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Abstract
Gaussian process model for vector-valued function has been shown to be useful for multi-output prediction. The existing

method for this model is to reformulate the matrix-variate Gaussian distribution as a multivariate normal distribution.

Although it is effective in many cases, reformulation is not always workable and is difficult to apply to other distributions

because not all matrix-variate distributions can be transformed to respective multivariate distributions, such as the case for

matrix-variate Student-t distribution. In this paper, we propose a unified framework which is used not only to introduce a

novel multivariate Student-t process regression model (MV-TPR) for multi-output prediction, but also to reformulate the

multivariate Gaussian process regression (MV-GPR) that overcomes some limitations of the existing methods. Both MV-

GPR and MV-TPR have closed-form expressions for the marginal likelihoods and predictive distributions under this

unified framework and thus can adopt the same optimization approaches as used in the conventional GPR. The usefulness

of the proposed methods is illustrated through several simulated and real-data examples. In particular, we verify empir-

ically that MV-TPR has superiority for the datasets considered, including air quality prediction and bike rent prediction. At

last, the proposed methods are shown to produce profitable investment strategies in the stock markets.

Keywords Multivariate Gaussian process � Multivariate Student-t process � Gaussian process regression �
Student-t process regression �Multi-output prediction � Stock investment strategy � Industrial sector � Time series prediction

1 Introduction

Over the last few decades, Gaussian processes regression

(GPR) has been proven to be a powerful and effective

method for nonlinear regression problems due to many

favorable properties, such as simple structure of obtaining

and expressing uncertainty in predictions, the capability of

capturing a wide variety of behavior by parameters and a

natural Bayesian interpretation [5, 21]. In 1996, Neal [20]

revealed that many Bayesian regression models based on

neural network converge to Gaussian processes (GP) in the

limit of an infinite number of hidden units [26]. GP has

been suggested as a replacement for supervised neural

networks in nonlinear regression [17, 28] and classification

[17]. Furthermore, GP has excellent capability of fore-

casting time series [6, 7].

Despite the popularity of GPR in various modeling

tasks, there still exists a conspicuous imperfection, that is,

the majority of GPR models are implemented for single

response variables or considered independently for multi-

ple responses variables without consideration of their cor-

relation [5, 25]. In order to resolve the multi-output

prediction problem, Gaussian process regression for vec-

tor-valued function is proposed and regarded as a prag-

matic and straightforward method. The core of this method

is to vectorize the multi-response variables and construct a

‘‘big’’ covariance, which describes the correlations

between the inputs as well as between the outputs

[2, 5, 8, 25]. This modeling strategy is feasible due to the

fact that the matrix-variate Gaussian distributions can be

reformulated as multivariate Gaussian distributions [8, 15].

Intrinsically, Gaussian process regression for vector-valued
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function is still a conventional Gaussian process regression

model since it merely vectorizes multi-response variables,

which are assumed to follow a developed case of GP with a

reproduced kernel. As an extension, it is natural to consider

more general elliptical processes models for multi-output

prediction. However, the vectorization method cannot be

used to extend multi-output GPR because the equivalence

between vectorized matrix-variate and multivariate distri-

butions only exists in Gaussian cases [15].

To overcome this drawback, in this paper we propose a

unified framework which: (1) is used to introduce a novel

multivariate Student-t process regression model (MV-TPR)

for multi-output prediction, (2) is used to reformulate the

multivariate Gaussian process regression (MV-GPR) that

overcomes some limitations of the existing methods and

(3) can be used to derive regression models of general

elliptical processes. Both MV-GPR and MV-TPR have

closed-form expressions for the marginal likelihoods and

predictive distributions under this unified framework and

thus can adopt the same optimization approaches as used in

the conventional GPR. The usefulness of the proposed

methods is illustrated through several simulated examples.

Furthermore, we also verify empirically that MV-TPR has

superiority in the prediction based on some widely used

datasets, including air quality prediction and bike rent

prediction. The proposed methods are then applied to stock

market modeling which shows that the profitable stock

investment strategies can be obtained.

The rest of the paper is organized as follows. Section 2

introduces some preliminaries of matrix-variate Gaussian

and Student-t distributions with their useful properties.

Section 3 presents the unified framework to reformulate

the multivariate Gaussian process regression and to derive

the new multivariate Student-t process regression models.

Some numerical experiments by the simulated data and real

data and the applications to stock market investment are

presented in Sect. 4. Conclusion and discussion are given

in Sect. 5.

2 Backgrounds and notations

Matrix-variate Gaussian and Student-t distributions have

many useful properties, as discussed in the studies

[10, 15, 31]. For completeness and easy referencing, below

we list some of them which will be used in this paper.

2.1 Matrix-variate Gaussian distribution

Definition 1 The random matrix X 2 Rn�d is said to have

a matrix-variate Gaussian distribution with mean matrix

M 2 Rn�d and covariance matrix R 2 Rn�n;X 2 Rd�d if

and only if its probability density function is given by

pðXjM;R;XÞ ¼ ð2pÞ�
dn
2 detðRÞ�

d
2 detðXÞ�

n
2

� etr � 1

2
X�1ðX �MÞTR�1ðX �MÞ

� �
;

ð1Þ

where etrð�Þ is exponential of matrix trace and X and R are

positive semi-definite. It is denoted X�MN n;dðM;R;XÞ.
Without loss of clarity, it is denoted X�MNðM;R;XÞ.

Like multivariate Gaussian distribution, matrix-variate

Gaussian distribution also possesses several important

properties as follows.

Theorem 1 (Transposable) If X�MN n;dðM;R;XÞ, then
XT �MN d;nðMT;X;RÞ.

The matrix-variate Gaussian is related to the multivari-

ate Gaussian in the following way.

Theorem 2 (Vectorizable) X�MN n;dðM;R;XÞ if and

only if

vecðXTÞ�N ndðvecðMTÞ;R� XÞ;

where vecð�Þ is the vector operator and � is the Kronecker

product (or called tensor product).

Furthermore, the matrix-variate Gaussian distribution is

consistent under the marginalization and conditional

distribution.

Theorem 3 (Marginalization and conditional distribution)

Let X�MN n;dðM;R;XÞ and partition X;M;R and X as

where n1; n2; d1; d2 is the column or row length of the

corresponding vector or matrix. Then,

1. X1r �MN n1;d M1r;R11;Xð Þ,
X2rjX1r �MN n2;d

� M2r þ R21R
�1
11 ðX1r �M1rÞ;R22�1;X

�
;

�

2. X1c �MN n;d1 M1c;R;X11ð Þ,
X2cjX1c �MN n;d2

� M2c þ ðX1c �M1cÞX�1
11 X12;R;X22�1

�
;

�

where R22�1 and X22�1 are the Schur complement [30] of

R11 and X11, respectively,
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R22�1 ¼ R22 � R21R
�1
11 R12; X22�1 ¼ X22 � X21X

�1
11 X12:

2.2 Matrix-variate Student-t distribution

Definition 2 The random matrix X 2 Rn�d is said to have

a matrix-variate Student-t distribution with the mean

matrix M 2 Rn�d and covariance matrix R 2 Rn�n;X 2
Rd�d and the degree of freedom m if and only if the

probability density function is given by

pðXjm;M;R;XÞ ¼
Cn

1
2
ðmþ d þ n� 1Þ

� �
p

1
2
dnCn

1
2
ðmþ n� 1Þ

� �
� detðRÞ�

d
2 detðXÞ�

n
2

� detðIn þ R�1ðX �MÞX�1ðX �MÞTÞ�
1
2
ðmþdþn�1Þ;

ð2Þ

where X and R are positive semi-definite, and

CnðkÞ ¼ pnðn�1Þ=4
Yn
i¼1

C kþ 1

2
� i

2

� �
:

We denote this by X�MT n;dðm;M;R;XÞ. Without loss of

clarity, it is denoted X�MT ðm;M;R;XÞ.

Theorem 4 (Expectation and covariance) Let

X�MT ðm;M;R;XÞ, then

EðXÞ ¼ M; covðvecðXTÞÞ ¼ 1

m� 2
R� X; m[ 2:

Theorem 5 (Transposable) If X�MT n;dðm;M;R;XÞ,
then XT �MT d;nðm;MT;X;RÞ:

Theorem 6 (Asymptotics) Let X�MT n;dðm;M;R;XÞ,
then X!d MN n;dðM;R;XÞ as m ! 1, where ‘‘!d ’’ denotes
the convergence in distribution.

Theorem 7 (Marginalization and conditional distribution)

Let X�MT n;dðm;M;R;XÞ and partition X;M;R and X as

where n1; n2; d1; d2 is the column or row length of the

corresponding vector or matrix. Then,

1. X1r �MT n1;d m;M1r;R11;Xð Þ,

X2rjX1r �MT n2;d

�
mþ n1;M2r

þ R21R
�1
11 ðX1r �M1rÞ;R22�1;

Xþ ðX1r �M1rÞTR�1
11 ðX1r �M1rÞ

�
;

2. X1c �MT n;d1 ; m;M1c;R;X11ð Þ,

X2cjX1c �MT n;d2

�
mþ d1;M2c þ ðX1c �M1cÞX�1

11 X12;

Rþ ðX1c �M1cÞX�1
11 ðX1c �M1cÞT;X22�1

�
;

where R22�1and X22�1 are the Schur complement of R11 and

X11, respectively,

R22�1 ¼ R22 � R21R
�1
11 R12; X22�1 ¼ X22 � X21X

�1
11 X12:

Remark 1 It can be seen that matrix-variate Student-t

distribution has many properties similar to matrix-variate

Gaussian distribution, and it converges to matrix-variate

Gaussian distribution if its degree of freedom tends to

infinity. However, matrix-variate Student-t distribution

lacks the property of vectorizability (Theorem 2) [15]. As a

consequence, Student-t process regression for multiple

outputs cannot be derived by vectorizing the multi-re-

sponse variables. In the next section, we propose a new

framework to introduce multivariate Student-t process

regression model.

