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Abstract. Fast numerical evaluation of forward models is central for a
broad range of inverse problems. Here we propose a method for deriving
computationally efficient representations of periodic solutions of parame-
terized systems of nonlinear ordinary differential equations. These repre-
sentations depend on parameters of the system explicitly, as quadratures
of parameterized computable functions. The method applies to systems
featuring both linear and nonlinear parametrization, and time-varying
right-hand side. In addition, it opens possibilities to invoke scalable par-
allel computations and suitable function approximation schemes for nu-
merical evaluation of solutions for various parameter values. Application
of the method to the problem of parameter estimation of nonlinear or-
dinary differential equations is illustrated with a numerical example for
the Morris–Lecar system.

Keywords: Parameter estimation, Nonlinear Parametrization, Adaptive ob-
servers, Time-varying systems.

1 Introduction

The problem of state and parameter estimation of systems of ordinary differential
equations (ODEs) has been in the focus of attention for many decades. Many
frameworks for addressing this problem have been developed to date, including
but not limited to shooting methods [6], sensitivity functions [1], splines [29]
and adaptive observers [3], [18], [4], [10], [28], [26] (see also [16], [24] for system-
identification take on the problem).

Notwithstanding significant progress in this area in both theoretical and ap-
plied directions, there is a fundamental yet practical issue with this problem
affecting further progress. The issue is that, in general, expressing state vari-
ables of systems of ordinary differential equations as explicit known functions of
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parameters and initial conditions or their quadratures is an challenging math-
ematical problem. Thus sequential numerical approximation of solutions over
time is typically involved in the estimation process. The problem, however, is
that this process is slow and does not scale well with computational resources
available. At the same time there are problems such as e.g. real-time estimation
of kinetic parameters of neural membranes [23] that do require fast estimation
of model parameters. Hence new approaches are needed.

Here we provide a method enabling us to address the above fundamental
challenges for a class of systems with nonlinear parameterziation. The main idea
of the method is to present an observed quantity as an integral that is explic-
itly a) computable and b) explicitly dependent on the parameters entering the
original ODE model nonlinearly. Doing so enables to benefit from computational
advantages of prefix sum algorithms [5] and thus alleviate the issues of scalabil-
ity and real-time. Our preliminary work in this direction [27, 19] showed that
employing the tools of adaptive observer design [18, 11] provides a feasible solu-
tion for a relevant class of systems. We demonstrate that further improvement
might be achieved by replacing certain integrals with their approximations by
e.g. Radial Basis Functions [22].

The contribution is organized as follows. Section 2 specifies main techni-
cal assumptions and details mathematical statement of the problem. Section 3
presents main ingredients of the method. In Section 4 we discuss these results
in relation to the possibility of replacing some integrals in the representation
with their approximations. Section 5 presents a numerical example, and Section
6 provides a brief conclusion.

2 Problem Formulation

Throughout the paper the following notational agreements are used. Symbol R
denotes the field of real numbers, and Rn stands for the n-dimensional real space.
Let x ∈ Rn, then ‖x‖ is the Euclidean norm of x: ‖x‖ =

√
x21 + · · ·+ x2n. Cr

denotes the space of continuous functions which are differentiable at least r times.
By Ln∞[t0, T ] or, when n is clear from the context, L∞[t0, T ] we denote the space
of all functions f : [t0, T ] → Rn such that ‖f‖∞,[t0,T ] = supt∈[t0,T ] ‖f(t)‖ < ∞,
and ‖f‖∞,[t0,T ] stands for the Ln∞[t0, T ] norm of f(·).

2.1 System Definition

Consider the following class of nonlinear systems

ẋ = F (y, t)x+ Ψ(y, t)θ + g(y, λ, t)
y(t) = CT1 x; x(t0) = x0,

(1)

where x ∈ Rn and y ∈ R are the state and the output of the system, respectively,
F (y, t) ∈ Rn×n is a known matrix dependent on y and t; λ ∈ Ωλ, Ωλ ⊂ Rp,
θ ∈ Ωθ, Ωθ ⊂ Rm are parameters, and C1 ∈ Rn: C1 = col(1, 0, · · · , 0). With
regards to the sets Ωθ, Ωλ, they are allowed to be arbitrary subsets of Rm and
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Rp, respectively. Unless stated otherwise, no other prior knowledge about the
sets Ωθ, Ωλ is assumed.

