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We consider the fundamental question: how a legacy “student” Artificial Intelligent (AI)

system could learn from a legacy “teacher” AI system or a human expert without

re-training and, most importantly, without requiring significant computational resources.

Here “learning” is broadly understood as an ability of one system to mimic responses of

the other to an incoming stimulation and vice-versa. We call such learning an Artificial

Intelligence knowledge transfer. We show that if internal variables of the “student”

Artificial Intelligent system have the structure of an n-dimensional topological vector

space and n is sufficiently high then, with probability close to one, the required knowledge

transfer can be implemented by simple cascades of linear functionals. In particular, for n

sufficiently large, with probability close to one, the “student” system can successfully and

non-iteratively learn k≪n new examples from the “teacher” (or correct the same number

of mistakes) at the cost of two additional inner products. The concept is illustrated with

an example of knowledge transfer from one pre-trained convolutional neural network to

another.

Keywords: stochastic separation theorems, concentration of measure, knowledge transfer in artificial intelligence

systems, error correction, supervised learning, neural networks

1. INTRODUCTION

Explosive development of neuroinformatics and Artificial Intelligence (AI) in recent years gives
rise to new fundamental scientific and societal challenges. Developing technologies, professions,
vocations, and corresponding educational environments for sustained generation of evergrowing
number of AI Systems is currently recognized as amongst the most crucial of these (Hall and
Pesenti, 2017). Nurturing and growing of relevant human expertise is considered as a way to address
the challenge. The next step, however, is to develop technologies whereby one or several AI systems
produce a training environment for the other leading to fully automated passage of knowledge and
experience between otherwise independent AI agents.

Knowledge transfer between Artificial Intelligent systems has been the subject of extensive
discussion in the literature for more than two decades (Gilev et al., 1991; Jacobs et al., 1991; Pratt,
1992; Schultz and Rivest, 2000; Buchtala and Sick, 2007) (see also a comprehensive review Pan and
Yang, 2010). Several technical ideas to achieve AI knowledge transfer have been explored to date.
Using or salvaging, parts of the “teacher” AI system in the “student” AI followed by re-training of
the “student” has been proposed and extensively tested in Yosinski et al. (2014) and Chen et al.
(2015). Alternatives to AI salvaging include model compression (Bucila et al., 2006), knowledge
distillation (Hinton et al., 2015), and privileged information (Vapnik and Izmailov, 2017). These
approaches demonstrated substantial success in improving generalization capabilities of AIs as well
as in reducing computational overheads (Iandola et al., 2016), in cases of knowledge transfer from
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larger AI to the smaller one. Notwithstanding, however,
which of the above strategies is followed, their computational
implementation, even for the case of transferring or learning
just a handful of new examples, often requires either significant
resources including access to large training sets and power
needed for training, or availability of privileged information that
may not necessarily be available to end-users. This contrasts
sharply with natural intelligence too as recent empirical evidence
reveals that single neurons in human brain are capable of rapid
learning of new stimuli (Ison et al., 2015). Thus new frameworks
and approaches are needed.

In this contribution we provide new framework for
automated, fast, and non-destructive process of knowledge
spreading across AI systems of varying architectures. In this
framework, knowledge transfer is accomplished by means of
Knowledge Transfer Units comprising of mere linear functionals
and/or their small cascades. Main mathematical ideas are rooted
in measure concentration (Gibbs, 1902; Lévy, 1951; Gromov,
1999, 2003; Gorban, 2007) and stochastic separation theorems
(Gorban and Tyukin, 2017, 2018) revealing peculiar properties
of random sets in high dimensions. We generalize some of
the latter results here and show how these generalizations can
be employed to build simple one-shot Knowledge Transfer
algorithms between heterogeneous AI systems whose state may
be represented by elements of linear vector space of sufficiently
high dimension. Once knowledge has been transferred from
one AI to another, the approach also allows to “unlearn” new
knowledge without the need to store a complete copy of the
“student” AI is created prior to learning. We expect that the
proposed framework may pave way for fully functional new
phenomenon—Nursery of AI systems in which AIs quickly learn
from each other whilst keeping their pre-existing skills largely
intact.

The paper is organized as follows. In section 2 we introduce a
general framework for computationally efficient non-iterative AI
Knowledge Transfer and present two algorithms for transferring
knowledge between a pair of AI systems in which one operates
as a teacher and the other functions as a student. These results
are based on Stochastic Separation Theorems (Gorban and
Tyukin, 2017) of which the relevant versions are provided here
as mathematical background justifying the approach. Section 3
illustrates the approach with examples, and section 4 concludes
the paper.

2. NON-ITERATIVE AI KNOWLEDGE
TRANSFER FRAMEWORK

2.1. General Setup
Consider two AI systems, a student AI, denoted as AIs, and
a teacher AI, denoted as AIt . These legacy AI systems process
some input signals, produce internal representations of the input
and return some outputs. We further assume that some relevant
information about the input, internal signals, and outputs of AIs
can be combined into a common object, x, representing, but not
necessarily defining, the state of AIs. The objects x are assumed to
be elements of R

n.

Over a period of activity systemAIs generates a set S of objects
x. Exact composition of the set S could depend on a task at hand.
For example, if AIs is an image classifier, we may be interested
only in a particular subset of AIs input-output data related to
images of a certain known class. Relevant inputs and outputs
of AIs corresponding to objects in S are then evaluated by the
teacher, AIt . If AIs outputs differ to that of AIt for the same input
then an error is registered in the system. Objects x ∈ S associated
with errors are combined into the set Y . The procedure gives rise
to two disjoint sets:

M = S \ Y , M = {x1, . . . , xM}

and

Y = {xM+1, . . . , xM+k}.

A diagram schematically representing the process is shown in
Figure 1. The knowledge transfer task is to “teach” AIs so that
with

a) AIs does not make such errors
b) existing competencies of AIs on the set of inputs
corresponding to internal states x ∈ M are retained,
and

c) knowledge transfer from AIt to AIs is reversible in the sense
that AIs can “unlearn” new knowledge by modifying just a
fraction of its parameters, if required.

