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● Large Fluctuational Approach and Model Reduction

● Escape in quasi-hyperbolic systems

● Escape in non-hyperbolic systems

● Conclusions 
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Deterministic Chaos and Noise: EnvironmentDeterministic Chaos and Noise: EnvironmentDeterministic Chaos and Noise: Environment
Environment induces 

Dissipation and Fluctuations

Bath
Environment

(external or internal
degrees of freedom)
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H H H H
H
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System Hamiltonian

Bath (Environmental) Hamiltonian

Hamiltonian of interaction

Elimination of  the environmental 
degrees of freedom leads to 

● Dissipation and 
● Fluctuations

Note: Elimination is ,as a rule, a challenge task and 
it is often phenomenological
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Deterministic Chaos and Noise: EnvironmentDeterministic Chaos and Noise: EnvironmentDeterministic Chaos and Noise: Environment
Archetypical Archetypical ExampleExample: Environment as a Collection of 
Linear Oscillators

Bath
Environment

S B SBH H H H= + +

Elimination leads to 

The collection of 
harmonic oscillators
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Fluctuations
noise

Dissipation and Fluctuations 
have the same origin
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Chaos and Noise: Large FluctuationsChaos and Noise: Large FluctuationsChaos and Noise: Large Fluctuations

The simplification of dynamics: considering dynamics related to Large 
Fluctuations 

Different manifestations of fluctuations: Different manifestations of fluctuations: 

activrelax tt <<

Diffusion in a vicinity of attractorDiffusion in a vicinity of attractor Large fluctuations Large fluctuations 
(deviations) from attractors(deviations) from attractors
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Transition probability via fluctuations paths
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The selection of the most probable (optimal) path
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Chaos and Noise: Large Fluctuation ApproachChaos and Noise: Chaos and Noise: Large Fluctuation ApproachLarge Fluctuation Approach

The system described by 
Langevin equations:
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])([ jtxρThe probability of fluctuational path is related to 

the probability                  of random force to have a realization          ])([ jtξρ jt)(ξ

For Gaussian noise:

Since the exponential form, the most probable path has a minimal S=Smin

Changing to dynamical variables:
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Deterministic chaos and noise: optimal path approach
deterministic pattern of fluctuations

Deterministic chaos and noise: optimal path approachDeterministic chaos and noise: optimal path approach
deterministic pattern of fluctuationsdeterministic pattern of fluctuations
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Formally the deterministic minimization
problem can be formulated in the 
Hamiltonian form:
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Large fluctuations and Model reductionLarge fluctuations and Model reductionLarge fluctuations and Model reduction

S B SBH H H H= + +
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The initial model: the Hamiltonian for
the system, the bath and coupling

In general case the dimension is infinite.

Langevin model reduction: finite 
dimensional system with noise terms,

The dimension is infinite

Large fluctuations reduction leads to a specific object: the optimal path
as a solution of boundary value problem of the finite dimensional Hamilton system
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Optimal path approach
deterministic pattern of fluctuations

Optimal path approachOptimal path approach
deterministic pattern of fluctuationsdeterministic pattern of fluctuations

Optimal paths are experimentally observable (DykmanOptimal paths are experimentally observable (Dykman’’92)92)

The prehistory 
probability of 
transition 
between states 
of bistable
oscillator
(electronic 
experiment)

Optimal paths are essentially deterministic trajectoriesOptimal paths are essentially deterministic trajectories

( )tξ
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Chaos and Noise: Quasi-hyperbolic AttractorChaos and Noise: QuasiChaos and Noise: Quasi--hyperbolic Attractorhyperbolic Attractor

Lorenz system
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10, 8 / 3, 24.08b rσ = = =
Stable points 

Saddle cyclesChaotic 
Attractor

Consider noise-induced 
escape from the chaotic 
attractor to the stable 
point in the limit

The task is to 
determine the most 
probable (optimal) 
escape path

0D →
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Chaos: Quasi-hyperbolic AttractorChaos: QuasiChaos: Quasi--hyperbolic Attractorhyperbolic Attractor

Lorenz Attractor

Saddle point Separatrices

The saddle point and its 
separatrices belong to 
chaotic attractor and 
form “bad set” or non-
hyperbolic part of the 
attractor

Homoclinic
loop  -> Horseshoe

13.92r ≈

Loops between separatrices Γ1 and Γ2 and stable 
manifolds of cycles L1 and L2 generate 
The Lorenz attractor – quasi-hyperbolic attractor

Γ1

Γ2

L1L2

24.06r ≈
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Chaos: Quasi-hyperbolic AttractorChaos: QuasiChaos: Quasi--hyperbolic Attractorhyperbolic Attractor

Saddle point 

Separatrix
The loop between separatrices
Γ1 and Γ2 and stable manifolds 
of cycles L1 and L2 persists by 
varying parameters

Γ2

Cycle L1

Unstable
manifold WU

Stable
manifold WS
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Large Fluctuations: the prehistory probabilityLarge Fluctuations: the prehistory probabilityLarge Fluctuations: the prehistory probability

The prehistory approach
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1. Select the regime
i.e. rare  large fluctuations

xf

0D →

activrelax tt <<
2. Record all trajectories 
xj(t) arrived to the final 
state and build the 
prehistory probability 
density ph(x,t)
The maximum of the density 
corresponds to the most 
probable (optimal) path
3. Simultaneously noise 
realizations ξ(t) are 
collected and give us the 
optimal fluctuational force
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The Poincaré section q3 = r - 1