Other technical assumptions are detailed in Assumption 1 below.

Assumption 1 The following properties hold for (1):

1. the solution of (1) is defined for all t ≥ t0, and it is T -periodic, T > 0;
2. the function F is continuous, bounded, and F (y(·), ·) is T -periodic;
3. exact values of parameters λ and θ are unknown;
4. the values of y(t) for t ∈ [t0, t0 + T ] are available and known;
5. the function Ψ : R × R → Rn×m is such that Ψ(y(·), ·) is T -periodic and is

in L∞[t0,∞) ∩ C0;
6. the function g : R× Rp × R→ Rn is such that g(y(·), λ, ·) is T -periodic and

is in L∞[t0,∞) ∩ C1 for all λ ∈ Ωλ;
7. the observability Gramian matrix

G(T, t0) =

∫ t0+T

t0

ΦA(s, t0)CCTΦTA(s, t0)ds, C = col(1, 0, . . . , 0),

where ΦA(t, t0), is the normalized (i.e. ΦA(t0, t0) = In+m) fundamental so-
lution matrix of

ẋ = A(y(t), t)x,

A(y(t), t) =

(
F (y(t), t) Ψ(y(t), t)

0 0

)
,

(2)

is of full-rank, i.e rank(G(T, t0)) = n+m.

The class of equations (1) accommodates a broad set of technical and natural
systems ranging from models of [2], dynamics of populations [14], and neural
membranes [20]. In case the solutions are periodic it also may, after suitable
modifications [27], include systems

ẋ = F (y, t)x+ Ψ(y, t)θ + g(y, q, λ, t)

q̇ = υ(y, λ, t)q + ω(y, λ, t)

y = CT1 x; x(t0) = x0, q(t0) = q0,

(3)

in which the functions υ(y(·), λ, ·), ω(y(·), λ, ·) are continuous.
For notational convenience (cf. [25]), in what follows, we will combine the

state variable x and parameters θ entering the right-hand side of (1) linearly
into a single variable χ and rewrite the system accordingly:

χ̇ = A(y, t)χ+

(
g(y, λ, t)

0

)
, y(t) = CTχ, χ(t0) = χ0. (4)

In (4) χ = (x, θ) is the combined state vector, matrix A(y, t) is defined as in
(2), and C ∈ Rn+m is C = col(1, 0, · · · , 0). Let us now proceed with the formal
definition of the problem considered in this contribution.
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2.2 Problem Statement

Consider system (4) and suppose that the values of y(t) for t ∈ [t0, t0 + T ] are
known and available a-priori. These values will depend on the parameters λ and
initial condition χ0 which themselves are assumed to be unknown. The question
is if there exists an operator F mapping y(·) over [t0, t0 + T ] into an efficiently
computable quantity that does depend on the parameters λ explicitly?

In particular, we are seeking for an F(λ, [y], t) such that

CTχ(t; t0, χ0, λ) = F(λ, [y], t), ∀ t ∈ [t0, t0 + T ], λ ∈ Ωλ,

F(t, λ, [y]) = π(t, λ, [y]) +

∫ t

t0

p(τ, λ, y(τ), [y])dτ,
(5)

in which the functionals π and p are known and computable, e.g. in quadratures.
The functionals π, p must not depend on χ0 as a parameter, but nevertheless
have to ensure the required representation (5).

In what follows, (Theorem 2 in Section 3) we demonstrate that finding the
required representations F(λ, [y], t) is possible, subject to some mild technical
conditions largely contained in Assumptions 1, 2. When such a representation
is found one can employ numerous off-line numerical optimisation techniques to
infer the values of λ, θ, and initial conditions from the values of y in the interval
[t0, t0 + T ]. We will illustrate this step with an example in Section 5 in which
the Nelder–Mead algorithm [21] will be used for this purpose.

3 Observer-based Explicit Parametrized Representations
of Periodic Solutions

The problem of existence of representations (5) in the context of parameter
estimation is hardly viable without assessing parameter identifiability [9] of (4).
The corresponding sufficient conditions are derived below.

3.1 Indistinguishable Parametrizations of (4)

We begin with the following technical lemma [19] (cf. [28]).