Before proceeding with a proposed solution to the above
AI Knowledge Transfer problem, understanding basic yet
fundamental properties of the sets Y and M is needed. These
properties are summarized and illustrated with Theorems 1, 2,
and 3 below.

2.2. Stochastic Separation Theorems for
Non-iterative AI Knowledge Transfer
Let the set

M = {x1, . . . , xM}

be an i.i.d. sample from a distribution in R
n. Pick another set

Y = {xM+1, . . . , xM+k}

from the same distribution at random. What is the probability
that there is a linear functional separating Y from M, and, most
importantly, if there is a computationally simple and efficient way
to determine these?

Below we provide three k-tuple separation theorems: for an
equidistribution in the unit ball Bn(1) (Theorems 1 and 2) and for
a product probability measure with bounded support (Theorem
3). These two special cases cover or, indeed, approximate a broad
range of practically relevant situations including e.g., Gaussian
distributions (reduce asymptotically to the equidistribution in
Bn(1) for n large enough) and data vectors in which each
attribute is a numerical and independent random variable.
The computational complexity for determining the separating
functionals, as specified by the theorems and their proofs, can be
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FIGURE 1 | AI Knowledge transfer diagram. AIs produces a set of its state representations, S. The representations are labeled by AIt into the set of correct

responses, M, and the set of errors, Y . The student system, AIs, is then augmented by an additional “corrector” eliminating these errors.

remarkably low. If no pre-processing is involved, then deriving
the functionals stemming fromTheorems 1 and 2 requiresmerely
k = |Y| vector additions and, possibly, an approximate solution
of a constrained optimization problem in two dimensions. For
large data sets, this is a significant advantage over support vector
machines whose worst-case computational complexity is O((k +
M)3) (Bordes et al., 2005; Chapelle, 2007).

Consider the case when the underlying probability
distribution is an equidistribution in the unit ball Bn(1),
and suppose thatM = {x1, . . . , xM} and Y = {xM+1, . . . , xM+k}
are i.i.d. samples from this distribution. We are interested in
determining the probability P1(M,Y) that there exists a linear
functional separating M and Y . An estimate of this probability
is provided in the following theorem.

Theorem 1. Let M = {x1, . . . , xM} and Y = {xM+1, . . . , xM+k}
be i.i.d. samples from the equidisribution in Bn(1). Then

P1(M,Y) ≥ max
δ,ε

1− k(1− ε)n −
(k− 1)k

2
(1− δ2)

n
2

−
M

2
1(ε, δ, k)

n
2

1(ε, δ, k) = 1−
1

k





(1− ε)2 − k−1
1−ε

δ
√

1+ k−1
1−ε

δ





2

(1)

Subject to :

δ, ε ∈ (0, 1)

(k− 1)δ ≤ (1− ε)3.

If the pair (δ, ε) is a solution of the nonlinear optimization program
in (1) then the corresponding separating hyperplane is:

ℓ0(x) = 0, ℓ0(x) =
〈

x̄

‖x̄‖
, x

〉

−
1
√
k

(1− ε)2 − k−1
1−ε

δ
√

1+ k−1
1−ε

δ

,

x̄ =
1

k

k
∑

i=1
xM+i.

The proof of the theorem is provided in the Appendix.
Figure 2 shows how estimate (1) of the probability P1(M,Y)

behaves, as a function of |Y| for fixed M and n. As one can
see from this figure, when k exceeds some critical value (k =
9 in this specific case), the lower bound estimate (1) of the
probability P1(M,Y) drops. This is not surprising since the
bound (1) is (A) based on conservative estimates, and (B) these
estimates are derived for just one class of separating hyperplanes
ℓ0(x). Furthermore, no prior pre-processing and/or clustering
was assumed for the Y . An alternative estimate that allows us
to account for possible clustering in the set Y is presented in
Theorem 2.

Theorem 2. Let M = {x1, . . . , xM} and Y = {xM+1, . . . , xM+k}
be i.i.d. samples from the equidisribution in Bn(1). Let Yc =
{xM+r1 , . . . , xM+rm} be a subset of m elements from Y such that

β2 (m− 1)≤
∑

rj, rj 6= ri

〈xM+ri , xM+rj〉≤ β1(m− 1) for all i = 1, . . . ,m.

(2)

Then

P1(M,Yc) ≥ max
ε

(1− (1− ε)n)k

(

1−
1(ε,m)

n
2

2

)M

1(ε,m) = 1−
1

m

(

(1− ε)2 + β2(m− 1)
√

1+ (m− 1)β1

)2

Subject to :

(1− ε)2 + β2(m− 1) > 0

1+ (m− 1)β1 > 0.

(3)
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FIGURE 2 | Estimate (1) of P1(M,Y ) as a function of k for n = 2, 000 and

M = 105.

FIGURE 3 | Estimate (3) of P1(M,Y ) as a function of k for n = 2, 000 and

M = 105. Red stars correspond to β1 = 0.5, β2 = 0. Blue triangles stand for

β1 = 0.5, β2 = 0.05, and black circles stand for β1 = 0.5, β2 = 0.07.

If the pair (δ, ε) is a solution of the nonlinear optimization program
in (3) then the corresponding separating hyperplane is:

ℓ0(x) = 0, ℓ0(x) =
〈

ȳ

‖ȳ‖
, x

〉

−
1
√
m

(

(1− ε)2 + β2(m− 1)
√

1+ (m− 1)β1

)

,

ȳ =
1

m

m
∑

i=1
xM+ri .

The proof of the theorem is provided in Appendix.
Examples of estimates (3) for various parameter settings are
shown in Figure 3. As one can see, in absence of pair-wise strictly
positive correlation assumption, β2 = 0, the estimate’s behavior,
as a function of k, is similar to that of (1). However, presence

of moderate pair-wise positive correlation results in significant
boosts to the values of P1.