3 Multivariate Gaussian and Student-
t process regression models

3.1 Multivariate Gaussian process regression
(MV-GPR)

If f is a multivariate Gaussian process on X with vector-

valued mean function u : X7!Rd , covariance function (also

called kernel) k : X � X7!R and positive semi-definite

parameter matrix X 2 Rd�d , then any finite collection of

vector-valued variables have a joint matrix-variate Gaus-

sian distribution:

½f ðx1ÞT; . . .; fðxnÞT�T �MNðM;R;XÞ; n 2 N;

where f ; u 2 Rd are row vectors whose components are the

functions ffigdi¼1 and fligdi¼1; respectively. Furthermore,

M 2 Rn�d with Mij ¼ ljðxiÞ, and R 2 Rn�n with

Rij ¼ kðxi; xjÞ. Sometimes R is called column covariance

matrix, while X is row covariance matrix. We denote

f �MGPðu; k;XÞ.
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In conventional GPR methods, the noisy model y ¼
f ðxÞ þ e is usually considered. However, for Student-t

process regression such a model is analytically intract-

able [24]. Therefore, we adopt the method used in [24] and

consider the noise-free regression model where the noise

term is incorporated into the kernel function.

Given n pairs of observations fðxi; yiÞgni¼1; xi 2
Rp; yi 2 R1�d, we assume the following model:

f �MGPðu; k0;XÞ;
yi ¼ f ðxiÞ; for i ¼ 1; . . .; n;

where

k0 ¼ kðxi; xjÞ þ dijr
2
n; ð3Þ

and dij ¼ 1 if i ¼ j, otherwise dij ¼ 0. Note that the second

term in (3) represents the random noises.

We assume u ¼ 0 as commonly done in GPR. By the

definition of multivariate Gaussian process, it yields that

the collection of functions ½fðx1Þ; . . .; fðxnÞ� follow a

matrix-variate Gaussian distribution:

½f ðx1ÞT; . . .; fðxnÞT�T �MNð0;K 0;XÞ;

where K 0 is the n� n covariance matrix of which the (i, j)-

th element ½K 0�ij ¼ k0ðxi; xjÞ.
To predict a new variable f � ¼ ½f�1; . . .; f�m�T at the test

locations X� ¼ ½xnþ1; . . .; xnþm�T, the joint distribution of

the training observations Y ¼ ½yT1 ; . . .; yTn �
T
and the predic-

tive targets f � are given by

Y

f �

� 	
�MN 0;

K 0ðX;XÞ K 0ðX�;XÞT

K 0ðX�;XÞ K 0ðX�;X�Þ

" #
;X

 !
; ð4Þ

where K 0ðX;XÞ is an n� n matrix of which the (i, j)-th

element ½K 0ðX;XÞ�ij ¼ k0ðxi; xjÞ, K 0ðX�;XÞ is an m� n

matrix of which the (i, j)-th element ½K 0ðX�;XÞ�ij ¼
k0ðxnþi; xjÞ, and K 0ðX�;X�Þ is an m� m matrix with the

(i, j)-th element ½K 0ðX�;X�Þ�ij ¼ k0ðxnþi; xnþjÞ. Thus, taking
advantage of conditional distribution of multivariate

Gaussian process, the predictive distribution is

pðf �jX; Y ;X�Þ ¼ MNðM̂; R̂; X̂Þ; ð5Þ

where

M̂ ¼ K 0ðX�;XÞTK 0ðX;XÞ�1
Y; ð6Þ

R̂ ¼ K 0ðX�;X�Þ � K 0ðX�;XÞTK 0ðX;XÞ�1
K 0ðX�;XÞ; ð7Þ

X̂ ¼ X: ð8Þ

Additionally, the expectation and the covariance are

obtained:

E½f �� ¼ M̂ ¼ K 0ðX�;XÞTK 0ðX;XÞ�1
Y; ð9Þ

covðvecðfT� ÞÞ ¼ R̂� X̂ ¼ ½K 0ðX�;X�Þ
� K 0ðX�;XÞTK 0ðX;XÞ�1

K 0ðX�;XÞ� � X:
ð10Þ

3.1.1 Kernel

Although there are two covariance matrices in the above

regression model: the column covariance and the row

covariance, only the column covariance depends on inputs

and is considered as kernel since it contains our pre-

sumptions about the function we wish to learn and define

the closeness and similarity between data points [22]. As in

conventional GPR, the choice of kernels has a profound

impact on the performance of multivariate Gaussian pro-

cess regression (as well as multivariate Student-t process

regression introduced later). A wide range of useful kernels

have been proposed in the literature, such as linear, rational

quadratic and Matérn [22]. But the squared exponential

(SE) kernel is the most commonly used due to its simple

form and many desirable properties such as smoothness

and integrability with other functions, although it could

oversmooth the data, especially financial data.

The squared exponential (SE) kernel is defined as:

kSEðx; x0Þ ¼ s2f exp �kx� x0k2

2‘2

 !
;

where s2f is the signal variance and can also be considered

as an output-scale amplitude and the parameter ‘ is the

input (length or time) scale [23]. The kernel can also be

defined by automatic relevance determination (ARD):

kSEardðx; x0Þ ¼ s2f exp �ðx� x0ÞTH�1ðx� x0Þ
2

 !
;

where H is a diagonal matrix with the element components

f‘2i g
p
i¼1, which represents the length scales for each cor-

responding input dimension.

For convenience and the purpose of demonstration, SE

kernel is used in all our experiments where there is only

one input variable, while SEard is used in those with

multiple input variables. It should be noted that there is no

technical difficulty to use other kernels in our models.

3.1.2 Parameter estimation

The hyperparameters involved in the kernel and the row

covariance matrix of MV-GPR need to be estimated from

the training data. Many approaches used in the conven-

tional GP models [27], such as maximum likelihood esti-

mation (MLE), maximum a posteriori (MAP) and Markov

chain Monte Carlo (MCMC), can be used for our proposed

models. Although Monte Carlo methods can perform GPR

without the need of estimating hyperparameters
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[6, 18, 19, 28], the common approach is to estimate them

by means of MLE due to the high computational cost of

Monte Carlo methods. Therefore, as an example we con-

sider parameter estimation using MLE. Compared to the

conventional GPR model, X is an extra parameter; hence,

the unknown parameters include the hyperparameters in

the kernel, the noise variance r2n and the row covariance

parameter matrix X.
Because X is positive semi-definite, it can be denoted as

X ¼ UUT, where

U ¼

/11 0 � � � 0

/21 /22 � � � 0

..

. ..
. . .

. ..
.

/d1 /d2 � � � /dd

2
66664

3
77775:

To guarantee the uniqueness of U, the diagonal elements

are restricted to be positive and denote uii ¼ lnð/iiÞ for

i ¼ 1; 2; . . .; d.
In MV-GPR model, the observations follow a matrix-

variate Gaussian distribution Y �MN n;dð0;K 0;XÞ where

K 0 is the noisy column covariance matrix with element

½K 0�ij ¼ k0ðxi; xjÞ so that K 0 ¼ K þ r2nI where K is noise-

free column covariance matrix with element

½K�ij ¼ kðxi; xjÞ. As we know, there are hyperparameters in

the kernel k so that we can denote K ¼ Kh. The hyper-

parameter set denotes H ¼ fh1; h2; . . .g, thus
oK 0

or2n
¼ In;

oK 0

ohi
¼ oKh

ohi

According to the matrix-variate distribution, the negative

log marginal likelihood of observations is

L ¼ nd

2
lnð2pÞ þ d

2
ln detðK 0Þ þ n

2
ln detðXÞ

þ 1

2
trððK 0Þ�1

YX�1YTÞ:
ð11Þ

The derivatives of the negative log marginal likelihood

with respect to parameter r2n, hi, /ij and uii are as follows:

oL
or2n

¼ d

2
trððK 0Þ�1Þ � 1

2
trðaK0X�1aTK 0 Þ;

oL
ohi

¼ d

2
tr ðK 0Þ�1 oKh

ohi

� �
� 1

2
tr aK 0X�1aTK0

oKh

ohi

� �
;

oL
o/ij

¼ n

2
tr½X�1ðEijU

T þ UEjiÞ�

� 1

2
tr½aXðK 0Þ�1aTXðEijU

T þ UEjiÞ�;

oL
ouii

¼ n

2
tr½X�1ðJiiUT þ UJiiÞ�

� 1

2
tr½aXðK 0Þ�1aTXðJiiUT þ UJiiÞ�;

where aK0 ¼ ðK 0Þ�1
Y , aX ¼ X�1YT, Eij is the d � d ele-

mentary matrix having unity in the (i, j)th element and

zeros elsewhere, and Jii is the same as Eij but with the unity

being replaced by euii . The details are provided in ‘‘Mul-

tivariate Gaussian process regression’’ in Appendix.

Hence, standard gradient-based numerical optimization

techniques, such as conjugate gradient method, can be used

to minimize the negative log marginal likelihood function

to obtain the estimates of the parameters. Note that since

the random noise is incorporated into the kernel function,

the noise variance is estimated alongside the other

hyperparameters.

3.1.3 Comparison with the existing methods

Compared with the existing multi-output GPR methods

[2, 5, 25], our proposed method possesses several

advantages.

Firstly, the existing methods have to vectorize the multi-

output matrix in order to utilize the GPR models. It is

complicated and not always workable if the numbers of

outputs and observations are large. In contrast, our pro-

posed MV-GPR has more straightforward form where the

model settings, derivations and computations are all

directly performed in matrix form. In particular, we use

column covariance (kernel) and row covariance to capture

all the correlations together in the multivariate outputs,

rather than assuming a separate kernel for each output and

constructing a ‘‘big’’ covariance matrix by Kronecker

product as done in [5].