Lemma 1. Consider the following class of system

χ̇ = A0(t)χ+ u(t) + d(t), y = Cχ, χ(t0) = χ0, χ0 ∈ R`, (6)

where

A0(t) =


α1(t) β2(t) β3(t) · · · β`(t)
α2(t)

... A∗0(t)
α`(t)

 and u, d, α : R→ R`, β : R→ R`−1 ,

u ∈ C1, d, α, β ∈ C, α = col(α1(t), α2(t), . . . , α`(t)), β = (β2(t), β3(t), . . . , β`(t)),
and assume that solutions of (6) are globally bounded in forward time.

Let, in addition:
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1. u, u̇, d, α, β be bounded: max{‖u(t)‖, ‖u̇(t)‖} ≤ B, ‖d(t)‖ ≤ 4ξ, ‖α(t)‖ ≤
M1, ‖β(t)‖ ≤M2 for all t ≥ t0.

2. there exist a b : R→ R`−1, b ∈ C, ‖b(t)‖ ≤M3 such that the zero solution of
the system

ż = Λ(t)z, Λ(t) = A∗0(t)− b(t)β(t),

is uniformly exponentially stable, and let ΦΛ(t, t0) be the corresponding fun-
damental solution: ΦΛ(t0, t0) = I`.

Then the following statements hold:

1. If the solution of (6) is globally bounded for all t ≥ t0 then, for T sufficiently
large, there are k1, k2 ∈ K :
‖y(t)‖∞,[t0,t0+T ] ≤ ε⇒ ∃ t′(ε, x0) ≥ t0: ‖h(τ) + u1(τ)‖∞,[t′,t0+T ] ≤ k1(ε) +
k2(4ξ), where h(t) = β(t)z,

ż = Λ(t)z +Gu,
G =

(
−b(t) I`−1

)
, z(t0) = 0,

(7)

2. If d(t) ≡ 0, then y(t) = 0 for all t ∈ [t0, t0+T ] implies existence of P ∈ R`−1:

β(t)ΦΛ(t, t0)P + h(t) + u1(t) = 0 (8)

for all t ∈ [t0, t0 + T ].

According to Lemma 1 the set of parameters:

E(λ) ={λ′ ∈ Rp| ∃ p ∈ R`−1 : η(t, p, λ′, λ) = 0, ∀t ∈ [t0, t0 + T ]} (9)

where

η(t, p, λ′, λ) = β(t)ΦΛ(t, t0)p+ g1(y(t), λ′, t)− g1(y(t), λ, t)+

β(t)

∫ t

t0

ΦΛ(t, τ)G(τ)

(
g(y(τ), λ′, τ)− g(y(τ), λ, τ)

0

)
dτ,

and Λ is defined as in (7), contains parameters λ′ producing measurements y(t) =
CTχ(t; t0, χ0, λ

′) that are indistinguishable from CTχ(t; t0, χ0, λ) on the interval
[t0, t0 + T ]. If the set E(λ) contains more than one element then the system (4)
may not be uniquely identifiable on [t0, t0 + T ]. Notwithsdanding existence and
possible utility of systems that are not uniquely identifiable, we will nevertheless
focus on systems (4) that are uniquely identifiable on [t0, t0+T ]. Thus we assume
that the following holds:

Assumption 2 For every λ ∈ Ωλ, the set E(λ) consists of just one element.
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3.2 Auxiliary Observer in the Differential Form

In addition to (4) consider the following auxiliary system:

˙̂χ = A(y(t), t)χ̂+

(
g(y(t), λ′, t)

0

)
−R−1C(CT χ̂− y),

Ṙ = −δR−A(y(t), t)TR−RA(y(t), t) + CCT (10)

χ̂(t0) = χ̂0 ∈ Rn+m, R(t0) ∈ R(n+m)×(n+m),

where χ̂ ∈ Rn+m is the observer’s state, R(t0) is a positive-definite symmetric
matrix, and δ ∈ R>0 is a positive parameter. Solutions of (10) are defined for all
t ≥ t0 (see items (1), (2) in Assumption 1), and hence, [11], R(t) is given by

R(t) = e−δ(t−t0)ΦA(t0, t)
TR(t0)ΦA(t0, t)+∫ t

t0

e−δ(t−s)ΦA(s, t)TCCTΦA(s, t)ds.
(11)

It is clear that R(t) is non-singular for all t ≥ t0, symmetric, and positive-definite.
Furthermore, if the value of the parameter δ > 0 is chosen so that

‖e−δ(t−t0)/2ΦA(t0, t)‖ ≤ De−a(t−t0), a > 0, (12)

then R(t) is bounded. In what follows the following additional assumption is
instrumental:

Assumption 3 There exist t1 ≥ t0 and α(δ) > 0 such that

φ(t, δ) =

∫ t

t0

e−δ(t−s)ΦA(s, t)TCCTΦA(s, t)ds ≥ α(δ)In+m

for all t ≥ t1.