Remark 1. Estimates (1), (3) for the probability P1(M,Y) that
follow fromTheorems 1, 2 assume that the underlying probability
distribution is an equidistribution in Bn(1). They can, however,
be generalized to equidistributions in ellipsoids and Gaussian
distributions (cf. Gorban et al., 2016a,b). Tighter probability
bounds could also be derived if the upper-bound estimates of
the volumes of the corresponding spherical caps in the proofs of
Theorems 1, 2 are replaced with their exact values (see e.g., Li,
2011).

Remark 2. Note that not only Theorems 1, 2 provide estimates
from below of the probability that two random i.i.d. drawn
samples from Bn(1) are linearly separable, but also they explicitly
present the separating hyperplanes. The latter hyperplanes are
similar to Fisher linear discriminants in that the discriminating
direction (normal to the hyperplane) is the difference between
the centroids.

Whilst having explicit separation functionals as well as
thresholds is an obvious advantage from practical view point,
the estimates that are associated with such functionals do not
account for more flexible alternatives. In what follows we present
a generalization of the above results that accounts for such a
possibility as well as extends applicability of the approach to
samples from product distributions. The results are provided in
Theorem 3.

Theorem 3. Consider the linear space E = span{xj − xM+1 | j =
M + 2, . . . ,M + k}, let the cardinality |Y| = k of the set Y be
smaller than n. Consider the quotient space R

n/E. Let Q(x) be
a representation of x ∈ R

n in R
n/E, and let the coordinates of

Q(xi), i = 1, . . . ,M + 1 be independent random variables i.i.d.
sampled from a product distribution in a unit cube with variances
σj > σ0 > 0, 1 ≤ j ≤ n− k+ 1. Then for

M ≤
ϑ

3
exp

(

(n− k+ 1)σ 4
0

2

)

− 1

with probability p > 1 − ϑ there is a linear functional separating
Y andM.

The proof of the theorem is provided in Appendix.
Having introduced Theorems 1–3, we are now ready to

formulate our main results–algorithms for non-iterative AI
Knowledge Transfer.

2.3. Knowledge Transfer Algorithms
Our first algorithm, Algorithm 1, considers cases when Auxiliary
Knowledge Transfer Units, i.e. functional additions to existing
student AIs, are single linear functionals. The second algorithm,
Algorithm 2, extends Auxiliary Knowledge Transfer Units to
two-layer cascades of linear functionals.

The algorithms comprise of two general stages, pre-
processing stage and knowledge transfer stage. The purpose
of the pre-processing stage is to regularize and “sphere”
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Algorithm 1 Single-functional AI Knowledge Transfer

1. Pre-processing

(a) Centering. For the given set S , determine the set average, x̄(S), and

generate sets Sc

Sc = {x ∈ R
n |x = ξ − x̄(S), ξ ∈ S},

Yc = {x ∈ R
n |x = ξ − x̄(S), ξ ∈ Y}.

(b) Regularization. Determine covariance matrices Cov(Sc), Cov(Sc \ Yc)

of the sets Sc and Sc \ Yc. Let λi(Cov(Sc)), λi(Cov(Sc \ Yc)) be

their corresponding eigenvalues, and h1, . . . , hn be the eigenvectors of

Cov(Sc). If some of λi(Cov(Sc)), λi(Cov(Sc \ Yc)) are zero or if the

ratio
maxi{λi(6(Sc))}
mini{λi(6(Sc))} is too large, project Sc and Yc onto appropriately

chosen set ofm < n eigenvectors, hn−m+1, . . . , hn:

Sr = {x ∈ R
n |x = HTξ , ξ ∈ Sc},

Yr = {x ∈ R
n |x = HTξ , ξ ∈ Yc},

where H =
(

hn−m+1 · · · hn
)

is the matrix comprising of m significant

principal components of Sc.

(c) Whitening. For the centered and regularized dataset Sr , derive its

covariance matrix, Cov(Sr), and generate whitened sets

Sw = {x ∈ R
m |x = Cov(Sr)

− 1
2 ξ , ξ ∈ Sr},

Yw = {x ∈ R
m |x = Cov(Sr)

− 1
2 ξ , ξ ∈ Yr},

2. Knowledge transfer

(a) Clustering. Pick p ≥ 1, p ≤ k, p ∈ N, and partition the set Yw into p

clustersYw,1, . . .Yw,p so that elements of these clusters are, on average,

pairwise positively correlated. That is there are β1 ≥ β2 > 0 such that:

β2(|Yw,i| − 1) ≤
∑

ξ∈Yw,i\{x}
〈ξ , x〉 ≤ β1(|Yw,i| − 1) for any x ∈ Yw,i

(b) Construction of Auxiliary Knowledge Units. For each cluster Yw,i, i =
1, . . . , p, construct separating functionals ℓi:

ℓi(x) =
〈

wi
‖wi‖ , x

〉

− ci,

wi =
(

Cov(Sw \ Yw,i)+ Cov(Yw,i)
)−1 (

x̄(Yw,i)− x̄(Sw \ Yw,i)
)

where x̄(Yw,i), x̄(Sw \ Yw,i) are the averages of Yw,i and Sw \ Yw,i,

respectively, and ci is chosen as ci = minξ∈Yw,i

〈

wi
‖wi‖ , ξ

〉

.

(c) Integration. Integrate Auxiliary Knowledge Units into decision-making

pathways of AIs. If, for an x generated by an input to AIs, any of

ℓi(x) ≥ 0 then report x accordingly (swap labels, report as an error

etc.)

the data. This operation brings the setup close to the one
considered in statements of Theorems 1, 2. The knowledge
transfer stage constructs Auxiliary Knowledge Transfer Units
in a way that is very similar to the argument presented
in the proofs of Theorems 1 and 2. Indeed, if |Yw,i| ≪
|Sw \ Yw,i| then the term

(

Cov(Sw \ Yw,i)+ Cov(Yw,i)
)−1

is
close to identity matrix, and the functionals ℓi are good
approximations of (10). In this setting, one might expect
that performance of the knowledge transfer stage would
be also closely aligned with the corresponding estimates
(1), (3).

