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Deterministic Chaos and Noise: Environment

Environment induces

Dissipation and Fluctuations
H=H,+H;+Hg

H g System Hamiltonian

H g Bath (Environmental) Hamiltonian . % C e
‘Bath = .
H B Hamiltonian of interaction . Enyirofnnen.t
Elimination of the environmental
degrees of freedomleads to (external or internal
degrees of freedom)

e Dissipation and
e Fluctuations

Note: Eliminationis,asarule, a challenge task and
It is often phenomenol ogi cal



J'\ Deterministic Chaos and Noise: Environment

Archetypical Example: Environment as a Collection of

Linear Oscillators

H=H.;+H;+Hg
B p . The system is .
Hs = %+V(q,t) a model of a particle in potential o 5
"Bath ° .
G)ZXr? The collection of Environment
n . . ° ° °
harmonic oscillators .

2 Linear coupling between system and
X 07D S i Y

= 2m,@. bath

n

Elimination leads to

oV
Mg+ 2yma+——=£(1)
o

Damping (dissipation)

Dissipation and Fluctuations
have the same origin

Fluctuations
noise




The simplification of dynamics: considering dynamics related to Large
Fluctuations

Different manifestations of fluctuations:

Diffusion in a vicinity of attractor Large fluctuations
. (deviations) from attractors




11_“;16 system desgribed by x=K(x,t)+Q¢§(1),
ngevin equations:
. (£.)=0,(£,(1¢,(9) =Q(t-9)

Transition probability via fluctuations paths

PX ¢t [ X, 1) = pIx(1);]=p[X(1)gy ]

The selection of the most probable (optimal) path

Path Xl




Deterministic chaos and noise: optimal path approach

d f fl

x = K(x,t)+&(1),
(&,)=0,(£,(1)&,(9)) = DQS(t -9)

The probability of fluctuational path p[x(t);] Is related to
the probability p[E(1);] of random force to have a realization &(t),

For Gaussian noise: p[&(t);]=C exp(—% jé;(t)fdt} =C exp(—% Sj

Since the exponential form, the most probable path has a minimal S=S

Changing to dynamical variables:

Actior S= S[&(t)] x=RE&D+50 . S=[x()]

E(t) = x—K(x,1)
Slx(t) o)
D

Inthelimit D—0, p(x;;x,)= p(x(t)opt ) = Const Xexp(—

Deterministic
minimization problem -

Suin = S (]= min [ dt (& ~ K(x, 1))’




Large fluctuations and Model reduction

The initial model: the Hamiltonian for
the system, the bath and coupling H — H S + H B + H R
In general case the dimension is infinite.

Langevin model reduction: finite x=K(x,t)+&(1),
dimensional system with noise terms, (&,)=0, <§a(t)§ 5 (s)> = DQJ(t —9)
The dimension 1s infinite

Large fluctuations reduction leads to a specific object: the optimal path
blution of boundary value problem of the finite dimensional Hamilton system

St ™ Sy = S (1)) = min [ dt( -K(x, O
e

_N@iS@ Formally the deterministic minimizatiot
problem can be formulated in the

Initial state: Hamiltonian form:
= _ . 1
q(ti) _Xi’p(ti)_()’ [ — —oo; H =5pr +pK(q,t);
Final state:
oH . _aH

a(t)=x,p(t;)=0, t e ATF0 P==7 8



Optimal path approach
inisti ern of fluc

L

The prehistory
probability of
transition
between states
of bistable
oscillator
(electronic
experiment)

Optimal paths are essentially deterministic trajectories



JQ Chaos and Noise: Quasi-hyperbolic Attractor

Lorenz system 0=10, b=8/3, r=24.08
q] =0 (q2 - ql ) T | [— """" 5 .rable pOiﬂfS

e

q2 — rq1 _ qz _ q1q3
G, = G0, —bg, ++/2D &(1)

Consider noise-induced
escape from the chaotic
attractor to the stable
point in the limit D — 0

The task is to
determine the most
probable (optimal)

escape path

10



A Chaos: Quasi-hyperbolic Attractor

Lorenz Attractor
~13.92 4 Homoclinic

The saddle point and its
separatrices belong to
chaotic attractor and
form “bad set” or non-
hyperbolic part of the
attractor

loop -> Horseshoe

/] o

10

20 Sepcm -_‘

20

i ~24.06

Loops between separatrices I, and [, and stable

manifolds of cycles L, and L, generate
The Lorenz attractor - quasi-hyperbolic attractor

q, 20




I._.j‘-f-.r“lal.'_F-.:f-TLTE i% Chaos :

Quasi-hyperbolic Attractor

Stable
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Large Fluctuations: the prehistory probability