The next theorem specifies asymptotic behaviour of the observer system (10)
(adapted from [11]).

Theorem 1. Consider (10) and suppose that δ > 0 be chosen so that both (12)
and Assumption 3 hold, and λ′ = λ. Then there exists a t2 ≥ t0, such that:

‖χ̂(t; χ̂0)− χ(t;χ0)‖ ≤ ke−δ(t−t0)

for all t ≥ t2, where k is a constant dependent on δ, t0, χ0 and the initial state
χ̂0 of the observer system (10).

Theorem 1 states the variable χ̂(t) asymptotically tracks χ(t), and that the
difference between the two converges to zero exponentially. Here, however, we
are interested in establishing finite-time relationships (5). To do so we need
another technical result establishing sufficient conditions for the existence of
unique periodic solutions of R. The result is provided in Lemma 2 [19].

Lemma 2. Consider (10) with A(y(t), t) being T -periodic. Then, for sufficiently
large δ > 0, there exists a unique symmetric R(t0) ensuring that the function
R(t) defined by (11) is T -periodic. If, in addition, (12) and Assumption 3 hold
then R(t0) is positive-definite.



Fast Numerical Evaluation of Periodic Solutions 7

3.3 Integral Parametrization of Periodic Solutions of (4)

For notational convenience, let us rewrite auxiliary observer equations (10) as:

˙̂χ = (A(t)−R−1CCT )χ̂+

(
g(y(t), λ′, t)

0

)
+R−1Cy(t)

Ṙ = −δR−A(y(t), t)TR−RA(y(t), t) + CCT

χ̂(t0) = χ̂0 ∈ Rn+m, R(t0) ∈ R(n+m)×(n+m), (13)

and additionally consider dynamics of the linear part of the first equation:

ξ =
(
A(y(t), t)−R−1(t)CCT

)
ξ. (14)

Let Φ(t, s) be the normalized fundamental solution matrix of (14), i.e. Φ(t, t) =
In+m and Φ(s, t) = Φ(t, s)−1.

Theorem 2. Consider system (13) and suppose that Assumptions 1 and 2 hold.
In addition, suppose that condition (12) hold and the values of δ and the initial
condition R(t0) in (13) are chosen such that R(t) > 0 is T -periodic.

Consider the function ŷ : Rp × R→ R:

ŷ(λ′, t) = CT
(
Φ(t, t0)χ̂0+∫ t

t0
Φ(t, τ)

(
R−1(τ)Cy(τ) +

(
g(y(τ), λ′, τ)

0

))
dτ
) (15)

where
χ̂0 = (In+m − Φ(t0 + T, t0))−1

∫ t0+T
t0

Φ(t0 + T, τ)×(
R−1(τ)Cy(τ) +

(
g(y(τ), λ′, τ)

0

))
dτ.

(16)

Then
ŷ(λ′, t) = Cχ(t; t0, χ0, λ) ∀ t ∈ [t0, t0 + T ]⇔ λ = λ′.

The proof can be found in [19].

4 Discussion

One of the immediate computational advantages of the method is that the pro-
posed integral representations offer a possibility to employ parallel calculations.
In addition, the method offers reduction of dimensionality of the problem due to
incorporating linearly parameterized part of the model into internal variables of
the proposed representations. These internal variables are uniquely determined
by parameters entering the model nonlinearly and are computed as a part of the
representation.