Stable point P1

Chaos: Quasi-hyperbolic AttractorChaos: QuasiChaos: Quasi--hyperbolic Attractorhyperbolic Attractor

Stable point P2

“+” Separatrix

“o” Saddle cycle

Chaotic
attractorStable manifold of 

the saddle point
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Chaos and Noise: Quasi-hyperbolic AttractorChaos and Noise: QuasiChaos and Noise: Quasi--hyperbolic Attractorhyperbolic Attractor

Probability density  p(q1) for Poincaré section 3 1q r= −

q1
q1

●●●●●

D=0 In the absence of noise

D=0.001 In the presence of noise

The difference 
in the tail (low 
probable part 
of the density)

Noise does not change 
significantly the 
probability density

Are noise-induced tail important? 
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Chaos and Noise: Quasi-hyperbolic AttractorChaos and Noise: QuasiChaos and Noise: Quasi--hyperbolic Attractorhyperbolic Attractor

Escape from quasi-hyperbolic attractor
Escape trajectories

WS is the stable manifold and
Γ1 and Γ2 are separatrices of the 
saddle point O
L1 and L2 are saddle cycles
T1 and T2 are trajectories which 
are tangent to  WS

The escape process is connected with 
the non-hyperbolic structure of 
attractor: stable and unstable 
manifolds of the saddle point

Noise-induced tail

q3

q2q1

The distribution of escape 
trajectories (exit distribution)
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Chaos and Noise: Quasi-hyperbolic AttractorChaos and Noise: QuasiChaos and Noise: Quasi--hyperbolic Attractorhyperbolic Attractor
The optimal path and fluctuational force from analysis of  fluctuations prehistory 

Optimal force

Optimal path

Three  parts:
1) Deterministic part, the force equals to zero; The point A is the initial state xi

2) Noise-assisted motion along stable and unstable manifolds of the saddle point
3) Slow diffusion to overcome the deterministic drift of unstable manifold of the 
saddle cycle and cross the cycle
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Chaos and Noise: Non-hyperbolic AttractorChaos and Noise: NonChaos and Noise: Non--hyperbolic Attractorhyperbolic Attractor

Non-autonomous nonlinear oscillator
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The motion is underdamped

The potential U(q) 
is monostable

Co-existence 
of two cycles 
of period 1

Co-existence 
of two cycles 
of period 2

Chaos 
region

Ω=1.005
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Chaos and Noise: Non-hyperbolic AttractorChaos and Noise: NonChaos and Noise: Non--hyperbolic Attractorhyperbolic Attractor

The co-existence of chaotic attractor and the limit cycle
0.13 0.95h = Ω =

Stable cycle
Saddle cycle

Chaotic attractor
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Chaos and Noise: Non-hyperbolic AttractorChaos and Noise: NonChaos and Noise: Non--hyperbolic Attractorhyperbolic Attractor

Probability density                 for Poincaré section 0tΩ =( , )p q q&

q q

q& q&

0D = 65 10D −= ⋅

A weak noise significantly changes the probability density
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Chaos and Noise: Non-hyperbolic AttractorChaos and Noise: NonChaos and Noise: Non--hyperbolic Attractorhyperbolic Attractor

The prehistory probability density ( , , )hp q q t&

q q&

45 10D −= ⋅

There is a miximum in 
the prehistory 
probability density
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Chaos and Noise: Non-hyperbolic AttractorChaos and Noise: NonChaos and Noise: Non--hyperbolic Attractorhyperbolic Attractor

Escape trajectories follow a narrow tube

q&

2T π=
Ωtime

Saddle cycle

Q: Do any 
sets  form the 
escape path?

To answer we 
take initial 
conditions along 
the path and try to 
localize any sets
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Chaos and Noise: Non-hyperbolic AttractorChaos and Noise: NonChaos and Noise: Non--hyperbolic Attractorhyperbolic Attractor

Saddle cycles 
form the 
escape path

Saddle cycle of period 5

Saddle cycle of period 3

The prehistory probability density ( , )hp q t

S5

S3
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Chaos and Noise: Non-hyperbolic AttractorChaos and Noise: NonChaos and Noise: Non--hyperbolic Attractorhyperbolic Attractor

Saddle cycle of period 5
belongs to chaotic attractor

Saddle cycle of period 3 
is outside the attractor

The escape is a sequence of jumps between saddle cycles.

Escape 
trajectory
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Escape trajectory is a heteroclinic trajectories connected saddle 
cycles of Hamilton system.

cycle S5

cycle UC1

S5

S3
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Large FluctuationsLarge FluctuationsLarge Fluctuations

Summary

For a quasi-hyperbolic attractor, its non-hyperbolic part  plays an essential
role in the escape process. 

For a non-hyperbolic attractor, saddle cycles embedded in the attractor and 
basin of attraction are important. Escape from a non-hyperbolic attractor 
occurs in a sequence of jumps between saddle cycles.

For both types of chaotic attractor we can select specific sets which are 
connected with Large Fluctuations and the most probable paths. 
Thus the description of large fluctuations is reduced to specification of a 
particular trajectory (the optimal path).