Remark 3. Note that the regularization step in the
pre-processing stage ensures that the matrix Cov(Sw \ Yw,i) +
Cov(Yw,i) is non-singular. Indeed, consider

Cov(Sw \ Yw,i) = 1
|Sw\Yw,i|

∑

x∈Sw\Yw,i
(x− x̄(Sw \ Yw,i))

(x− x̄(Sw \ Yw,i))
T = 1

|Sw\Yw,i|

(

∑

x∈Sw\Yw
(x− x̄(Sw \ Yw,i))

(x− x̄(Sw \ Yw,i))
T +

∑

x∈Yw\Yw,i
(x− x̄(Sw \ Yw,i))

(x− x̄(Sw \ Yw,i))
T
)

.

Denoting d = x̄(Sw \Yw,i)− x̄(Sw \Yw) and rearranging the sum
below as

∑

x∈Sw\Yw
(x− x̄(Sw \ Yw,i))(x− x̄(Sw \ Yw,i))

T =
∑

x∈Sw\Yw
(x− x̄(Sw \ Yw)+ d)(x− x̄(Sw \ Yw)+ d)T =

∑

x∈Sw\Yw
(x− x̄(Sw \ Yw))(x− x̄(Sw \ Yw))

T+
2d
∑

x∈Sw\Yw
(x− x̄(Sw \ Yw))

T + |Sw \ Yw|ddT
=
∑

x∈Sw\Yw
(x− x̄(Sw \ Yw))(x− x̄(Sw \ Yw))

T

+|Sw \ Yw|ddT

we obtain that Cov(Sw \ Yw,i) is non-singular as long as the sum
∑

x∈Sw\Yw
(x− x̄(Sw \Yw))(x− x̄(Sw \Yw))

T is non-singular. The
latter property, however, is guaranteed by the regularization step
in Algorithm 1.

Remark 4. Clustering at Step 2.a can be achieved by classical k-
means algorithms (Lloyd, 1982) or any other method (see e.g.,
Duda et al., 2000) that would group elements of Yw into clusters
according to spatial proximity.

Remark 5. Auxiliary Knowledge Transfer Units in Step 2.b of
Algorithm 1 are derived in accordance with standard Fisher
linear discriminant formalism. This, however, need not be the
case, and other methods, e.g., support vector machines (Vapnik,
2000), could be employed for this purpose there. It is worth
mentioning, however, that support vector machines might be
prone to overfitting (Han, 2014) and their training often involves
iterative procedures such as sequential quadratic minimization
(Platt, 1999).

Furthermore, instead of the sets Yw,i, Sw \ Yw,i one could
use a somewhat more aggressive division: Yw,i and Sw \ Yw,
respectively.

Depending on configuration of samples S and Y , Algorithm 1
may occasionally create Knowledge Transfer Units, ℓi, that are
“filtering” errors too aggressively. That is, some x ∈ Sw \ Yw

may accidentally trigger non-negative response, ℓi(x) ≥ 0, and
as a result of this, their corresponding inputs to As could be
ignored or mishandled. To mitigate this, one can increase the
number of clusters and Knowledge Transfer Units, respectively.
This will increase the probability of successful separation and
hence alleviate the issue. An alternative practical strategy to limit
the number of Knowledge Transfer Units, when the system is
evolving in time, is to retain only most relevant ones taking
into account acceptable rates of performance and size of the
“relevant” set S . The link between these is provided in Theorems
1, 2. On the other hand, if increasing the number of Knowledge
Transfer Units or dismissing less relevant ones is not desirable
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for some reason, then two-functional units could be a feasible
remedy. Algorithm 2 presents a procedure for such an improved
AI Knowledge Transfer.

Algorithm 2 Two-functional AI Knowledge Transfer

1. Pre-processing. Do as in Step 1 in Algorithm 1

2. Knowledge Transfer

(a) Clustering. Do as in Step 2.a in Algorithm 1

(b) Construction of Auxiliary Knowledge Units.

1: Do as in Step 2.b in Algorithm 1. At the end of this step first-stage

functionals ℓi, i = 1, . . . , p will be derived.

2: For each set Yw,i, i = 1, . . . , p, evaluate the functionals ℓi for all

x ∈ Sw \ Yw,i and identify elements x such that ℓi(x) ≥ 0 and

x ∈ Sw \ Yw (incorrect error assignment). Let Ye,i be the set

containing such elements x.

3: If (there is an i ∈ {1, . . . , p} such that |Ye,i| + |Yw,i| > m) then

increment the value of p: p← p+ 1, and return to Step 2.a.

4: If (all sets Ye,i are empty) then proceed to Step 2.c.

5: For each pair of ℓi and Yw,i ∪ Ye,i with Ye,i not empty, project

orthogonally sets Yw,i and Ye,i onto the hyperplane ℓi(x) = 0 and

form the sets Li(Yw,i) and Li(Ye,i) :

Li(Yw,i) =
{

x ∈ R
m | x =

(

Im −
wiw

T
i

‖wi‖2

)

ξ + ciwi
‖wi‖ , ξ ∈ Yw,i

}

,

Li(Ye,i) =
{

x ∈ R
m | x =

(

Im −
wiw

T
i

‖wi‖2

)

ξ + ciwi
‖wi‖ , ξ ∈ Ye,i

}

.

6: Construct a functional ℓ2,i separating Li(Yw,i) from Li(Ye,i) so

that ℓ2,i(x) ≥ 0 for all x ∈ Yw,i and ℓ2,i(x) < 0 for all x ∈ Ye,i.

(c) Integration. Integrate Auxiliary Knowledge Units into decision-making

pathways of AIs. If, for an x generated by an input to AIs, any of

the predicates (ℓi(x) ≥ 0) ∧ (ℓ2,i(x) ≥ 0) hold true then report x

accordingly (swap labels, report as an error etc.).

In what follows we illustrate the approach as well as the
application of the proposed Knowledge Transfer algorithms in
a relevant problem of a computer vision system design for
pedestrian detection in live video streams.