In what follows we will show that further computational improvements might
be possible and are practically viable (as illustrated with an example) if certain
variables in the representations are replaced by their reasonable sparse Radial
Basis Function approximations.
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One of the key steps justifying incorporation of relevant class of equations
specified by (3) into the setting focusing on (1) was an assumption that the
variable q(t; q0, λ, y) is expressible as a known function of parameters, initial
conditions, and t. For example, if q relates to a single first-order equation then
such function can be computed as follows:

q(t; q0, λ, y) = e
∫ t
t0
υ(y(τ),λ,τ)dτ

q0 + e
∫ t
t0
υ(y(τ),λ,τ)dτ×∫ t

t0
e
−

∫ τ
t0
υ(y(s),λ,s)ds

ω(y(τ), λ, τ)dτ

q0 = (1− e−
∫ t0+T
t0

(υ(y(s),λ,s)ds)−1
∫ t0+T
t0

e−
∫ t
z
(υ(y(s),λ,s))dsω(y(z), λ, z)dz.

(17)

If the original problem is governed by (3) then availability of q(t; q0, λ, y) is
required in our explicit parameter-dependent representation. One way to resolve
the problem is to numerically evaluate all integrals involved. This, however, may
not always be optimal. An alternative could be to use computationally efficient
approximations of q(t; q0, λ, y) instead.

A possible class of approximations is the class of Radial Basis Functions
(RBF) which are known to be efficient for approximating scattered datasets [7].
Recall that Radial Basis Functions are those functions that exhibit radial sym-
metry, that is, may be seen to depend only (apart from some known parameters)
on the distance r = ‖X − Xc‖ between the centre of the function, Xc, and a
generic point X. These functions may be generically represented in the form
φ(r), where the function φ is a real-valued function of a real non-negative ar-
gument. The functions φ may be both globally or compactly supported, and
Table 1 presents some relevant examples. The Gaussian and the inverse multi-
quadric are positive definite, so that the matrices which arise in interpolation
problems are invertible. The other functions are conditionally positive definite,
and a polynomial needs to be appended in general so that the interpolation
problem is well-posed [7].

Infinitely smooth RBFs Functional Form, φ(r) Parameters

Polyharmonic Spline rk k > 0, k 6∈ 2N
Gaussian e−(αr)2 α > 0

Multiquadric(MQ) (1 + α2r2)k/2 k > 0, k 6∈ 2N, α > 0

Inverse multiquadric (1 + α2r2)k/2 k < 0, k 6∈ 2N, α > 0

Table 1. Some commonly used radial basis functions. Parameter α, called “local shape
parameter”, controls the shape of the radial basis function.

Let X ∈ Rd be a vector accommodating relevant measurement parameters,
i.e. t and λ. In other words, X = (t, λ). Consider Xc = {Xc1 , Xc2 , · · · , XcM }.
The centres Xc could be selected from the given data samples or derived via
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clustering algorithms. Let

S(X) =

M∑
j=1

ωjφ(‖X −Xcj‖) + p(X), X ∈ Rd, (18)

where p is a polynomial, be an RBF approximation of q(t; q0, λ, y) or simply
q(t, λ), where ωj are unknown coefficients that need to be determined. The poly-
nomial p is appended when φ is not positive definite. It is well-known that, for
a broad range of φ(·), any continuous function on a bounded domain can be
approximated by sums (18) with arbitrary accuracy in Lp-norm, p > 1, subject
to the choice of parameters Xcj , ωj , and M [22].

The following heuristics is proposed to replace repeat evaluations (17) of
q(t, λ) with their RBF approximations in a generic optimisation routine for in-
ferring the values of θ and λ.

Algorithm 1 [Parameter inference with approximated variables]

1. Initialisation: set λ̂ as an initial guess of λ.
2. A set of M samples Xi = (tni , λmi) is randomly drawn from a relevant

domain or chosen in accordance with some pre-defined process. The domain,
in general, may depend on λ̂.

3. Group spatially close points using a suitable clustering algorithm (e.g. [15,
8, 13, 12]), and set the centres Xcj as the centres of these clusters.

4. Determine parameters ωj in (18) as the minimizer of
∑N
i=1(S(Xi)−q(ti, λi))2,

N > 0. Note that adjustments of the shape parameter, α, might be needed to
ensure good approximation.

5. Using representation (15) and approximant (18) define:

ỹ(λ̂, t) = F (t, t0, θ, λ̂, q̂(λ̂, t))

q̂(λ̂, t) =
∑M
k=1 ωkφ(‖(t, λ̂)− (tck , λck)‖).

(19)

The function ỹ(λ̂, t) is an approximation of ŷ(λ̂, t).