Secondly, the existing methods rely on the equivalence

between vectorized matrix-variate Gaussian distribution

and multivariate Gaussian distribution. However, this

equivalence does not exist for other elliptical distributions

such as matrix-variate Student-t distribution [15]. There-

fore, the existing methods for multi-output Gaussian pro-

cess regression cannot be applied to Student-t process

regression. On the other hand, our proposed MV-GPR is

based on matrix forms directly and does not require vec-

torization, so it can naturally be extended to MV-TPR as

we will do in the next subsection.

Therefore, our proposed MV-GPR provides not only a

new derivation of the multi-output Gaussian process

regression model, but also a unified framework to derive

more general elliptical processes models.

3.2 Multivariate Student-t process regression
(MV-TPR)

In this subsection, we propose a new nonlinear regression

model for multivariate response, namely multivariate Stu-

dent-t process regression model (MV-TPR), using the
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framework discussed in the previous subsections. MV-TPR

is an extension to multi-output GPR, as well as an exten-

sion to the univariate Student-t process regression proposed

in [24].

By definition, if f is a multivariate Student-t process on

X with parameter m[ 2, vector-valued mean function

u : X7!Rd, covariance function (also called kernel) k :
X � X7!R and positive semi-definite parameter matrix

X 2 Rd�d, then any finite collection of vector-valued

variables have a joint matrix-variate Student-t distribution:

½f ðx1ÞT; . . .; fðxnÞT�T �MT ðm;M;R;XÞ; n 2 N;

where f ; u 2 Rd are row vectors whose components are the

functions ffigdi¼1 and fligdi¼1; respectively. Furthermore,

M 2 Rn�d with Mij ¼ ljðxiÞ, and R 2 Rn�n with

Rij ¼ kðxi; xjÞ. We denote f �MTPðm; u; k;XÞ.
Therefore, MV-TPR model can be formulated along the

same line as MV-GPR based on the definition of multi-

variate Student-t process. We present the model briefly

below.

Given n pairs of observations fðxi; yiÞgni¼1; xi 2 Rp;

yi 2 R1�d, we assume

f �MTPðm;u; k0;XÞ; m[ 2;

yi ¼ f ðxiÞ; for i ¼ 1; . . .; n;

where m is the degree of freedom of Student-t process and

the remaining parameters have the same meaning of MV-

GPR model. Consequently, the predictive distribution is

obtained as:

pðf �jX; Y ;X�Þ ¼ MT ðm̂; M̂; R̂; X̂Þ; ð12Þ

where

m̂ ¼ mþ n; ð13Þ

M̂ ¼ K 0ðX�;XÞTK 0ðX;XÞ�1
Y; ð14Þ

R̂ ¼ K 0ðX�;X�Þ � K 0ðX�;XÞTK 0ðX;XÞ�1
K 0ðX�;XÞ; ð15Þ

X̂ ¼ Xþ YTK 0ðX;XÞ�1
Y: ð16Þ

According to the expectation and the covariance of matrix-

variate Student-t distribution, the predictive mean and

covariance are given by

E½f �� ¼ M̂ ¼ K 0ðX�;XÞTK 0ðX;XÞ�1
Y; ð17Þ

covðvecðfT� ÞÞ ¼
1

mþ n� 2
R̂� X̂

¼ 1

mþ n� 2
½K 0ðX�;X�Þ

� K 0ðX�;XÞTK 0ðX;XÞ�1
K 0ðX�;XÞ�

� ðXþ YTK 0ðX;XÞ�1
YÞ:

ð18Þ

In the MV-TPR model, the observations are followed by a

matrix-variate Student-t distribution Y �MT n;dðm; 0;
K 0;XÞ. The negative log marginal likelihood is

L ¼ 1

2
ðmþ d þ n� 1Þ ln detðIn þ ðK 0Þ�1

YX�1YTÞ

þ d

2
ln detðK 0Þ þ n

2
ln detðXÞ

þ lnCn

1

2
ðmþ n� 1Þ

� �
� lnCn

1

2
ðmþ d þ n� 1Þ

� �

þ 1

2
dn ln p

¼ 1

2
ðmþ d þ n� 1Þ ln detðK 0 þ YX�1YTÞ

� mþ n� 1

2
ln detðK 0Þ

þ lnCn

1

2
ðmþ n� 1Þ

� �
� lnCn

1

2
ðmþ d þ n� 1Þ

� �

þ n

2
ln detðXÞ þ 1

2
dn ln p:

Therefore, the parameters of MV-TPR contain all the

parameters in MV-GPR and one more parameter: the

degree of freedom m. The derivatives of the negative log

marginal likelihood with respect to parameter m,r2n, hi, /ij

and uii are as follows:

oL
om

¼ 1

2
ln detðUÞ � 1

2
ln detðK 0Þ þ 1

2
wn

1

2
s

� �

� 1

2
wn

1

2
ðsþ dÞ

� �
;

oL
or2n

¼ ðsþ dÞ
2

trðU�1Þ � s
2
trððK 0Þ�1Þ;

oL
ohi

¼ ðsþ dÞ
2

tr U�1 oKh

ohi

� �
� s
2
tr R�1 oKh

ohi

� �
;

oL
o/ij

¼ �ðsþ dÞ
2

tr½U�1aTXðEijU
T þ UEjiÞaX�

þ n

2
tr½X�1ðEijU

T þ UEjiÞ�;

oL
ouii

¼ �ðsþ dÞ
2

tr½U�1aTXðJiiUT þ UJiiÞaX�

þ n

2
tr½X�1ðJiiUT þ UJiiÞ�;

where U ¼ K 0 þ YX�1YT, s ¼ mþ n� 1 and wnð�Þ is the

derivative of the function lnCnð�Þ with respect to m. The
details are provided in ‘‘Multivariate Student-t process

regression’’ in Appendix.

Remark 2 It is known that the marginal likelihood func-

tion in GPR models is not usually convex with respect to

the hyperparameters; therefore, the optimization algorithm

may converge to a local optimum, whereas the global one

provides better result [12]. As a result, the optimized
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hyperparameters obtained by maximum likelihood esti-

mation and the performance of GPR models may depend

on the initial values of the optimization algorithm

[6, 18, 28, 29]. A common strategy adopted by most GPR

practitioners is a heuristic method. That is, the optimization

is repeated using several initial values generated randomly

from a prior distribution based on their expert opinions and

experiences, for example, using ten initial values randomly

selected from a uniform distribution. The final estimates of

the hyperparameters are the ones with the largest likelihood

values after convergence [6, 28, 29]. Further discussion on

how to select suitable initial hyperparameters can be found

in [9, 29]. In our numerical experiments, the same heuristic

method is used for both MV-GPR and MV-TPR.

Remark 3 Another issue related to the Gaussian process

and Student-t process models is the existence of the max-

imum likelihood estimators. To guarantee the existence of

the MLE, one needs to show that there exists a solution to

the system of equations that the derivatives of the marginal

likelihood equal 0 and to prove that the Hessians at the

solution are negative definite. However, due to the complex

structure of these models and non-concavity of their like-

lihood functions, this issue has not been theoretically

studied to the best of our knowledge, even for the con-

ventional univariate Gaussian process regression models,

although the numerical examples and applications in the

literature have shown that the likelihood functions in the

GPR models often have many local optima and the

heuristic method discussed in Remark 2 need to be used in

order to find an estimate as optimal as possible. For the

MV-GPR and MV-TPR models, in practice we can impose

a reasonable range for the parameters based on the data so

that (local) optima of the marginal likelihoods always exist.

In fact, our numerical examples demonstrate that the

likelihood functions are not concave and there often exist

multiple local optima; hence, several random initial values

are used in order to find optimal estimates of the parame-

ters. Of course, this procedure is not guaranteed to find the

global optimum, but our experiments have provided much

empirical evidence that for the proposed MV-GPR and

MV-TPR (local) optima can be found and the models with

these local optima as the estimates of the hyperparameters

perform better than many existing models. As the focus of

this paper is to propose multi-output prediction methods

using Gaussian process and Student-t process and to

demonstrate its usefulness through numerical examples and

the maximum likelihood method is just an example for the

model parameter estimation, the issue of the existence of

MLE is not further studied here and will be investigated in

our future work.

4 Experiments

In this section, we demonstrate the usefulness of MV-GPR

and our proposed MV-TPR using some numerical exam-

ples, including simulated data and real data.

4.1 Simulated example

We first use simulation examples to evaluate the quality of

the parameter estimation and the prediction performance of

the proposed models.

4.1.1 Evaluation of parameter estimation

We generate random samples from a bivariate Gaussian

process y�MGPð0; k0;XÞ, where k0 is defined as in (3)

with the kernel kSE. The hyperparameters in kSE are set as

½‘; s2f � ¼ ½0:5; 2:5� and X ¼ 1 0:8
0:8 1

� �
. The variance of

the random noise in k0 takes values r2n ¼ 0:1, 0.05 and 0.01.

As explained in Sect. 3.1, in our models the random noises

are included in the kernel; therefore, no additional random

errors can be added when the random samples are gener-

ated; otherwise, two random error terms will result in

identifiability issues in the parameter estimation. The

covariate x has 100 equally spaced values in [0, 1]. We

utilize the heuristic method discussed in Remark 2 to

estimate the parameters. The experiment is repeated 50

times, and we use the parameter median relative error

(pMRE) as a measure of the quality of the estimates [4]:

pMRE ¼ median
jĥi � hj

h
; i ¼ 1; 2; . . .50

( )
;

where j � j is the absolute value, ĥi is the parameter esti-

mates in repetition i and h is the true parameter. The results

are shown in Table 1.

