . . . , xn,i), i =
1, . . . , N be the training set, and S be the initial (bounded)

set from which the training set is drawn. In addition, for each

attribute xj we introduce a set of thresholds {tj,1, . . . , tj,M}
that are equally spaced in the interval [minxj ,maxxj ]. With

each threshold tj,k we will associate two subsets S+
j,k =

{x ∈ S| xj ≥ tj,k} and S−

j,k = {x ∈ S| xj < tj,k}. It is

clear that S = S+
j,k ∪ S−

j,k, and in this sense thresholds tj,k
split the original set S into two disjoint subsets with respect

to the values of attribute xj . All points in the training set

are supposed to be already correctly classified into classes

c from the set of admissible classes C. Furthermore, the

following statistical characterizations of the training set are

supposed to be readily available: 1) |S|, |S+
j,k|, |S

−

j,k| – the

total numbers of elements in the sets S, S+
j,k, and S−

j,k; 2)

p(c, S), p(c, S+
j,k), and p(c, S−

j,k) – the ratios of the number

of elements from S, S+
j,k, and S−

j,k classified as from class

c to the total number of elements in S, S+
j,k, and S−

j,k

respectively.

For the sets S, S+
j,k, and S−

j,k defined above we introduce

quantities specifying variability of classes within these sets.

In this case standard Shannon entropy [6] is used:

H(S) = −
∑

c∈C

p(c, S) log2 p(c, S),

H(S+
j,k) = −

∑

c∈C

p(c, S+
j,k) log2 p(c, S

+
j,k)

H(S−

j,k) = −
∑

c∈C

p(c, S−

j,k) log2 p(c, S
−

j,k).

Obviously, if e.g. H(S+
j,k) = 0 (or H(S−

j,k) = 0) then the

set S+
j,k (or S−

j,k) contains objects of only one class. Finally,

we specify conditional entropy H(S|tj,k)

H(S|tj,k) =
|S+

j,k|

|S|
H(S+

j,k) +
|S−

j,k|

|S|
H(S−

j,k),

and relative information gain RIG(S|tj,k)

RIG(S|tj,k) = (H(S)−H(S|tj,k))/H(S).
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Fig. 2: An illustration for ID3 algorithm. See the article text

for comments.

The algorithm for constructing binary decision trees can now

be described as follows:

1) Consider initial set S
2) Create a set of thresholds {tj,k}
3) For every tj,k calculate RIG(S|tj,k)
4) Determine

tl,m = arg max
j=1,...,n;k=1,...,M

RIG(S|tj,k)

5) Create a node with attribute xl being a decision vari-

able, and xl < tl,m, xl ≥ tl,m being its corresponding

branching conditions; split the initial set S into two

sets S+
l,m and S−

l,m

6) Remove tl,m from the list of thresholds and repeat this

procedure recursively for each subsequent subsets S+
l,m

and S−

l,m until a stopping condition is met

In order to illustrate how the algorithm works for the

relevant case of data points comprising of two attributes

x1 and x2 we consider the following simple example. Let

training data be as in the diagram in Figure 2. The data

points are already classified into two classes (marked by

blue and green rectangles on figure respectively), and the

initial set S is the entire white rectangle. We continue with

step 2 and chose t1,k = k, t2,k = k, k = 1, . . . , 40. This

completes step 2. For the chosen set of thresholds we are

to calculate RIG(S|tj,k), j = 1, 2; k = 1, . . . , 40 (step 3).

Suppose that the maximal value of RIG is reached at t1,14
(red line on Figure 2) (step 4). Proceeding to step 5, we split

the initial set S into S+
1,14 (to the right of the red line) and

S−

1,14 (to the left of the red line). These steps are repeated

until stopping conditions in each branch are met. Figure 3

shows an example of possible final decision tree for this case.

III. EXPERIMENTAL RESULTS

A. Testing

The approach has been applied for detection of sky and

grass fragments in images. The training set consisted of about

500 photos of different types including ordinary indoors and

outdoors images. Examples of typical grass patches detection

are shown in Fig. 4. White and dark cells it the right panel

label patches in which the probability of grass is high or low,

respectively.

x1 ≤ 14?