6. Use ỹ(λ̂, t), to produce a refined guess of λ̂ and return to Step 1 if required.

In the next section we illustrate an application the method (with and with-
out Algorithm 1) to the problem of parameter estimation for the Morris–Lecar
system.

5 Example

5.1 Direct Application of the Method

Consider the following simple point model of neural membrane activity [20]:

ẋ = gCam∞(x)(x− ECa) + gKq(x+ EK) + gL(x+ EL) + I

q̇ = −τ(x)
−1
q + τ(x)

−1
ω∞(x), y = x,

(20)
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where

m∞(x) = 0.5
(

1 + tanh
(
x−V1

V2

))
, ω∞(x) = 0.5

(
1 + tanh

(
x+V3

V4

))
τ(x) = T0/

(
cosh

(
x+V3

2V4

))
.

Here x is the measured voltage, q is the recovery variable. Parameters ECa, EK , EL
are the Nernst potentials of which the nominal values are assumed to be known:
ECa = 55.17, EK = −110.14, EL = 49.49; other parameters may vary from one
cell to another and thus are considered unknown.

Assume that the model operates in the oscillatory regime which corresponds
to periodic solutions of (20). For practically relevant values of T0, V3, V4 and

measurements x(·) the integral
∫ t0+T
t0

τ(x(s))
−1
ds > 0, where T is the period of

oscillations. Given that x(·) is T -periodic, the variable q can be expressed as:

q(t) = e
−

∫ t
t0
τ(x(s))−1ds

q0 +

∫ t

t0

e−
∫ t
z
τ(x(s))−1dsτ(x(z))

−1
ω∞(x(z))dz

q0 =
(

1− e−
∫ t
t0
τ(x(s))−1ds

)−1 ∫ t0+T

t0

e−
∫ t0+T
z

τ(x(s))−1dsτ(x(z))
−1
ω∞(x(z))dz.

Denoting g(t, λ, [y]) = gCam∞(x)(x − ECa) + gKq(x + EK), Ψ(t, y) = (y(t), 1),
and combining parameters as θ = (gL, I), λ = (V1, V2, V3, V4, T0, gCa, gK) we can
rewrite (20) in the form of equation (4) with

A(y(t), t) =

0 y(t) 1
0 0 0
0 0 0

 .

For this system and chosen nominal parameter values, the period of oscillations
is T = 15.1692. For convenience, the integration interval was et as [0, 15.1692].
Numerical evaluations of integrals and solutions of all auxiliary differential equa-
tions have been performed on equi-spaced grids with the step size of 0.0002.

According to Theorem 2, explicit parameter-dependent representation of the
observed quantity, ŷ(λ, t), is defined by (15), where C = (1, 0, 0), χ = col(x, θ),
and the fundamental solution (3×3)-matrices Φ(t, t0) and ΦA(t, t0) are computed
for the linear systems χ̇ = (A(y(t), t)−R−1(t)CCT )χ, Ṙ = −δR−A(y(t), t)TR−
RA(y(t), t) + CCT , and χ̇ = A(y(t), t)χ, respectively, by the Improved Euler
method for t ∈ [0, 15.1692]. The value of δ was set as δ = 2, and numerical
approximations of matrices ΦA(t, t0) were used to compute the matrices R(t) in
accordance with equation (11). The value of R(t0) in (11) was so that R(t) is
periodic (see Lemma 2).

Figure 1 shows the relative error, e(t) = (ŷ(λ, t) − y(t))/‖y‖∞,[t0,t0+∞], be-
tween the proposed numerical representation (15) and simulated y(t) (Runge–
Kutta, step size 0.0002) for nominal parameter values.

The parameterized representations were later used, in combination with the
Nelder–Mead algorithm [21] to recover the values of parameters λ and θ. Results
of the estimation process after 3000 steps are shown in Table 2. The process took
less than 10 minutes on a standard PC in Matlab R2015a.
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Fig. 1. Relative error e(t) = (ŷ(λ, t)− y(t))/‖y‖∞,[t0,t0+∞] as a function of t.