3. EXAMPLE

Let AIs and AIt be two systems developed, e.g., for the purposes
of pedestrian detection in live video streams. Technological
progress in embedded systems and availability of platforms
such as Nvidia Jetson TX2 made hardware deployment of
such AI systems at the edge of computer vision processing
pipelines feasible. These platforms, however, lack computational
power that would enable to run state-of-the-art large scale
object detection solutions like ResNet (He et al., 2016) in
real-time. Smaller-size convolutional neural networks such as
SqueezeNet (Iandola et al., 2016) could be a way to move
forward. Still, however, these latter systems have hundreds
of thousands trainable parameters which is typically several
orders of magnitude larger than in e.g., Histograms of
Oriented Gradients (HOG) based systems (Dalal and Triggs,
2005). Moreover, training these networks requires substantial
computational resources and data.

In this section we illustrate application of the proposed
AI Knowledge Transfer technology and demonstrate that this
technology can be successfully employed to compensate for the
lack of power of an edge-based device. In particular, we suggest
that the edge-based system is “taught” by the state-of-the-art
teacher in a non-iterative and near-real time way. Since our
building blocks are linear functionals, such learning will not lead
to significant computational overheads. At the same time, as we
will show later, the proposed AI Knowledge Transfer will result
in a major boost to the system’s performance in the conditions of
the experiment.

3.1. Definition of AIs and AIt and Rationale
In our experiments, the teacher AI, AIt , was modeled by an
adaptation of SqueezeNet (Iandola et al., 2016) with circa 725
K trainable parameters. The network was trained on a “teacher”
dataset comprised of 554 K non-pedestrian (negatives), and 56 K
pedestrian (positives) images. Positives have then been subjected
to standard augmentation accounting for various geometric and
color perturbations. The network was trained for 100 epochs,
which took approximately 16 h on Nvidia Titan Xp to complete.
The student AI, AIs, was modeled by a linear classifier with HOG
features (Dalal and Triggs, 2005) and 2016 trainable parameters.
The values of these parameters were the result of AIs training
on a “student” dataset, a sub-sample of the “teacher” dataset
comprising of 16 K positives (55 K after augmentation) and 130 K
negatives, respectively. The choice ofAIs andAIt systems enabled
us to emulate interaction between low-power edge-based AIs and
their more powerful counterparts that could be deployed on a
higher-spec embedded system or, possibly, on a server or in a
computational cloud.

We note that for bothAIt andAIs the set of negatives is several
times larger than the set of positives. This makes the datasets
somewhat unbalanced. Unbalanced datasets are not uncommon
in object detection tasks. There are several reasons why such
unbalanced datasets may emerge in practice. Every candidate for
inclusion in the set of positives is typically subjected to thorough
human inspection. This makes the process time-consuming and
expensive, and as a result imposes limitations on the achievable
size of the set. Negatives are generally easier to generate. Note
also that the set of negatives in our experiments is essentially
the set of all objects that are not pedestrians. This latter set
has significantly broader spectrum of variations than the set of
positives. Accounting for this larger variability without imposing
any further prior assumptions or knowledge could be achieved
via larger samples. This was the strategy we have adopted here.

In order to make the experiment more realistic, we assumed
that internal states of both systems are inaccessible for direct
observation. To generate sets S and Y required in Algorithms
1 and 2 we augmented system AIs with an external generator of
HOG features of the same dimension.We assumed, however, that
positives and negatives from the “student” dataset are available
for the purposes of knowledge transfer. A diagram representing
this setup is shown in Figure 4. A candidate image is evaluated
by two systems simultaneously as well as by a HOG features
generator. The latter generates 2016 dimensional vectors of
HOGs and stores these vectors in the set S . If outputs of AIs and
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FIGURE 4 | Knowledge transfer diagram between a teacher AI and a student AI augmented with HOG-based feature generator.

AIt do not match then the corresponding feature vector is added
to the set Y .

3.2. Error Types Addressed
In this experiment we consider and address two types of errors:
false positives (original Type I errors) and false negatives (original
Type II errors). The error types were determined as follows.
An error is deemed as false positive (for the original data) if
AIs reported presence of a correctly sized full-figure image of
pedestrian in a given image patch whereas no such object was
there. Similarly, an error is deemed as false negative (for the
original data) if a pedestrian was present in the given image patch
but AIs did not report it there.

Our main focus was to replicate a deployment scenario in
which AIt is capable of evaluating only small image patches
at once in a given processing quanta. At the same time AIs is
supposed to be able to process whole frame in reasonable time,
but its accuracy is lower. This makes assessment of all relevant
images by AIt not viable computationally and, in addition,
rules out automated detection of Type II errors (original false
negatives) when AIs is scanning the image at thousands of
positions per frame. On the other hand, the number of positive
responses of AIs is limited by several dozens of smaller size
patches per frame, which is assumed to be well within the
processing capabilities of AIt . In view of these considerations,
we therefore focused mainly on errors of Type I (original false
positives). Nevertheless, in section 3.4 we discuss possible ways
to handle Type II errors in the original system and provide an
illustrative example of how this might be done.

It is worthwhile to mention that output labels of the chosen
teacher AI, AIt , do not always match ground truth labels. AIt
may make an occasional error too, and examples of such errors
are provided in Figure 5. Regardless of these, performance of AIt
was markedly superior to that of AIs and hence for the sake of

FIGURE 5 | Examples of False positives generated by the teacher AI, AIt, for

NOTTINGHAM video (Burton, 2016).

testing the concept, these rare occasional errors of AIt have been
discarded in the experiments.