The similar experiment is also conducted for MV-TPR,

where the samples are generated from a bivariate Student-t

Table 1 The pMREs of MV-GP samples with different noise levels

estimated by MV-GPR

Noise level r2n 0.1 0.05 0.01

r̂2n 0.041 0.041 0.041

ŝ2f 0.235 0.235 0.238

‘̂
2 0.080 0.079 0.078

û11 0.284 0.280 0.271

û22 0.282 0.279 0.276

/̂12
0.645 0.645 0.632
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process y�MTPðm; 0; k0;XÞ with the same true parame-

ters as above and m ¼ 3. The results are reported in

Table 2.

It can be seen that most of the parameters are well

estimated in both cases, except the parameters in the row

covariance matrix (u11, u22 and /12) in MV-GPR which

are not as good but reasonable. This may be because the

conjugate gradient optimization algorithm does not manage

to reach the global maxima of the likelihood function.

Better results may be achieved using optimal design for

parameter estimation as discussed in [4]. In general, the

estimates of the parameters are closer to the true values as

the noise level decreases, but the improvement in terms of

estimation accuracy is not significant.

4.2 Evaluation of prediction accuracy

Now, we consider a simulated data from two specific

functions. The true model used to generate data is given by

y ¼ ½f1ðxÞ; f2ðxÞ� þ ½eð1Þ; eð2Þ�;
f1ðxÞ ¼ 2x cosðxÞ; f2ðxÞ ¼ 1:5x cosðxþ p=5Þ;

where the random noise ½eð1Þ; eð2Þ� �MGPð0; kSE;XÞ. We

select kSE with parameter ½‘; s2f � ¼ ½1:001; 5� and

X ¼ 1 0:25
0:25 1

� �
. The covariate x has 100 equally

spaced values in [- 10, 10] so that a sample of 100

observations for y1 and y2 are obtained.

For model training, we use fewer points with one part

missing so that the zth training data points with z ¼

f3r þ 1g14r¼0 [ f3r þ 2g32r¼21 are selected for both y1 and y2.

The prediction is then performed for the remaining

covariate values in the interval [- 10, 10]. The RMSEs

between the predicted values and the true ones from f1ðxÞ
and f2ðxÞ are calculated. For comparison, the conventional

GPR and TPR models are also applied to the two outputs

independently. The above experiment is repeated 1000

times, and the ARMSE (average root mean square error),

defined by

ARMSE ¼ 1

Nr

XNr

i¼1

1

Ns

XNs

j¼1

ðŷðijÞl � f
ðijÞ
l Þ2

 !1
2

; l ¼ 1; 2;

is calculated. Here, Nr is the number of repeats, Ns is the

number of data points, f
ðijÞ
l is the jth true function value of

fl in the ith repetition and ŷ
ðijÞ
l is the corresponding pre-

dicted value. The ARMSEs for both training and test points

in [- 10, 10] are reported in Table 3, and an example of

prediction is demonstrated in Fig. 1.

The similar experiment is also conducted for the case

where the random noise follows a multivariate Student-t

process ½eð1Þ; eð2Þ� �MTPð3; 0; kSE;XÞ. We select kSE with

parameter ½‘; s2f � ¼ ½1:001; 5� and X ¼ 1 0:25
0:25 1

� �
. The

resulted ARMSEs are presented in Table 4, and an exam-

ple of prediction is demonstrated in Fig. 2.

From the tables and figures above, it can be seen that the

multivariate process regression models are able to discover

a more desired pattern in the gap compared with the con-

ventional GPR and TPR models used independently. It also

reveals that taking the correlations between the two outputs

into consideration improves the accuracy of prediction

compared with the methods of modeling each output

independently. In particular, MV-TPR performs better than

MV-GPR in the predictions for both types of noisy data

while the performances by TPR and GPR are similar.

It is not surprising that in general MV-TPR works better

than MV-GPR when the outputs have dependencies,

because the former has more modeling flexibility with one

more parameter which captures the degree of freedom.

Theoretically, MV-TP converges to MV-GP if the degree

of freedom tends to infinity, and to some extent, MV-GPR

is a special case of MV-TPR. In the above experiment

Table 2 The pMREs of MV-TP samples with different noise levels

estimated by MV-TPR

Noise level r2n 0.1 0.05 0.01

r̂2n 0.053 0.058 0.061

ŝ2f 0.181 0.178 0.163

‘̂
2 0.083 0.075 0.071

û11 0.015 0.015 0.014

û22 0.013 0.013 0.013

/̂12
0.007 0.007 0.007

m̂ 0.193 0.190 0.179

Table 3 The ARMSE by the

different models (multivariate

Gaussian noisy data)

Output 1 (y1) Output 2 (y2)

MV-GPR MV-TPR GPR TPR MV-GPR MV-TPR GPR TPR

Training 0.877 0.884 0.880 0.875 0.862 0.849 0.864 0.862

Test 1.453 1.309 1.869 1.869 1.282 1.145 1.478 1.480
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Fig. 1 Predictions for MV-GP

noise data using different

models. From panels a–d
predictions for y1 by MV-GPR,

MV-TPR, GPR and TPR. From

panels e–h predictions for y2 by

MV-GPR, MV-TPR, GPR and

TPR. The solid blue lines are

predictions, the solid red lines

are the true functions and the

circles are the observations. The

dash lines represent the 95%

confidence intervals (colour

figure online)
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because the observations, even generated from MV-GP,

may contain outliers and the sample size (23 training

points) is small, MV-TPR with a large degree of freedom

may fit the data better than MV-GPR and hence provides a

better prediction. These findings coincide with those in [24]

in the context of univariate Student-t process regressions.

On the other hand, while a training sample of size 23 may

be too small for two-dimensional processes such that MV-

TPR performs better than MV-GPR, it may be large

enough for one-dimensional processes, leading to similar

performances by TPR and GPR.

4.3 Real-data examples

We further test our proposed methods on two real datasets.1

The selected mean function is zero offset, and the selected

kernel is SEard. Before the experiments are conducted, all

the data have been normalized by

~yi ¼
yi � l
r

;

where l and r are the sample mean and standard deviation

of the data fyigni¼1; respectively.

4.3.1 Bike rent prediction

This dataset contains the hourly and daily count of rental

bikes between years 2011 and 2012 in Capital Bikeshare

System with the corresponding weather and seasonal

information [13]. There are 16 attributes. We test our

proposed methods for multi-output prediction based on

daily count dataset. After deleting all the points with

missing attributes, we use the first 168 data points in the

season autumn because the data are observed on a daily

basis (1 week = 7 days) and the whole dataset is divided

into eight subsets. (Each subset has 3-weeks’ data points.)

In the experiment, the input comprises eight attributes,

including normalized temperature, normalized feeling

temperature, normalized humidity, normalized wind speed,

whether the day is holiday or not, day of the week, working

day or not and weathersit. The output consists of two

attributes, including the count of casual users (Casual) and

the count of registered users (Registered).

The cross-validation method is taken as k�fold, where

k ¼ 8. Each subset is considered as a test set, and the

remaining subsets are considered as a training set. Four

models, including MV-GPR, MV-TPR, GPR (to predict

each output independently) and TPR (to predict each out-

put independently), are applied to the data, and predictions

are made based on the divided training and test sets. The

process is repeated for eight times, and for each subset’s

prediction, the MSE (mean square error) and the MAE

(mean absolute error) are calculated. The medians of the

eight MSEs and MAEs are then used to evaluate the per-

formance for each output. Finally, the maximum median of

all the outputs (MMO) is used to evaluate the overall

performance of the multi-dimensional prediction. The

results are shown in Table 5. It can be seen that MV-TPR

significantly outperforms all the other models in terms of

MSE and MAE, and MV-GPR performs the second best,

while TPR is slightly better than GPR.

4.3.2 Air quality prediction

The dataset contains 9,358 instances of hourly averaged

responses from an array of five metal oxide chemical

sensors embedded in an Air Quality Chemical Multisensor

Device with 15 attributes [11]. We delete all the points

with missing attributes (887 points remaining). The first

864 points are considered in our experiment because the

data are hourly observed (1 day = 24 h) and the whole

dataset is divided into nine subsets. (Each subset has 4-

days’ data points, totally 864 data points.) In the experi-

ment, the input comprises nine attributes, including time,

true hourly averaged concentration CO in mg/m3 (COGT),

true hourly averaged overall non-metanic hydrocarbons

concentration in microg/m3 (NMHCGT), true hourly

averaged benzene concentration in microg/m3 (C6H6GT),

true hourly averaged NOx concentration in ppb (NOx), true

hourly averaged NO2 concentration in microg/m3 (NO2),

absolute humidity (AH), temperature (T) and relative

humidity (RH). The output consists of five attributes,

including PT08.S1 (tin oxide) hourly averaged sensor

response, PT08.S2 (titania) hourly averaged sensor

response, PT08.S3 (tungsten oxide) hourly averaged sensor

response, PT08.S4 (tungsten oxide) hourly averaged sensor

response and PT08.S5 (indium oxide) hourly averaged

sensor response.