Table 2. True (first row) and Estimated (second row) of λ and θ, and the value of x0

Vector λ = (V1, V2, V3, V4, T0, gCa, gK)

V1 V2 V3 V4 T0 gCa gK
-1 15 -10 14.5 3 -1.1 -2

-0.999 14.999 -10.000 14.500 3.000 -1.100 -2.000

Vector θ = (gL, I) and x0
gL I x0
-0.5 10 21.96388

-0.49982 9.99345 21.96166

Table 3. Time for 1000 evaluations of y

Eq. (15) Improved Euler method Ratio

2.21311 minutes 10.43818 minutes 4.71652

To assess potential computational advantage of the proposed approach we
compared the time required for 1000 evaluations of y(t) in Matlab a) expressed
as in (15) and b) computed by the Improved Euler method over the interval
[t0, t0 + T ]. The parameter values for both cases were kept identical and did not
change from one trial to the other. The results are summarized in Table 3.
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5.2 The Method with RBF Approximation of q

To show feasibility of RBF approximations in this problem we repeated the
experiment above but this time with the variable q replaced with its RBF ap-
proximation inside the optimisation routine (Nelder–Mead). To produce such
approximations we followed steps of Algorithm 1. As the RBF kernel we used
the Gaussian function. This transforms (18) into

Sq(X) =

M∑
j=1

ωje
−(α‖X−Xcj ‖)

2

. (21)

Note that the variable q depends only on 3 components of the vector λ, i.e. T0,V3,
and V4. And hence all steps of the algorithm related to approximation apply to
these 3 relevant components and the variable t only. We considered an extremely
sparse setting, in which each of the three parameters have been sampled at 2
points per each relevant sample of t. The values of t where chosen from the grid
of 0.002-spaced points in [0, 15.1692] (N = 7584 points in the grid). The shape

parameter α was set to 0.0222. To see how well Sq(ti, λ̂) approximates q(ti, λ)
as a function of ti the following simple criterion has been used:

LS =

N∑
i=1

(q(ti, λ)− Sq(ti, λ̂))2. (22)

In order to judge the efficiency of the approach we run the algorithm 1000
times and recorded empirical errors between λi and their estimates λ̂i, and com-
puted their L2 distances as:

d(ν) =
√∑7

i=1(λi − λ̂i(ν))2, (23)

where ν = 1, · · · , 1000 is the number of the experiment. Initial guesses for λ
were selected randomly in the n-cube [0, 1] + λi, i = 1, 2, · · · , 7, where λi are
the nominal values. Fig. 2 shows histograms of (22), (23) at the initial step of
the algorithm. Fig. 3 shows histograms of the distributions of distances between
λ and λ̂ and the least square errors (LS) after the application of Nelder–Mead

method with Algorithm 1 used to approximate q(t, λ̂). We observe a pronounced
shift of the histograms to the left, where they concentrate around zero. This
contrasts sharply with the initial distributions of errors seen in Fig.2.

As can be seen from these experiments, RBF approximation is a viable way
to further improve scalability and potential of the method.

6 Conclusion

The work presented a method for computationally efficient and explicit parameter-
dependent representation of periodic solutions of systems of nonlinear ODEs.
The method is rooted in the ideas from adaptive observers theory and is an ex-
tension of our earlier work [27] in which linear part of the system was supposed
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Fig. 2. Histograms of the distributions of d(ν), ν = 1, · · · , 1000 (left panel), and least
square errors LS =

∑N
i=1(q(ti, λ)− Sq(ti, λ̂))2 (right panel) prior to any estimation.

Fig. 3. Histograms of the distributions of d(ν), ν = 1, · · · , 1000 (left panel) and LS =∑N
i=1(q(ti, λ)− Sq(ti, λ̂))2 (right panel) after optimisation.

to be time-invariant. Here we extended this result to systems with time-varying
linear parts. Similar extension can be carried out for other observer structures,
including e.g. [17], followed by replacement of condition (7) in Assumption 1
with the requirement of persistency of excitation of relevant terms.

The computational advantage of the method is due to the possible parallel
implementation of calculations that the proposed representations offer. In addi-
tion to offering scalability and making use of parallel computations, the method
offers reduction of dimensionality of the problem due to incorporating linearly
parameterized part of the model into internal variables of the proposed represen-
tations. These internal variables are uniquely determined by parameters entering
the model nonlinearly and are computed as a part of the representation.

An interesting possibility to further improve computational efficiency of the
approach to a class of problems emerging in modelling dynamics of neural cells
stems from invoking RBF approximations in place of certain integrals in the
schemes. Viability of the approach in this setting has been demonstrated with a
numerical example.
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