3.3. Datasets Used in Experiments and
Experimental Error Types
To test the approach we used NOTTINGHAM video (Burton,
2016) containing 435 frames of live footage taken with an action
camera. The video, as per manual inspection, contains 4,039
full-figure images of pedestrians.
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For the purposes of training and testing Knowledge Transfer
Units, the video has been passed through AIs, and AIs returned
detects of pedestrian shapes. These detects were assessed by
AIt and labeled accordingly (see the diagram in Figure 4). At
this stage, decision-making threshold in AIs was varying from
−0.3 to 2 to capture a reasonably large sample of false positives
whose scores are near the decision boundary. This labeled set of
feature vectors has been partitioned into two non-overlapping
subsets: Set 1 consisting of circa 90% of true positives and 90%
of false positives, and Set 2 being its complement. HOG features
corresponding to original Type I errors (false positives) in Set 1 as
well as all HOG features extracted from 55 K images of positives
that have been used to train AIs were combined into the training
set. This training set was then used to derive Knowledge Transfer
Units for AIs.

Sets 1 and 2 constitute different testing sets in our example. The
first testing set (Set 1) enables us to assess how the modified AIs
copes with removing “seen” original Type I errors (false positives)
in presence of “unseen” true positives. The second testing set (Set
2) will be used to assess generalization capabilities of the final
system.

We note that labeling of false positives involved outputs of AIt
rather than ground truth labels. Visual inspection of AIt labels
revealed that they contain few dozens of false positives too. This

TABLE 1 | Definition of the error types in knowledge transfer experiments.

Response Response Error

of AIt of AIs after type

knowledge transfer

Yes

Yes True positive

No False negative

No
Yes False positive

No True negative*

number, however, is negligibly small as compared to the overall
number of true positives (circa 2, 000) and false positives (circa
800) of student AI, AIs.

Finally, to quantify performance of the proposed knowledge
transfer approach, it is important to distinguish between
definitions of error types (Type I and Type II) for the
original system and error types characterizing performance of
the Knowledge Transfer Units themselves. The corresponding
definitions are provided in Table 1. Note that true negatives
(marked by star, ∗, in the table) do not occur in the experiments.
If what follows and unless stated otherwise we shall refer to these
definitions.

Results of the application of Algorithms 1, 2 as well as the
analysis of their performance on the testing sets are provided
below.

3.4. Results
We generated 10 different realizations of Sets 1 and 2. This
resulted in 10 different samples of the training and testing
sets. The algorithms have been applied to all these different
combinations. Single run of the preprocessing step, Step 1,
took, on average, 23.5 s to complete on an Apple laptop with
3.5 GHz A7 processor. After the pre-processing step only 164
principal components have been retained. This resulted in
significant reduction of dimensionality of the feature vectors. In
our experiments pre-processing also included normalization of
the whitened vectors so that their L2 norm was always one. This
brings the data onto the unit sphere which is somewhat more
aligned with Theorems 1 and 2. Steps 2 in Algorithms 1, 2 took 1
and 24 ms, respectively. This is a major speed-up in comparison
to complete re-training of AIs (several minutes) or AIt (hours).
Note also that complete re-training does not offer any guarantees
that the errors are going to be mitigated either.

Prior to running Steps 2 of the algorithms we checked if
the feature vectors corresponding to errors (false positives) in

FIGURE 6 | (Left): Correlation diagram between elements of the set Y (elements to be learned away by AIs). (Right): Histogram of lengths of the feature vectors in

the training set after pre-processing.
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FIGURE 7 | Correlations within clusters after Step 2. Left panel corresponds to a cluster with large threshold ≃ 0.76. Right panel corresponds to a cluster with a

lower threshold ≃ 0.43.

FIGURE 8 | Performance of the up-trained AIs on Testing set 1 (Set 1). Red circles correspond to the original AIs without Knowledge Transfer Units. Blue squares

correspond to AIs after Algorithm 1, and green triangles illustrate application of Algorithm 2. (A) Shows Precision (averaged over 10 realizations of Set 1) as a function

of the decision threshold in AIs, (B) shows Recall (averaged over 10 realizations of Set 1), (C) contains the corresponding Precision-Recall data, and (D) shows True

positives vs. False positives for a single realization of Set 1. Lines between points are shown for the sake of visualization and do not represent any measurements or

indicate achievable performance.
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FIGURE 9 | Performance of the up-trained AIs on Testing set 2 (Set 2). Red circles correspond to the original AIs without Knowledge Transfer Units. Blue squares

correspond to AIs after Algorithm 1, and green triangles illustrate application of Algorithm 2. (A) Shows Precision (averaged over 10 realizations of Set 2) as a function

of the decision threshold in AIs, (B) shows Recall (averaged over 10 realizations of Set 2), (C) contains the corresponding Precision-Recall data, and (D) shows True

positives vs. False positives for a single realization of Set 2. Lines between points are shown for the sake of visualization and do not represent any measurements or

indicate achievable performance.

the training set are correlated. This allows an informed choice
of the number of clusters parameter, p, in Algorithms 1 and
2. A 3D color-coded visualization of correlations, i.e., 〈xi, xj〉,
between pre-processed (after Step 1) elements in the set Y is
shown in Figure 6, left panel. A histogram of lengths of all
vectors in the training set is shown in Figure 6, right panel.
Observe that the lengths concentrate neatly around

√
164, as

expected. According to Figure 6, elements of the set Y are
mostly uncorrelated. There are, however, few correlated elements
which, we expect, will be accounted for in Step 2.a of the
algorithms. In absence of noticeably wide-spread correlations
we set p = 30 which is equivalent to roughly 25 elements
per cluster. Examples of correlations within clusters after Step
2 was complete are shown in Figure 7. Note that the larger is
the threshold the higher is the expected correlation between
elements, and the higher are the chances that such Knowledge
Transfer Unit would operate successfully (see Theorems 1
and 2).

Performance of Algorithms 1, 2 on the Testing sets generated
from NOTTINGHAM video is summarized in Figures 8, 9. In
these figures we showed behavior of

Precision =
True positives

True positives+ False positives

Recall =
True positives

True positives+ False negatives
,

as functions of decision-making threshold in AIs, Precision-
Recall and True positives vs. False positives charts. Red circles
correspond to the original AIs without Knowledge Transfer
Units. Blue squares correspond to AIs after Algorithm 1, and
green triangles illustrate application of Algorithm 2. Note that the
maximal number of false positives in Figure 8 does not exceed
400. This is due to that the threshold was now varied in the
operationally feasible interval [0, 2] as opposed to [−0.3, 2] used
for gather training data.
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TABLE 2 | Recovering Type II errors of the original AIs.