The prehistory approach
x=K(x,t)+&(t),
(£,)=0.(&,(DEx(5)) = DQS(t -9)

1. Select the regime D — 0
i.e. rare large fluctuations

Lo <<t

vi

o

activ

2. Record all trajectories
x;(t) arrived to the final
state and build the
prehistory probability
density p,(x,t)

The maximum of the density
corresponds to the most
probable (optimal) path

3. Simultaneously noise
realizations £(t) are
collected and give us the
optimal fluctuational force 13

Prehistory Probability Density
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Chaos: Quasi-hyperbolic Attractor

The Poincaré sectiong; =1 - 1

2‘5 | I | 1 1 |
q2 144 o
_|_”
20k Separatrix I
15+ YChaotic _
Stable manifold of attractor

the saddle point

“0” Saddle cycle
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_in the tail (low
- probable part
of the densu‘ry)

12 9.6 9.7 9.8

a, N

D=0 Inthe absence of noise Noise does not change
significantly the
eeeee D=0.001 Inthe presence of noise propability density

Are noise-induced tail important?
15



The escape process is connected with
the non-hyperbolic structure of
attractor: stable and unstable
manifolds of the saddle point

Escape trajectories

W; is the stable manifold and
I', and T', are separatrices of the
saddle point O

L, and L, are saddle cycles

T, and T, are trajectories which
are tangent to Wy

Noise-induced tail

5
il =

10

107

-8 B
109.4 9.5

The distribution of escape
trajectories (exit distribution)

9.6




The optimal path and fluctuational force from analysis of fluctuations prehistory

Optimal force

(g3

. Op'hmalpath

10 i AR

s e e e
q, 120 20 -0 40 10 (

Three parts:
1) Deterministic part, the force equals to zero; The point A 1s the 1nitial state x;
2) Noise-assisted motion along stable and unstable manifolds of the saddle point

3) Slow diffusion to overcome the deterministic drift of unstable manifold of the
saddle cycle and cross the cycle



J\% Chaos and Noise: Non-hyperbolic Attractor

Non-autonomous nonlinear oscillator

§+Td+ oU (q,t) _ J2D&() The potential U(q)
1s monostable

U(q,t)——q +’Bq3+ q + ¢ hsin Qt

'=0.05 o, :O.597 ,3:7:1

The motion is underdamped

Chaos

h | Co-existence region
of two cycles i 2
0.5} )
4| of period 1

10

Co-existence
of two cycles
of period 2

1107%

0.02 0.06 0.1 0.14 0.18




A Chaos and Noise: Non-hyperbolic Attractor

The co-existence of chaotic attractor and the limit cycle

h=0.13 Q=095 1

Initial state: 9 g | Stable cycle ; g
y I R i B ey B S e B e -
q (tl ) =X, p(tl ) — 0, : 50dd|e CEYCIC E
t. — —oo;
Final state: The stable
cycle
q(tf )= 5 9p(tf )=0,
t; > o
CI ........
1
uClt
0 @ . .
-|1 -055 (Ill Ols 1
1- q
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0.4

-0.275

-0.95

D=0 D=5-10"°

0.4

494 Y e 1 -027s

-0.6

L L A _0.95 L L L A
-0.4 02 g o0 -0.6 -0.4 -0.2 g 0

A weak noise significantly changes the probability density
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A

The prehistory probability density p (q,q,t) D=5-10

There is a miximum in
the prehistory
probability density

15

B
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A Chaos and Noise: Non-hyperbolic Attractor

Escape trajectories follow a narrow tube

Q:Doany —
sets form the 2~ .. § :
escape path? g

q Saddle Cycle
To answer we \
take 1nitial N
conditions along ()«
the path and try to

localize any sets




A Chaos and Noise: Non-hyperbolic Attractor

Saddle cycles
formthe

escape path

ph (qat)

|
Saddle cycle of period 5

23



Escape trajectory is a heteroclinic trajectories connected saddle

cycles of Hamilton system.

]
H =5pr +pK(q,t);

_9H L __dH
E)p’ E)q’

Initial state: cycle S5
q(t)=x,p(t)=0, t ——o;
Final state: cycle UCI

q(tf):xf,p(tf):o, t, — oo,

0-




A

Summary

For a quasi-hyperbolic attractor, its non-hyperbolic part plays an essential
role in the escape process.

For a non-hyperbolic attractor, saddle cycles embedded in the attractor and
basin of attraction are important. Escape from a non-hyperbolic attractor
occurs in a sequence of jumps between saddle cycles.

For both types of chaotic attractor we can select specific sets which are
connected with Large Fluctuations and the most probable paths.

Thus the description of large fluctuations 1s reduced to specification of a
particular trajectory (the optimal path).
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