Table 4 The ARMSE by the

different models (multivariate

Student-t noisy data)

Output 1 (y1) Output 2 (y2)

MV-GPR MV-TPR GPR TPR MV-GPR MV-TPR GPR TPR

Training 0.927 0.919 0.892 0.890 0.871 0.850 0.852 0.850

Test 1.496 1.332 1.870 1.867 1.315 1.156 1.520 1.521

1 These datasets are from the UC Irvine Machine Learning Repos-

itory (https://archive.ics.uci.edu/ml/index.php).
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Fig. 2 Predictions for MV-TP

noise data using different

models. From panels a–d
predictions for y1 by MV-GPR,

MV-TPR, GPR and TPR. From

panels e–h predictions for y2 by

MV-GPR, MV-TPR, GPR and

TPR. The solid blue lines are

predictions, the solid red lines

are the true functions and the

circles are the observations. The

dash lines represent the 95%

confidence intervals (colour

figure online)
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The cross-validation method is taken as k-fold, where

k ¼ 9. The remaining modeling procedure is the same as in

the bike rent prediction experiment, except that k is 9 so

that the process is repeated nine times. The results are

shown in Table 6. It can be observed that MV-TPR con-

sistently outperforms MV-GPR, and in overall terms, MV-

GPR does not perform as well as independent GPR. These

results can likely be explained as follows. In fact, in our

proposed framework, all the outputs are considered as a

whole and the same kernel (and hyperparameters) is used

for all the outputs, which may not be appropriate if dif-

ferent outputs have very different patterns (which is the

case in this example). On the other hand, in the indepen-

dent modeling different GPR models are used for different

outputs and they can have different hyperparameters even

though the kernel is the same, which may result in better

prediction accuracy. It is noted that in this example, MV-

TPR still works better than MV-GPR because the former

offers more modeling flexibility and is thus more robust to

model misspecification. This finding is consistent with that

by [24] for the univariate Student-t process.

4.4 Application to stock market investment

In the previous subsections, the examples show the use-

fulness of our proposed methods in terms of more accurate

prediction. Furthermore, our proposed methods can be

applied to produce trading strategies in the stock market

investment.

It is known that the accurate prediction of future for an

equity market is almost impossible. Admittedly, the more

realistic idea is to make a strategy based on the Buy&Sell

signal in the different prediction models [1]. In this paper,

we consider a developed Dollar 100 (dD100) as a criterion

of the prediction models. The dD100 criterion is able to

reflect the theoretical future value of $100 invested at the

beginning, and traded according to the signals constructed

by predicted value and the reality. The details of dD100

criterion are described in Sect. 4.4.2.

Furthermore, the equity index is an important mea-

surement of the value of a stock market and is used by

many investors making trades and scholars studying stock

markets. The index is computed from the weighted average

of the selected stocks’ prices, so it is able to describe how

the whole stock market in the consideration performs in a

period, and thus many trading strategies of a stock or a

portfolio have to take the information of the index into

account. As a result, our experimental predictions for

specific stocks are based on the indices as well.

Table 5 Bike rent prediction results based on MSEs and MAEs

MV-GPR MV-TPR GPR TPR

(a) MSE

Casual 0.411 0.334 0.424 0.397

Registered 0.982 0.903 1.134 1.111

MMO 0.982 0.903 1.134 1.111

(b) MAE

Casual 0.558 0.488 0.540 0.546

Registered 0.897 0.855 0.916 0.907

MMO 0.897 0.855 0.916 0.907

Table 6 Air quality prediction

results based on MSEs and

MAEs

MV-GPR MV-TPR GPR TPR

(a) MSE

PT08S1CO 0.091 0.065 0.079 0.074

PT08S2NMHC 8:16� 10�5 3:42� 10�5 1:91� 10�7 7:32� 10�8

PT08S3NOx 0.036 0.027 0.022 0.025

PT08S4NO2 0.015 0.014 0.010 0.009

PT08S5O3 0.092 0.073 0.060 0.067

MMO 0.092 0.073 0.079 0.074

(b) MAE

PT08S1CO 0.240 0.204 0.212 0.223

PT08S2NMHC 6:39� 10�3 1:15� 10�2 1:80� 10�4 9:26� 10�5

PT08S3NOx 0.141 0.122 0.115 0.120

PT08S4NO2 0.095 0.089 0.079 0.073

PT08S5O3 0.231 0.210 0.199 0.205

MMO 0.240 0.210 0.212 0.223
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4.4.1 Data preparation

We obtain daily price data, containing opening, closing and

adjusted closing for the stocks (the details are shown in

Sects. 4.4.3 and 4.4.4) and three main indices in the USA,

Dow Jones Industrial Average (INDU), S&P500 (SPX) and

NASDAQ (NDX) from Yahoo Finance in the period of

2013–2014. The log returns of the adjusted closing price

and inter-day log returns are obtained by defining

Log return: LRi ¼ ln
ACPi

ACPi�1

;

Inter-day log return: ILRi ¼ ln
CPi

OPi

;

where ACPi is the adjusted closing price of the ith day

(i[ 1), CPi is the closing price of the ith day, and OPi is

the opening price of the ith day. Therefore, there are totally

503 daily log returns and log inter-day returns for all the

stocks and indices from 2013 to 2014.

4.4.2 Prediction model and strategy

The sliding windows method is used for our prediction

models, including GPR, TPR, MV-GPR and MV-TPR,

based on the indices, INDU, SPX and NDX. The training

sample is set as 303, which is used to forecast for the next

10 days, and the training set is updated by dropping off the

earliest 10 days and adding on the latest 10 days when the

window is moved. The sliding-forward process was run 20

times, resulting in a total of 200 prediction days, in groups

of 10. The updated training set allows all the models and

parameters to adapt the dynamic structure of the equity

market [1]. Specifically, the inputs consist of the log

returns of three indices, the targets are multiple stocks’ log

returns and standard exponential with automatic relevance

determination (SEard) is used as the kernel for all of these

prediction models.

It is noteworthy that the predicted log returns of stocks

are used to produce a buy or sell signal for trading rather

than to discover an exact pattern of the future. The signal

BS produced by the predicted log returns of the stocks is

defined by

BSi ¼ L̂Ri � LRi þ ILRi; i ¼ 1; . . .; 200;

where fL̂Rig200i¼1 are the predicted log returns of a specific

stock and fLRig200i¼1 are the true log returns, while fILRig200i¼1

are the inter-day log returns. The Buy&Sell strategy relying

on the signal BS is described in Table 7.

It is noted that the stocks in our experiment are counted

in Dollar rather than the number of shares, which means in

theory we can precisely buy or sell a specific Dollar-valued

stock. For example, if the stock price is $37 when we only

have $20, we can still buy $20-valued stock rather than

borrowing $17 and then buy 1 share. Furthermore, it is also

necessary to explain why we choose the signal BS. By the

definition, we rewrite it as:

BSi ¼ ln
^ACPi

ACPi�1

 !
� ln

ACPi

ACPi�1

� �
þ ln

CPi

OPi

� �

¼ ln
^ACPi

ACPi�1

 !
� ln

ACPi

ACPi�1

� �
þ ln

ACPi

AOPi

� �

¼ ln
^ACPi

AOPi

 !
;

where fACPig200i¼0 are the last 201 adjusted closing prices

for a stock, fCPg200i¼1 are the last 200 closing prices, and

fAOPg200i¼1 are the adjusted opening prices. If BSi [ 0, the

predicted closing price should be higher than the adjusted

opening price, which means we can obtain the inter-day

profit by buying the shares at the opening price2 as long as

the signal based on our predictions is accurate. Meanwhile,

the opposite manipulation based on BS strategy means that

we can avoid the inter-day loss by selling decisively at the

opening price. Furthermore, the reasonable transaction fee

0.025% is considered in the experiment since the strategy

might trade frequently.3 As a result, this is a reasonable

strategy since we can definitely obtain a profit by buying

the shares and cut the loss by selling the shares in time only

if our prediction has no serious problem. It is also an

executable strategy because the decision is made based on

the next day’s reality and our prediction models.

At last, BS signal varies in different prediction models

so that we denote these Buy&Sell strategies based on MV-

GPR, MV-TPR, GPR and TPR model as MV-GPR strat-

egy, MV-TPR strategy, GPR strategy and TPR strategy,

respectively.

Table 7 Buy&Sell strategy of dD100 investment

Decision Condition

Buy L̂Ri [ 0, and BSi [ 0 and we have the position of cash

Sell L̂Ri\0, and BSi\0 and we have the position of share

Keep No action is taken for the rest of the option

2 Actually, the value has to be considered as adjusted opening price

since all the shares are counted in Dollar. The adjusted opening price

is also easy to compute based on the real opening price and the

dividend information.
3 The figure 0.025% is comprehensive consideration referred to

NASDAQ website:http://nasdaq.cchwallstreet.com/.
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4.4.3 Chinese companies in NASDAQ

In recent years, the ‘‘Chinese concepts stock’’ has received

an extensive attention among international investors owing

to the fast development of Chinese economy and an

increasing number of Chinese firms have been traded in the

international stock markets [16]. The ‘‘Chinese concepts

stock’’ refers to the stock issued by firms whose asset or

earning have essential activities in Mainland China.

Undoubtedly, all these ‘‘Chinese concept stocks’’ are heavily

influenced by the political and economic environment of

China together. For this reason, all these stocks have the

potential and unneglectable correlation theoretically, which

is probably reflected in the movement of stock prices. The

performance of multiple targets prediction, which takes the

potential relationship into consideration, should be better.

Therefore, the first real-data example is based on three big-

gest Chinese companies described in Table 8.

We apply MV-GPR, MV-TPR, GPR and TPR strategies,

and the results are demonstrated in Fig. 3. Furthermore,

Tables 12, 13 and 14 in ‘‘Appendix 2: Three Chinese stocks

investment details’’ in Appendix summarize the results by

period for each stock, respectively. In particular, the Buy&Sell

signal examples for each stock are shown in Tables 15, 16 and

17 in ‘‘Appendix 2:ThreeChinese stocks investment details’’ in

Appendix, respectively, along with other relevant details.

From the view of Fig. 3, there is no doubt that a $100

investment for each stock has sharply increased over 200

days period using Buy&Sell strategies no matter whether

the stock went up or down during this period. In particular,

the stock prices of BIDU and NTES rose up gradually

while CTRP hit the peak and then decreased in a large

Table 8 Three biggest ‘‘Chinese concept’’ stocks

Ticker Exchange Company

BIDU NASDAQ Baidu, Inc.