Number of Number of

false negatives false positives Threshold

converted remained

(out of 307) (out of 410)

137 169 0.05

87 86 0.1

45 35 0.15

10 14 0.2

8 2 0.25

1 0 0.3

As Figure 9 shows, performance of AIs on Testing set 1 (Set
1) improves drastically after the application of both algorithms.
Algorithm 2 outperforms Algorithm 1 by some margin which
is most noticeable from the plot in Figure 8D. Near-ideal
performance in Precision-Recall space can be explained by that
the training set contained full information about false positives
(but not true positives). It is important to observe that Algorithm
2 did not flag nearly all “unseen” true positives.

As for results shown in Figure 9, performance patterns of
AIs after the application of both algorithms change. Algorithm
1 results in a minor drop in Recall figures, and Algorithm
2 recovers this drop to the baseline performance. Precision
improves slightly for both algorithms, and True positives vs. False
positives curves forAIs with Knowledge Transfer Units dominate
those of plain AIs. This suggests that not only the proposed
Knowledge Transfer framework allows to acquire new knowledge
as specified by labeled data but also has a capacity to generalize
the knowledge further. The degree of such generalization will
obviously depend on statistics of the data. Yet, as Figure 9

demonstrates, this is a viable possibility.
Our experiments showed how the approach could be used for

filtering Type I errors in the original system. The technology,
however, could be used to recover Type II errors too (false
negatives in the original system), should the data be available.
Several strategies might be evoked to obtain this data. The first
approach is to use background subtraction to detect a moving
object and pass the object through both AIs and AIt . The second
approach is to enable AIs to report detects that are classified as
negatives but still are reasonably close to the detection boundary.
This is the strategy which we adopted here. We validated HOG
features in AIs corresponding to scores in the interval [−0.3, 0]
with the teacher AI, AIt . Overall, 717 HOG vectors have been
extracted by this method, of which 307 have been labeled by
AIt as positives, and 410 were considered as negatives. We took

one of the HOG feature vectors labeled as True positive, xv, and
constructed (after applying the pre-processing transformation
from previous experiments) several separating hyperplanes with
the weights given by xv/‖xv‖ and thresholds cv varying in [0, 1].
Results are summarized in Table 2. As before, we observe strong
concentration of measure effect: the Knowledge Transfer Unit
shows extreme selectivity for sufficiently large values of cv. In this
particular case cv = 0.25 provides maximal gain at the lowest risk
of expected error in future [see. e.g., the right-hand side of (1) in
Theorem 1 at k = 1, ε = 0.75 for an estimate].

4. CONCLUSION

In this work we proposed a framework for instantaneous
knowledge transfer between AI systems whose internal state used
for decision-making can be described by elements of a high-
dimensional vector space. The framework enables development
of non-iterative algorithms for knowledge spreading between
legacy AI systems with heterogeneous non-identical architectures
and varying computing capabilities. Feasibility of the framework
was illustrated with an example of knowledge transfer between
two AI systems for automated pedestrian detection in video
streams.

In the basis of the proposed knowledge transfer framework are
separation theorems (Theorem 1–3) stating peculiar properties of
large but finite random samples in high dimension. According to
these results, k < n random i.i.d. elements can be separated form
M≫ n randomly selected elements i.i.d. sampled from the same
distribution by few linear functionals, with high probability. The
theorems are proved for equidistributions in a ball and in a cube.
The results can be trivially generalized to equidistributions in
ellipsoids and Gaussian distributions. Discussing these in detail
here is the beyond the scope and vision of this work. Nevertheless,
generalizations to other meaningful distributions, relaxation of
the independence requirement, and a broader view on how the
proposed technology could be used in multiagent AI systems is
presented in technical report (Gorban et al., 2018).
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APPENDIX

Proof of Theorem 1. Consider the set Y . The probability that a
single element of Y belongs to Bn(1) \ Bn(1− ε) is 1− (1− ε)n.
Recall that if A1, . . . ,Am are arbitrary events then

P(A1&A2& · · ·&Am) ≥ 1−
m
∑

i = 1

(1− P(Ai)). (4)

According to (4), the probability thatY ⊂ Bn(1)\Bn(1−ε) (event
E1) satisfies

P(E1) ≥ 1− k(1− ε)n.

Pick xM+i ∈ Y , and consider the largest equator of the ball Bn(1)
that is orthogonal to the element xM+i. Let Dδ(xM+i) denote the
δ-thickening of the disc associated with this equator. Only one
such disc exists, and it is uniquely defined by xM+i and δ (see
Figure A1). Consider the following events:

xM+2 ∈ Dδ(xM+1) : event E2,

[xM+3 ∈ Dδ(xM+1)]&[xM+3 ∈ Dδ(xM+2)] : event E3,

· · ·
[xM+k ∈ Dδ(xM+1)]&[xM+k ∈ Dδ(xM+2)]& . . .&[xM+k ∈
Dδ(xM+k−1)] : event Ek.

According to (4) and Figure A1, [cf. Gorban et al., 2016b,
proof of Proposition 3 and estimate (26)], it is hence clear that

P(E2) ≥ 1− (1− δ2)
n
2 , P(E3) ≥ 1− 2(1− δ2)

n
2 , . . . , P(Ek) ≥

1− (k− 1)(1− δ2)
n
2 .

Suppose that event E1 (‖xM+i‖ ≥ 1 − ε for all i = 1, . . . , k) and
events E2, . . . ,Ek occur. Then

| cos(xM+i, xM+j)| ≤
δ

(1− ε)
for all i 6= j, i = 1, . . . , k,

and

−
δ

(1− ε)
≤ 〈xM+i, xM+j〉 ≤

δ

(1− ε)
for all i 6= j, i = 1, . . . , k.

