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Microscopic versus macroscopic modeling

Microscopic modeling

@ Example: particle model for the evolution of oe °® ® o
positions and velocities of particles o 0g® o @ @

o Detailed spatial /temporal behavior o ® e ® /

o Computationally expensive — limited to small ® 4 * ’ ®

spatio-temporal domains L I N o & ¢ ®
Macroscopic modeling
Example: PDE for density of particles

Only smooth averaged macroscopic behavior ARSI

04, \

Computationally more tractable

e ¢ ¢ ¢

Can be studied using standard numerical tools

Analytical coarse-graining

@ Micro-model — macro-model under certain simplifying assumptions
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Equation-free computing

Setting

@ Microscopic simulator available; we observe smooth macroscopic behavior. . .
@ ...but we fail to derive the macroscopic model (although it exists conceptually)

Equation-free computing (Kevrekidis et al, 2000—)

Microscopic

@ Perform macroscopic tasks anyway! pr—
; ; P bt
@ Main tool: the coarse time-stepper "

@ Approximate time integrator for
unavailable macroscopic model -
o Each step consists of 3 substeps: Macroscopic Macroscopio
1) Lifting: initialize micro-simulator
according to given macro-field
2) Micro-simulation over time At
3) Restriction: extract macro-fields

@ Relies on a separation of time-scales
o To increase efficiency: use as “input” for time-stepper based system-level tasks

(time-integration, bifurcation analysis, control,...)

oumsay

Lift

timg“stépper
tn ey ther
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Lifting: the hardest part

@ Appropriate initialization of the microscopic state (U, V'), according
to the macroscopic variable U (V: “higher order moments")

@ Nontrivial one-to-many mapping: U — (U, V)

@ If a macroscopic equation in terms of only U indeed exists, the
higher order moments V' quickly become functionals of U: slaving
relations V=F(U)

@ The slaving relations define a “slow manifold” in microscopic phase
space, on which the macroscopic dynamics take place

@ Fast attraction towards the manifold does not imply that the CTS
computes a correct macroscopic trajectory (U may change)!
@ Good lifting (close to the slow manifold) is important!

constantU____
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Goal of the talk

In this talk, we will study the numerical properties of different aspects of
equation-free computing when the microscopic simulator is a lattice
Boltzmann model

@ Good caricature of realistic multiscale problems

@ Simple enough to do some mathematical analysis (deterministic,
well-known theoretical multiscale expansion)
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@ The lattice Boltzmann model
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Model problem: 1D reaction-diffusion LBM

Available “microscopic” model: lattice Boltzmann model
@ Simplified kinetic model
@ Discrete in space x, time t and crudely discretized in velocity v
@ Tracks particle distribution functions f_1(x;, t«), fo(x;, t) and
fl(va tk)
@ Macroscopic density of particles: p = Z}:_l f;
@ LBM evolution law:

fi(x + vilt,te + At) — fi(x5, tx) =

— (g 8) — 300 1)) + A5 00, 8L~ Pl 1)

e

@ Diffusive BGK collisions: f;'s relax to local diffusive equilibrium
29 = p/3 with relaxation coefficient w € (0, 2)

@ Nonlinear reactions: depend on X\ and density p
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Lifting and restriction for the LBM

"]

1-to-1 correspondence between f_1, fy, f; and velocity moments of
the particle distribution functions

p= 2}771 f; (density)
qﬁ 2,7711 f; (momentum)
=33 117 fi (energy)
From Chapman-Enskog multiscale expansion, we can derive

©

1) Long-term behavior of LBM: Fisher equation
Op (2—-wAx 9p _ _
(2 At) D0 x—p) = U=pV=(60)
2) The slaving relations are
2 Jp 3 1 —20%
=——_"A A ==
¢ 3w dx x+O(AX), ¢ 377 823
Ideally, we would like to lift with these slaving relations

2L AR + Oo(ax*)

[

©

In practice: unavailable — numerical alternative: constrained runs

©

First however, we study the accuracy and the stability of the coarse
time-stepper when lifting with the slaving relations
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Lifting and restriction for the LBM

©

©

©

[

1-to-1 correspondence between f_1, fy, f; and velocity moments of
the particle distribution functions

p= Z,—_1 (density) Lift
¢ = Zi:—l i-f (momentum) p—— ) (macro)
€= %Z}=_1 i? - f; (energy) Restrict

From Chapman-Enskog multiscale expansion, we can derive
1) Long-term behavior of LBM: Fisher equation

2
@:(2 WAX)a +x0(1=p) = U=p V=(¢,8)

ot 3w At ) Ox?
2) The slaving relations are
2 0p 3 1 —20%
o= 3w8XAx+O(AX ) §f3p 18 282A +0(AxY