This is

class I
x2 ≤ 30?

This is

class II
This is

class I

yes no

yes no

Fig. 3: An decision tree example

Fig. 4: Examples of grass detection. Left column: source

images. Right column: probability/likelyhood maps.

B. How informative parameters were?

Not all parameters are equally informative. We found that,

in some problems better results can be achieved if some

parameters are removed from consideration. For example, in

the sky detection problem excluding variances of R/G,B/G
helped to increase quality of detection. In addition, we

investigated the influence of the number of parameters used

on the size of the final decision tree. In some cases exclusion

of few specific parameters led to reduction of the tree’s depth.

Finally, frequencies of appearance of parameters/attributes in

constructed trees varied too suggesting that some parameters

are less informative than others. Variability of parameter/at-

tribute frequencies in the final trees is shown in Figure (5).

C. Manual calibrations routines

Further improvements can be achieved by manual cali-

bration. The crucial point concerning manual calibration is

first to decide if having low rate of false-positives is more

preferable over an occasional mis-detection, or it is the other

way around. Depending on this choice, in manual calibration

we looked for points which have not been correctly classified

and forced the algorithm to associate this point and a small

hypercube of pints around it with either false or positive case.

Note that complete elimination of mistakes may not always

be possible due to potential inseparability of certain domains

in the feature space.
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Fig. 5: Frequency of parameters usage in each decision tree

D. Problems and issues

The following issues emerged during experimental valida-

tion/tuning.

1) The problem of how to form training sets ensuring best

possible quality of detection

2) In some lighting conditions, the classification of sky

patches can be unreliable as it may have statistical

characterizations very similar to non-sky objects. This

issue can be resolved by increasing the number of

attributes employed for classification.

3) Color characteristics of sky may vary substantially

which imposes additional constraints and demands on

the choice of appropriate training sets.

IV. APPLICATION OF SCENE ELEMENTS PROBABILITIES

IN AWB ALGORITHM

In order to illustrate application of our method we first

take classic grey world algorithm and then add our proposed

scene-analysis based AWB setting correction to improve

color reproduction. Recall that the grey world algorithm

works as follows. Let I(x, y) be an image of the size

M ×N , where x, y are indices of pixel positions. Variables

IR(x, y),IG(x, y) and IB(x, y) denote red,green and blue

channels of the image, respectively. Average values within

channels can be calculated [2] as

Ravg =
1

MN

M
∑

x=1

N
∑

y=1

IR(x, y) (1)

Gavg =
1

MN

M
∑

x=1

N
∑

y=1

IG(x, y) (2)

Bavg =
1

MN

M
∑

x=1

N
∑

y=1

IB(x, y) (3)

Grey world algorithm keeps the green channel unchanged

and defines correction ratio for the red and blue channels as

Fig. 6: Examples of how information about grass proba-

bilities can help in improving AWB. Left column: AWB

setting with conventional GW algorithm. Right column:

AWB setting with grass probability information.

αGWA =
Gavg

Ravg

and βGWA =
Gavg

Bavg

. Red and blue channels

are adjusted as follows: IGWA,R(x, y) = αGWAIR(x, y),
IGWA,B(x, y) = βGWAIB(x, y). Now we split our image

onto 15 × 15 patches and calculate proportions of grassy

points in every patch according to our method. Let P be

a matrix 15 × 15 containing these values, and derive W =
1 − P + 0.001, where the pedestal 0.001 is introduced to

avoid divisions by zero. Then instead of calculating means

in (1)– (3) we calculate their weighted means (with the

weight matrix W ). The rest of the GW algorithm remains

unchanged. Fig. 6 shows examples of how the proposed

addition improves the outcomes of the GW algorithm.

V. CONCLUSION

In this work we proposed a technique for automatic AWB

settings improvement based on grass and sky detection in

pictures taken by digital cameras. The technique employs

construction of binary decision trees with manual post cal-

ibration. On the given database of images the resulting

algorithm showed very low level of false positives giving

additional clues on the light sources analyzed by the AWB

algorithm. This enables us to hope that it can be successfully

implemented in existing AWB algorithms without compro-

mising their operational quality.
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