(5)
Consider the vector

x̄ =
1

k

k
∑

i = 1

xM+i.

Equation (5) implies that

1

k

(

(1− ε)2 −
k− 1

1− ε
δ

)

≤ 〈x̄, xM+i〉 ≤
1

k

(

1+
k− 1

1− ε
δ

)

for all i = 1, . . . , k (6)

and, consequently,

‖x̄‖2 = 〈x̄, x̄〉 =
1

k

k
∑

i = 1

〈x̄, xM+i〉 ≤
1

k

(

1+
k− 1

1− ε
δ

)

. (7)

Finally, consider

ℓ0(x) =
〈

x̄

‖x̄‖
, x

〉

−
1
√
k

(1− ε)2 − k−1
1−ε

δ
√

1+ k−1
1−ε

δ

. (8)

It is clear that if ‖xM+i‖ ≥ 1− ε and (5) hold then (6), (7) assure
that ℓ0(xM+i) ≥ 0 for all xM+i ∈ Y . The hyperplane ℓ0(x) = 0
partitions the unit ball Bn(1) into the union of two disjoint sets:
the spherical cap C

C = {x ∈ Bn(1) |ℓ0(x) ≥ 0} (9)

and its complement in Bn(1), Bn(1) \ C. The volume V of the cap
C can be estimated from above as

V(C) ≤ V(Bn(1))
1(ε, δ, k)

n
2

2
,

1(ε, δ, k) = 1−





1
√
k

(1− ε)2 − k−1
1−ε

δ
√

1+ k−1
1−ε

δ





2

.

Hence the probability that ℓ0(xi) < 0 for all xi ∈M (event Ek+1)
can be estimated from below as

P(Ek+1) ≥ 1−
M

2
1(ε, δ, k)

n
2 ,

and

P(E1&E2& · · ·&Ek&Ek+1) ≥ 1− k(1− ε)n −
(k− 1)k

2
(1− δ2)

n
2

−M
2 1(ε, δ, k)

n
2 .

This is a lower bound for the probability that the M can be
separated from Y by the hyperplanes ℓ0(x) = 0. Given that this
estimate holds for all feasible values of ε, δ, statement (1) follows.
�

Proof of Theorem 2. Consider the set Y . Observe that, since
elements xi are drawn independently from Bn(1), ‖xM+i‖ ≥ 1−ε,
ε ∈ (0, 1) for all i = 1, . . . , k, with probability p = (1− (1−ε)n)k.
Consider now the vector ȳ

ȳ =
1

m

m
∑

i=1
xM+ri ,

and evaluate the following inner products

〈

ȳ

‖ȳ‖
, xM+ri

〉

=
1

m‖ȳ‖



〈xM+ri , xM+ri 〉 +
∑

rj , j6=i
〈xM+ri , xM+rj 〉



 ,

i = 1, . . . ,m.

According to assumption (2),

〈

ȳ

‖ȳ‖
, xM+ri

〉

≥
1

m‖ȳ‖
(

(1− ε)2 + β2(m− 1)
)

and, respectively,
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FIGURE A1 | Illustration to the proof of Theorem 1. (A) Shows xM+1, xM+2, and xM+3 in the set Bn(1) \ Bn(1− ε). (B) shows xM+i and the corresponding disc

Dδ (xM+i ) (shaded gray area). The combined volume of the spherical caps below and above the disc is bounded from above by the volume of the n-ball with radius

ρ(δ) =
√

1− δ2. The corresponding half-ball of radius ρ(δ) is shown as the blue shaded area.

1

m

(

1+ (m− 1)β1

)

≥ 〈ȳ, ȳ〉 ≥
1

m

(

(1− ε)2 + β2(m− 1)
)

Let (1 − ε)2 + β2(m − 1) > 0 and (1 − ε)2 + β1(m − 1) > 0.
Consider

ℓ0(x) =
〈

ȳ

‖ȳ‖
, x

〉

−
1
√
m

(

(1− ε)2 + β2(m− 1)
√

1+ (m− 1)β1

)

. (10)

It is clear that ℓ0(xM+ri ) ≥ 0 for all i = 1, . . . ,m by the way the
functional is constructed. The hyperplane ℓ0(x) = 0 partitions
the ball Bn(1) into two sets: the set C defined as in (9) and its
complement, Bn(1) \ C. The volume V of the set C is bounded
from above as

V(C) ≤ V(Bn(1))
1(ε,m)

n
2

2

where

1(ε,m) = 1−
1

m

(

(1− ε)2 + β2(m− 1)
√

1+ β1(m− 1)

)2

.

Estimate (3) now follows. �
Proof of Theorem 3. Observe that, in the quotient space R

n/E,
elements of the set

Y = {xM+1, xM+1 + (xM+2 − xM+1), . . . , xM+1

+(xM+k − xM+1)}

are vectors whose coordinates coincide with that of the
quotient representation of xM+1. This means that the quotient
representation of Y consists of a single element, Q(xM+1).
Furthermore, dimension of R

n/E is n − k + 1. Let R20 =
∑n−k+1

i=1 σ 2
i and Q̄(x) = E(Q(x)). According to Theorem 2 and

Corollary 2 from (Gorban and Tyukin, 2017), for ϑ ∈ (0, 1) and
M satisfying

M ≤
ϑ

3
exp

(

(n− k+ 1)σ 4
0

2

)

− 1,

with probability p > 1− ϑ the following inequalities hold:

1

2
≤
‖Q(xj)− Q̄(x)‖2

R20
≤

3

2
,

〈

Q(xi)− Q̄(x)

R0
,

Q(xM+1)− Q̄(x)

‖Q(xM+1)− Q̄(x)‖

〉

<
1
√
2

for all i, j, i 6= M + 1. This implies that the hyperplane ℓ0(x) = 0,
where

ℓ0(x) =
〈

Q(x)− Q̄(x)

R0
,

Q(xM+1)− Q̄(x)

‖Q(xM+1)− Q̄(x)‖

〉

−
1
√
2

separatesM and Y with probability p > 1− ϑ . �
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