Ideally, we would like to lift with these slaving relations
In practice: unavailable — numerical alternative: constrained runs

First however, we study the accuracy and the stability of the coarse
time-stepper when lifting with the slaving relations
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The coarse time-stepper

Lifting with the slaving relations

Microscopic - Microscopic

Lift
104158y

Macroscopic Macroscopic
M )
/\ v acr};§f:oplc /\ 3
p time-stépper p

o Lifting: appropriate discretization of truncated slaving relations (up
to order p)
B(x,t) = Z;ozo bp(x, t)AXP = _33 Dl t)A + = _2w+2 7 p 5 t)A +.
603, 1) = Lo &olx, )AXP = Jp(x, ) = 537 P<“ Ax

@ Simulation: 1 LBM step

@ Restriction: return p
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Accuracy and stability of the coarse time-stepper

Ip(x,t)  0?p(x,t)
ot ox@
o CTS with p = 0: lifting with equilibrium distributions f; = £*/ = p/3
o puii=Apm with A=[... 0 1/3 1/3 1/3 0 ..]
= dp Ax* 9% __0Op w 9%

@ Truncation error: T(x,t) = Ty vE il e s

@ Unless if w = 1, the computed trajectory is the solution of modified
equation (diffusion with different D)

o Stability interval: w € (0, 2)
o CTSwithp=1

Pure diffusion with D = 1:

p(0,t) = p(1,t) = 0.

1-w 2w—1 l-—w
A=[... 0 — 1/3 1/3 0...
’ | bw / 2 / 5 v L 4
. = 19 10% , o 1 0% Ax
¢ Truncation error: T(x,t) = E@At_gwa +EW At

o First-order accurate in time and second-order accurate in space if
At = O(Ax?) (diffusive scaling)

o Stability interval: w € (0.349,2)
o CTS with p=2:
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Comparison to traditional explicit FD scheme for PDE

Traditional explicit FD: pj’.""1 =p]+ D% (pj’-’+1 —2p] + pJ’-’_l)

o FD for PDE:
10% 1 9%

T ti P T(x,t) = - a0 At — = 0 AX
o Truncation error: T(x,t) 5 g t- 15 E Ax

o Stability interval: At < 0.5Ax?

o CTS with p=1:

= 16%

4
o Truncation error: T(x,t) = 10%

1 0% Ax*
SOPAr - 2O PpRL 0P
200" 30 T2 9 Ar
o Stability interval: w € (0.349,2) < At < 1.577Ax?
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The influence of increasing the number of LBM steps M

@ Larger M: allows off-manifold initial condition to get attracted to
the slow manifold (fast process) — improve accuracy

@ Density may change: not necessarily the correct trajectory on the SM
CTS with p=0
@ Truncation error:
= op 2 w-1 v\ %0
T(x,t)=22 (1 77(_1 1- ) il
(1) = 5 < T M ow=2) 2rA-w) >3x2
—

fast
slow

@ The accuracy improves when M is increased

@ M should be very large to obtain accurate results! Efficiency?!

CTS with p=1
o Stability interval (wmin, 2):
M=1 M=2 M=3 M=4 M=5 M=6 M=8 M=10
Wmin | 0.349 0.310 0.311 0.268 0.231 0.227 0.198 0.177

@ The stability improves when M is increased
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© The class of constrained runs schemes
@ The functional iteration



The class of constrained runs schemes
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Constrained runs [Gear & Kevrekidis (2005)]: basic idea

@ Goal: find V corresponding to U such that (U, V) is close to the
slow manifold, without using the slaving relations
m+1
4

@ Class of CR schemes; m-th scheme computes V so that ———— =0
dtm+1

o (U, V) is then m-th order approximation of the desired state on the
slow manifold [Gear, Kaper, Kevrekidis, Zagaris (2005)]
: . : : %
@ Only microscopic simulator available — approximate Tt
@ Solve the resulting forward difference equation with functional
iteration — constrained runs functional iteration
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Constrained runs functional iteration: interpretation

@ When m = 0, the scheme repeatedly

@ integrates over a short time interval
o resets U (in order to “constrain” the macroscopic variable)

@ In general: V is updated using an m-th degree interpolant for V

m=20 m=1
A A

\4
\ 4

Uo u Uo u



The class of constrained runs schemes
[elele] le]