CTRP NASDAQ Ctrip.com International, Ltd.

NTES NASDAQ NetEase, Inc.

Fig. 3 The movement of invested $100 in 200 days for three Chinese

stocks in the US market. The top four lines in legend are Buy&Sell

strategies based on four prediction models: MV-GPR, MV-TPR, GPR

and TPR, respectively. The last four lines are Buy&Hold strategies

for the stock and for the three indices: INDU, NASDAQ and NDX,

respectively
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scale. Anyway, the Buy&Sell strategies based on different

prediction models have still achieved considerable profits

compared with Buy&Hold strategies for the corresponding

investments. However, the different prediction models

have diverse performances for each stock. For BIDU, GPR-

based models, including MV-GPR and GPR, outperform

TPR-based models, including MV-TPR and TPR. For

NTES, all the models for Buy&Sell strategy have a similar

performance. Admittedly, TPR-based models, especially

MV-TPR, have an outstanding performance for stock

CTRP.

4.4.4 Diverse sectors in Dow 30

Owing to the globalization of capital, there has been a

significant shift in the relative importance of national and

economic influences in the world’s largest equity markets

and the impact of industrial sector effects is now gradually

replacing that of country effects in these markets [3].

Therefore, a further example is carried out under the

diverse industrial sectors in Dow 30 from New York Stock

Exchange (NYSE) and NASDAQ.

Initially, the classification of stocks based on diverse

industrial sectors in Dow 30 has to be done. There are two

main industry classification taxonomies, including Industry

Classification Benchmark (ICB) and Global Industry

Classification Standard (GICS). In our research, ICB is

used to segregate markets into sectors within the macroe-

conomy. The stocks in Dow 30 are classified in Table 9.

Due to the multivariate process models considering at

least two related stocks in one group, the first (Basic

Materials) and the last industrial sector (Telecommunica-

tions), each consisting of only one stock, are excluded. As a

result, our experiments are performed seven times for the

Table 9 Stock components of

Dow 30
Ticker Company Exchange Industry Industry4 (ICB)

DD DuPont NYSE Chemical industry Basic Materials

KO Coca-Cola NYSE Beverages Consumer Goods

PG Procter and Gamble NYSE Consumer goods Consumer Goods

MCD McDonald’s NYSE Fast food Consumer Goods

NKE Nike NYSE Apparel Consumer Services

DIS Walt Disney NYSE Broadcasting and entertainment Consumer Services

HD The Home Depot NYSE Home improvement retailer Consumer Services

WMT Wal-Mart NYSE Retail Consumer Services

JPM JPMorgan Chase NYSE Banking Financials

GS Goldman Sachs NYSE Banking, financial services Financials

V Visa NYSE Consumer banking Financials

AXP American Express NYSE Consumer finance Financials

TRV Travelers NYSE Insurance Financials

UNH UnitedHealth Group NYSE Managed health care Health Care

JNJ Johnson & Johnson NYSE Pharmaceuticals Health Care

MRK Merck NYSE Pharmaceuticals Health Care

PFE Pfizer NYSE Pharmaceuticals Health Care

BA Boeing NYSE Aerospace and defense Industrials

MMM 3M NYSE Conglomerate Industrials

GE General Electric NYSE Conglomerate Industrials

UTX United Technologies NYSE Conglomerate Industrials

CAT Caterpillar NYSE Construction and mining equipment Industrials

CVX Chevron NYSE Oil and gas Oil and Gas

XOM ExxonMobil NYSE Oil and gas Oil and Gas

CSCO Cisco Systems NASDAQ Computer networking Technology

IBM IBM NYSE Computers and technology Technology

AAPL Apple NASDAQ Consumer electronics Technology

INTC Intel NASDAQ Semiconductors Technology

MSFT Microsoft NASDAQ Software Technology

VZ Verizon NYSE Telecommunication Telecommunications

Note that the terms ‘‘industry’’ and ‘‘sector’’ are reversed from the Global Industry Classification Standard

(GICS) taxonomy
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seven grouped industrial sector stocks, including Oil &

Gas, Industrial, Consumer Goods, Health Care, Consumer

Services, Financials and Technology, respectively.

Secondly, the four models, MV-GPR, MV-TPR, GPR and

TPR, are applied in the same way as in Sect. 4.4.3 and the

ranking of stock investment performance is listed in Table 10.

(The details are summarized in Table 18 in ‘‘Appendix 3:

Final investment details of stocks in Dow 30’’ in Appendix.)

On the whole, for each stock, there is no doubt that using

Buy&Sell strategy is much better than using Buy&Hold

strategy regardless of the industrial sector. Specifically, MV-

GPR makes a satisfactory performance overall in the sectors,

Industrials, Consumer Services and Financials, while MV-

TPR has a higher ranking in Health Care in general.

Further analysis is considered using industrial sector

portfolios, which consists of these grouped stocks by the

same weight investment on each stock. For example, the Oil

&Gas portfolio investment is $100with $50 shares CVX and

$50 sharesXOM,while the Technology portfolio investment

is $100 with the same $20 investment on each stock in the

industrial sector Technology. The diverse industry portfolio

investment performance ranking is listed in Table 11. (The

details are described in Table 19 in ‘‘Appendix 3: Final

investment details of stocks in Dow 30’’ in Appendix.)

Apparently, the Buy&Sell strategies performed better than

the Buy&Hold strategies. MV-GPR suits better in three

industries, including Consumer Goods, Consumer Services

and Financials, followed by TPR which performed best in

Oil & Gas and Industrials. The optimal investment strategy

in Health Care is MV-TPR, while in Technology industry,

using GPR seems to be the most profitable.

5 Conclusion and discussion

In this paper,we have proposed a unified framework formulti-

output regression and prediction. Using this framework, we

introduced a novel multivariate Student-t process regression

model (MV-TPR) and also reformulated the multivariate

Gaussian process regression (MV-GPR) which overcomes

Table 10 Stock investment

performance ranking under

different strategies

Ticker Industry Buy&Sell strategy Buy&Hold strategy

MV-GPR MV-TPR GPR TPR Stock INDU NDX SPX

CVX Oil and Gas 3rd 4th 2nd 1st 8th 7th 5th 6th

XOM Oil and Gas 4th 2nd 3rd 1st 8th 7th 5th 6th

MMM Industrials 2nd 3rd 1st 4th 5th 8th 6th 7th

BA Industrials 1st 2nd 3rd 4th 8th 7th 5th 6th

CAT Industrials 3rd 4th 2nd 1st 8th 7th 5th 6th

GE Industrials 2nd 4th 3rd 1st 8th 7th 5th 6th

UTX Industrials 2nd 4th 3rd 1st 8th 7th 5th 6th

KO Consumer Goods 2nd 1st 3rd 4th 6th 8th 5th 7th

MCD Consumer Goods 2nd 4th 1st 3rd 8th 7th 5th 6th

PG Consumer Goods 3rd 4th 1st 2nd 5th 8th 6th 7th

JNJ Health Care 3rd 2nd 1st 4th 6th 8th 5th 7th

MRK Health Care 3rd 2nd 4th 1st 8th 7th 5th 6th

PFE Health Care 4th 1st 3rd 2nd 8th 7th 5th 6th

UNH Health Care 2nd 3rd 1st 4th 5th 8th 6th 7th

HD Consumer Services 1st 4th 3rd 2nd 5th 8th 6th 7th

NKE Consumer Services 2nd 3rd 4th 1st 5th 8th 6th 7th

WMT Consumer Services 1st 4th 3rd 2nd 5th 8th 6th 7th

DIS Consumer Services 3rd 2nd 1st 4th 5th 8th 6th 7th

AXP Financials 2nd 4th 1st 3rd 8th 7th 5th 6th

GS Financials 2nd 1st 3rd 4th 5th 8th 6th 7th

JPM Financials 2nd 4th 1st 3rd 6th 8th 5th 7th

TRV Financials 2nd 3rd 1st 4th 5th 8th 6th 7th

V Financials 1st 4th 3rd 2nd 5th 8th 6th 7th

AAPL Technology 4th 2nd 3rd 1st 5th 8th 6th 7th

CSCO Technology 2nd 1st 3rd 4th 5th 8th 6th 7th

IBM Technology 4th 1st 2nd 3rd 8th 7th 5th 6th

INTC Technology 3rd 4th 2nd 1st 5th 8th 6th 7th

MSFT Technology 2nd 4th 1st 3rd 5th 8th 6th 7th
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some limitations of the existingmethods. It could also be used

to derive regression models of general elliptical processes.

Under this framework, the model settings, derivations and

computations for bothMV-GPR andMV-TPR are all directly

performed inmatrix form.MV-GPR is amore straightforward

method compared to the existing vectorization method and

can be implemented in the sameway as the conventionalGPR.

Similar to the existingGaussian process regression for vector-

valued function, our models are also able to learn the corre-

lations between inputs and outputs, but with more convenient

and flexible formulations. The proposed MV-TPR also pos-

sesses closed-form expressions for the marginal likelihood

and the predictive distributions under this unified framework.

Thus, the same optimization approaches as used in the con-

ventionalGPRcan be adopted. The usefulness of the proposed

methods is illustrated through several numerical examples. It

is empirically demonstrated that MV-TPR has superiority in

prediction in these examples, including the simulated exam-

ples, air quality prediction and bike rent prediction.

The proposed methods are also applied to stock market

modeling and are shown to have the ability to make a

profitable stock investment. For the three ‘‘Chinese concept

stocks,’’ the Buy&Sell strategies based on the proposed

models have more satisfactory performances, compared

with the Buy&Hold strategies for the corresponding stocks

and three main indices in the USA; in particular, the

strategy based on MV-TPR has outstanding returns for

NetEase among three stocks. When applied to the industrial

sectors in Dow 30, the results indicate that the strategies

based on MV-GPR have generally considerable perfor-

mances in Industrials, Consumer Goods, Consumer Ser-

vices and Financials sectors, while those based on MV-

TPR can make maximum profit in Health Care sector.

It is noted that we used the squared exponential kernel for

demonstration in all our experiments. However, it can be

expected that other kernels or more complicated kernels may

lead to better results, especially in the financial data examples,

as the SE kernel may oversmooth data; see [22] for more

details on the choice of kernels. In this paper, we assume that

different outputs are observed at the same covariate values. In

practice, different responses may be observed at different

locations. These cases are, however, difficult for the proposed

framework since all the outputs have to be considered as a

matrix in our models, rather than as a vector with

adjustable length. Another issue worth noting is that, as dis-

cussed in Sect. 4.3.2, in our proposed framework all the out-

puts are considered as a whole and the same kernel (and

hyperparameters) is used for all the outputs, whichmay not be

appropriate if different outputs have very different patterns

such as in the air quality example. Moreover, it is also

important to further study how to improve the quality of the

parameter estimates, for example using optimal design

methods for parameter estimation as discussed in [4]. All of

these problemsareworth further investigation and exploration

and will be our future works.
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Appendix 1: Negative log marginal
likelihood and gradient evaluation

Matrix derivatives

According to the chain rule of derivatives of matrix, there

exists [14]: Letting U ¼ f ðXÞ, the derivatives of the func-

tion g(U) with respect to X are

Table 11 Industry portfolio

investment performance ranking

under different strategies

Industry Portfolio Buy&Sell strategy Buy&Hold strategy

MV-GPR MV-TPR GPR TPR Stock INDU NDX SPX

Oil and Gas 4th 3rd 2nd 1st 8th 7th 5th 6th

Industrials 2nd 4th 3rd 1st 8th 7th 5th 6th

Consumer Goods 1st 4th 2nd 3rd 7th 8th 5th 6th

Health Care 4th 1st 3rd 2nd 6th 8th 5th 7th

Consumer Services 1st 4th 3rd 2nd 5th 8th 6th 7th

Financials 1st 4th 2nd 3rd 5th 8th 6th 7th

Technology 4th 3rd 1st 2nd 5th 8th 6th 7th
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;

where X is an n� m matrix. Additionally, there are another

two useful formulas of derivative with respect to X:

o ln detðXÞ
oX

¼ X�T;
o

oX
trðAX�1BÞ ¼ �ðX�1BAX�1ÞT;

where X is an n� n matrix, A is a constant m� n matrix

and B is a constant n� m matrix.

Multivariate Gaussian process regression

For a matrix-variate observations Y �MN n;dðM;R;XÞ
where M 2 Rn�d;R 2 Rn�n;X 2 Rd�d, the negative log

likelihood is

L ¼ nd
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where actually R ¼ K þ r2nI: As we know, there are sev-

eral parameters in the kernel k so that we can denote

K ¼ Kh. The parameter set denotes H ¼ fh1; h2; . . .g.
Besides, we denote the parameter matrix X ¼ UUT since X
is positive semi-definite, where

U ¼
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To guarantee the uniqueness of U, the diagonal elements

are restricted to be positive and denote uii ¼ lnð/iiÞ for

i ¼ 1; 2; . . .; d. Therefore,
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¼ In;
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ohi
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ohi
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oX
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T þ UJii;

where Eij is the d � d elementary matrix having unity in

the (i,j)-th element and zeros elsewhere, and Jii is the same

as Eij but with the unity being replaced by euii .

The derivatives of the negative log likelihood with

respect to r2n, hi, /ij and uii are as follows. The derivative

with respect to hi is

oL
ohi

¼ d

2

o ln detðRÞ
ohi

þ 1

2

o

ohi
trðR�1ðY �MÞX�1ðY �MÞTÞ

¼ d

2
tr

o ln detðRÞ
oR

� �T
oR
ohi

" #

þ 1

2
tr

otrðR�1GÞ
oR

� �T
oR
ohi

" #

¼ d

2
tr R�1 oKh

ohi

� �
� 1

2
tr R�1GR�1 oKh

ohi

� �

¼ d

2
tr R�1 oKh

ohi

� �
� 1

2
tr aRX

�1aTR
oKh

ohi

� �
;

ð20Þ

where G ¼ ðY �MÞX�1ðY �MÞT and aR ¼ R�1ðY �MÞ.
The fourth equality is due to the symmetry of R.

Due to oR=or2n ¼ In, the derivative with respect to r2n is:
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where the third equation is due to the symmetry of X.
Similarly, the derivative with respect to uii is
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Multivariate Student-t process regression

The negative log likelihood of observations

Y �MT n;dðm;M;R;XÞ where M 2 Rn�d;R 2 Rn�n;X 2
Rd�d is

L ¼ 1
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Letting U ¼ Rþ ðY �MÞX�1ðY �MÞT and

aX ¼ X�1ðY �MÞT, the derivatives of U with respect to

r2n, hi,m, /ij and uii are
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Therefore, the derivative of negative log marginal likeli-

hood with respect to hi is
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where the constant s ¼ mþ n� 1.
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where wnð�Þ is the derivative of the function lnCnð�Þ with
respect to m.
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Appendix 2: Three Chinese stocks
investment details

See Tables 12, 13, 14, 15, 16 and 17.

Neural Computing and Applications

123



Table 12 The movement of

invested $100 for 200 days split

in to 20 periods (Stock: BIDU)

Forecast terms Buy&Sell decisions by prediction models Buy&Hold stock/index

MV-GPR MV-TPR GPR TPR BIDU INDU NDX SPX

Beginning ($) 100 100

Period 1 103.53 100.97 103.53 100.97 97.14 101.20 98.70 100.71

Period 2 109.80 106.09 115.60 102.03 94.87 99.55 94.10 98.44

Period 3 108.37 104.71 115.96 100.71 93.89 101.50 96.64 100.62

Period 4 117.17 113.22 125.37 108.89 95.21 101.70 96.94 100.87

Period 5 127.84 123.52 136.79 118.80 102.22 102.22 100.79 102.55

Period 6 137.94 130.14 147.59 128.18 107.39 102.44 101.54 103.09

Period 7 146.20 137.93 156.43 135.86 112.11 103.12 103.25 104.54

Period 8 155.97 147.15 166.88 144.94 113.57 103.72 105.34 105.09

Period 9 177.94 167.88 175.27 152.21 138.22 103.82 106.98 105.67

Period 10 179.83 174.07 177.13 153.83 131.26 101.33 104.90 103.17

Period 11 179.08 173.35 176.05 153.19 130.71 104.07 109.34 106.20

Period 12 190.96 184.85 187.73 163.35 137.58 104.75 110.49 106.91

Period 13 201.08 194.63 204.44 177.89 131.12 105.12 109.57 106.52

Period 14 207.28 200.64 210.75 183.38 132.54 104.01 108.35 104.94

Period 15 210.54 203.80 214.06 186.26 132.19 100.39 104.41 101.70

Period 16 233.92 226.43 237.83 206.95 144.35 106.31 112.48 107.77

Period 17 252.47 233.71 256.69 223.36 148.99 108.03 113.68 109.03

Period 18 250.38 227.57 254.56 221.51 143.25 109.45 116.17 110.38

Period 19 260.24 223.38 264.59 230.23 134.23 104.49 110.33 105.37

Period 20 270.29 233.29 274.81 239.13 139.12 109.10 114.29 109.97

Table 13 The movement of

invested $100 for 200 days split

in to 20 periods (Stock: CTRP)

Forecast terms Buy&Sell decisions by prediction models Buy&Hold stock/index

MV-GPR MV-TPR GPR TPR CTRP INDU NDX SPX

Beginning ($) 100 100

Period 1 105.67 105.67 105.67 105.67 100.78 101.20 98.70 100.71

Period 2 102.39 102.52 102.39 102.39 99.65 99.55 94.10 98.44

Period 3 102.77 102.90 102.77 102.77 91.63 101.50 96.64 100.62

Period 4 110.05 110.19 110.05 110.05 100.39 101.70 96.94 100.87

Period 5 121.51 121.66 121.51 121.51 108.33 102.22 100.79 102.55

Period 6 131.02 131.19 131.02 131.02 113.59 102.44 101.54 103.09

Period 7 138.90 139.08 144.25 138.90 120.90 103.12 103.25 104.54

Period 8 140.19 140.37 145.58 140.19 118.02 103.72 105.34 105.09

Period 9 150.29 146.38 151.82 146.20 131.35 103.82 106.98 105.67

Period 10 167.38 163.03 154.49 162.82 128.82 101.33 104.90 103.17

Period 11 166.33 162.01 154.28 161.80 127.37 104.07 109.34 106.20

Period 12 176.07 171.50 163.32 171.28 133.52 104.75 110.49 106.91

Period 13 176.00 171.43 163.25 171.21 117.53 105.12 109.57 106.52

Period 14 170.50 166.08 158.15 165.86 109.88 104.01 108.35 104.94

Period 15 178.68 174.04 165.73 173.82 108.35 100.39 104.41 101.70

Period 16 184.31 187.64 170.96 179.30 114.27 106.31 112.48 107.77

Period 17 183.77 191.85 176.72 180.87 115.96 108.03 113.68 109.03

Period 18 163.88 194.84 158.00 169.76 93.94 109.45 116.17 110.38

Period 19 169.89 201.99 163.80 176.73 80.69 104.49 110.33 105.37

Period 20 183.25 222.82 176.67 190.63 89.20 109.10 114.29 109.97
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Table 14 The movement of

invested $100 for 200 days split

in to 20 periods (Stock: NTES)

Forecast terms Buy&Sell decisions by prediction models Buy&Hold stock/index

MV-GPR MV-TPR GPR TPR NTES INDU NDX SPX

Beginning ($) 100 100

Period 1 104.51 104.51 104.51 104.51 106.79 101.20 98.70 100.71

Period 2 106.19 106.19 106.19 106.19 106.35 99.55 94.10 98.44

Period 3 106.80 106.80 106.80 109.12 104.14 101.50 96.64 100.62

Period 4 115.90 115.90 115.90 114.28 108.66 101.70 96.94 100.87

Period 5 115.82 115.82 115.82 114.21 109.84 102.22 100.79 102.55

Period 6 120.96 117.65 120.73 115.20 116.55 102.44 101.54 103.09

Period 7 123.27 121.54 124.72 119.01 120.32 103.12 103.25 104.54

Period 8 127.77 125.33 128.62 122.73 117.34 103.72 105.34 105.09

Period 9 133.21 128.81 134.09 127.95 128.53 103.82 106.98 105.67

Period 10 133.36 128.96 134.24 128.09 127.40 101.33 104.90 103.17

Period 11 141.13 136.47 142.80 135.56 134.83 104.07 109.34 106.20

Period 12 141.45 136.78 139.44 135.87 137.23 104.75 110.49 106.91

Period 13 145.98 141.16 143.90 140.22 134.27 105.12 109.57 106.52

Period 14 147.95 144.00 145.84 143.04 129.90 104.01 108.35 104.94

Period 15 151.75 147.70 149.59 146.71 139.19 100.39 104.41 101.70

Period 16 158.59 154.36 156.33 153.33 144.80 106.31 112.48 107.77

Period 17 170.12 165.58 167.70 165.07 156.05 108.03 113.68 109.03

Period 18 177.19 171.24 174.67 171.93 162.04 109.45 116.17 110.38

Period 19 179.84 177.72 177.28 174.50 153.20 104.49 110.33 105.37

Period 20 188.32 176.70 180.31 177.48 153.52 109.10 114.29 109.97

Table 15 The detailed movement of invested $100 for last 10 days period (Period 20, Stock: BIDU)

Day Buy&Sell decisions by prediction models Buy&Hold stock/index

MV-GPR MV-TPR GPR TPR BIDU INDU NDX SPX

Act Dollar Act Dollar Act Dollar Act Dollar

190 260.24 223.38 264.59 230.23 134.23 104.49 110.33 105.37

191 Buy 263.29 Buy 226.00 Buy 267.69 Buy 232.93 136.60 106.25 112.37 107.51

192 Keep 272.74 Keep 234.11 Keep 277.29 Keep 241.29 141.50 108.83 115.14 110.09

193 Keep 275.50 Keep 236.48 Keep 280.10 Keep 243.73 142.94 108.99 115.52 110.60

194 Keep 275.94 Keep 236.85 Keep 280.55 Keep 244.12 143.16 109.94 115.84 111.02

195 Sell 275.70 Sell 236.65 Sell 280.31 Sell 243.91 142.28 110.33 115.45 111.21

196 Buy 273.26 Buy 234.55 Buy 277.83 Buy 241.75 140.95 110.37 115.55 111.20

197 Keep 277.87 Keep 238.52 Keep 282.52 Keep 245.83 143.33 110.51 116.39 111.56

198 Keep 272.35 Keep 233.77 Keep 276.90 Keep 240.94 140.48 110.42 116.35 111.66

199 Sell 270.29 Keep 233.57 Sell 274.81 Sell 239.13 140.36 110.08 115.53 111.11

200 Keep 270.29 Sell 233.29 Keep 274.81 Keep 239.13 139.12 109.10 114.29 109.97
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Table 16 The detailed movement of invested $100 for last 10 days period (Period 20, Stock: CTRP)

Day Buy&Sell decisions by prediction models Buy&Hold stock/index

MV-GPR MV-TPR GPR TPR CTRP INDU NDX SPX

Act Dollar Act Dollar Act Dollar Act Dollar

190 169.89 201.99 163.80 176.73 80.69 104.49 110.33 105.37

191 Buy 175.02 Buy 208.09 Buy 168.75 Buy 182.07 83.65 106.25 112.37 107.51

192 Keep 180.77 Keep 214.92 Keep 174.28 Keep 188.05 86.39 108.83 115.14 110.09

193 Keep 185.40 Keep 220.43 Keep 178.75 Keep 192.87 88.61 108.99 115.52 110.60

194 Sell 184.91 Sell 220.28 Sell 178.28 Sell 192.36 88.55 109.94 115.84 111.02

195 Keep 184.91 Buy 222.82 Keep 178.28 Keep 192.36 88.45 110.33 115.45 111.21

196 Keep 184.91 Keep 222.82 Keep 178.28 Keep 192.36 88.22 110.37 115.55 111.20

197 Buy 185.16 Keep 222.82 Buy 178.52 Buy 192.62 88.92 110.51 116.39 111.56

198 Keep 184.06 Keep 222.82 Keep 177.46 Keep 191.47 88.39 110.42 116.35 111.66

199 Sell 183.25 Keep 222.82 Sell 176.67 Sell 190.63 88.45 110.08 115.53 111.11

200 Keep 183.25 Keep 222.82 Keep 176.67 Keep 190.63 89.20 109.10 114.29 109.97

Table 17 The detailed movement of invested $100 for last 10 days period (Period 20, Stock: NTES)

Day Buy&Sell decisions by prediction models Buy&Hold stock/index

MV-GPR MV-TPR GPR TPR NTES INDU NDX SPX

Act Dollar Act Dollar Act Dollar Act Dollar

190 179.84 177.72 177.28 174.50 153.20 104.49 110.33 105.37

191 Buy 176.57 Buy 174.49 Buy 174.06 Buy 171.33 151.35 106.25 112.37 107.51

192 Keep 184.84 Keep 182.66 Keep 182.21 Keep 179.36 158.44 108.83 115.14 110.09

193 Keep 184.16 Keep 181.98 Keep 181.54 Keep 178.69 157.86 108.99 115.52 110.60

194 Keep 185.46 Keep 183.27 Keep 182.82 Keep 179.95 158.97 109.94 115.84 111.02

195 Sell 185.33 Keep 179.25 Sell 182.69 Sell 179.83 155.49 110.33 115.45 111.21

196 Buy 187.22 keep 180.86 Buy 184.55 Buy 181.66 156.88 110.37 115.55 111.20

197 Keep 187.75 Keep 181.38 Keep 185.08 Keep 182.18 157.33 110.51 116.39 111.56

198 Sell 188.32 Keep 177.52 Keep 181.15 Keep 178.30 153.98 110.42 116.35 111.66

199 Keep 188.32 Sell 176.70 Sell 180.31 Sell 177.48 153.29 110.08 115.53 111.11

200 Keep 188.32 Keep 176.70 Keep 180.31 Keep 177.48 153.52 109.10 114.29 109.97
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Appendix 3: Final investment details
of stocks in Dow 30

See Tables 18 and 19.

Table 18 The detailed stock investment results under different strategies

Ticker Industry Buy&Sell strategy Buy&Hold strategy

MV-GPR MV-TPR GPR TPR Stock INDU NDX SPX

CVX Oil and Gas 134.97 133.69 143.47 143.81 99.38 109.10 114.29 109.97

XOM Oil and Gas 128.39 132.72 131.31 136.02 99.74

MMM Industrials 166.76 162.96 167.12 162.65 125.96

BA Industrials 160.12 159.98 158.60 157.38 106.39

CAT Industrials 142.58 138.45 146.13 151.75 97.16

GE Industrials 137.51 134.63 135.35 139.72 101.15

UTX Industrials 144.29 139.47 143.29 145.18 101.94

KO Consumer Goods 128.11 128.59 124.88 124.52 112.47

MCD Consumer Goods 120.69 117.09 122.19 119.59 98.81

PG Consumer Goods 126.62 123.32 127.14 127.10 117.04

JNJ Health Care 146.00 146.70 147.42 145.16 113.65

MRK Health Care 129.40 134.48 129.36 135.05 102.45

PFE Health Care 128.60 136.53 130.26 134.48 100.16

UNH Health Care 164.98 164.63 166.14 162.79 131.14

HD Consumer Services 171.46 165.74 169.55 170.18 133.33

NKE Consumer Services 147.17 146.13 142.36 148.26 122.27

WMT Consumer Services 136.50 132.59 133.77 135.67 117.31

DIS Consumer Services 168.19 168.43 168.51 168.12 115.97

AXP Financials 160.39 158.52 160.73 160.12 102.34

GS Financials 170.46 171.29 167.71 165.72 116.16

JPM Financials 174.90 170.07 176.48 172.12 110.09

TRV Financials 149.81 145.88 150.70 145.71 128.18

V Financials 161.50 153.48 157.04 158.70 116.37

AAPL Technology 201.82 206.64 203.45 208.07 147.34

CSCO Technology 159.13 164.88 158.61 155.92 131.34

IBM Technology 116.10 128.79 124.92 123.74 88.06

INTC Technology 183.80 179.45 185.52 188.22 149.24

MSFT Technology 173.61 166.09 176.57 172.76 120.01
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Table 19 The detailed industry

portfolio investment results

under different strategies

Industry Portfolio Buy&Sell strategy Buy&Hold strategy

MV-GPR MV-TPR GPR TPR Stock INDU NDX SPX

Oil and Gas 131.68 133.20 137.39 139.92 99.56 109.10 114.29 109.97

Industrials 150.25 147.10 150.10 151.34 106.52

Consumer Goods 125.14 123.00 124.73 123.73 109.44

Health Care 142.24 145.59 143.30 144.37 111.85

Consumer Services 155.83 153.22 153.55 155.56 122.22

Financials 163.41 159.85 162.53 160.47 114.63

Technology 166.89 169.17 169.81 169.74 127.20
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