Analysis (accuracy/convergence) of constrained runs Fl

@ For slow-fast systems: [Gear, Kaper, Kevrekidis, Zagaris (2005)]
o For 1D-RD-LBM (m = 0): [Van Leemput, Vanroose, Roose (2005)]

o Constrained runs Fl is stable for all w € (0, 2)

o Converges to a good approximation (O(1) and O(Ax) terms of the
slaving relations are correct)

o Asymptotic convergence factor |1 — w| (again!)
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Constrained runs Fl for the LBM (m > 0)

@ For the LBM (X = 0): accuracy increases as m increases

[lerror]],

25 3 35 4

0 0.5 1 15 2
m

@ Compare to an “exact” slaved state from long LBM simulation

o m=1: 2 extra terms of the slaving relations correct (up to O(Ax%))
@ If m > 0, the fixed point iteration may however be unstable
@ For the LBM (A = 0): stability interval (Wmin, Wmax)

m 0 1 2 3 4
Wmin | 0.000 0.690 0.865 0.929 0.959
wmax(!) | 2.000 1.291 1.133 1.072 1.043
— arbitrary slow convergence or divergence
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[lerror||,

0 05 1 15 2 25 3 35 4
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o Compare to an “exact” slaved state from long LBM simulation
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9 Stabilization with a Newton-Krylov method
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Newton-Krylov constrained runs: basic idea

@ Replace functional iteration with Newton-Krylov solver
o Fl: VK1 =¢C(U; VK) (U parameter, V unknown)
@ Solve g(U; V) := V —C(U; V) = 0 with Newton's method:
Vg1 = Vi + 0 Vi
28 (U; Vi) - Vi = (I — 8S(U; Vi) - Vi = —g(U; Vi)
@ Only microscopic simulator available — linearization of g or C not
available

@ Estimate matrix-vector product

(/ _ 8C(U Vk)) SV~ 5V — CLUNiedVi)—C(UiVi)

€

with
e = Ve Vill/[I0Vill if Vi #0, Vi #0

@ Matvec available — solve linear subsystems with Krylov method
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[llustration of the Newton iteration

flerrorl,

Hres\dua\l\2 and \lermr\l2

0 1 2 6 7 8 0 1 2 6 7 8

3 4 5 3 4 5
Newton iteration number Newton iteration number

©

Left: norm of nonlinear residual / error (again: compare to “exact”
slaved state from a long LBM simulation)

m = 3,w = 1.25 (FI unstable!), A = 0 (linear) or 1000 (nonlinear)

A = 0: 2 Newton steps required (accuracy matvec: 1078)

©

©

[

A = 1000: small number of steps if irregular initial guess (quadratic
convergence)

[

Right: norm of error when A = 1000, zero initial guess, various m.
Only 2 or 3 steps needed. If m < 3: error levels off earlier.
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Solving the linear subsystems Ax = b with GMRES

@ GMRES: approximates x* = A~1b by x, € K, = (b, Ab, ..., A" 1b)
such that ||ry]|2 = ||b — AXpl||2 is minimized — optimal use of

expensive matvecs

o LBM, m=0: ||r||2 < K|1 —w|™; cf. rate |1 — w| for FI (again!)

o LBM, m > 0: Fl unstable if w % 1 (eigenvalues 9C/0V outside unit
disk) — may also cause slow GMRES convergence (A= 1—9C/0V)

@ Using very irregular initial guess (for worst-case behavior):

m=0

m=1
— =025 ) —w=025
N — =05 || 10 R***Q:OS ]
\ ---w=075 R - - w=075
* - - w=09 Y A ©=0.9
='10° \ \ =10°F
< < =
E E
3 \ = N
¢ NN ¢ v
£ \ " g N
107 N R 1079} \
\ \
NN .
A . N
. ol 1
0 20 40 0 80 100 0 50 200 250
GMRES iteration number

o (Much) faster convergence if zero initial guess

1 50
GMRES iteration number
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Preconditioning the GMRES iteration (for LBM)

@ Additional acceleration possible by incorporating a preconditioner
@ We use a coarse grid correction preconditioner [Padiy, Axelsson,
Polman (2000)]: M~ = PN, AZTRY/" + i
¢ P and R: traditional prolongation and restriction from multigrid

o AZ!: (in)exact coarse system solve using an inner GMRES
@ nl: tuning parameter times the identity matrix

@ Inexact inner GMRES — variable precond. — flexible outer GMRES
o LBM example: m=0, w=1n=0.1, A€ R?6x256 A_c R128x128

1
10°
0.5
= 0%
g 10 =
1 g o
2 E
o
= 10" .
exact \\ 2 inner N BN 05
coarse GMRES \ no coarse
system sweeps 1 system solve
10"} solve P
A . A . A 1
0 50 100 150 200 250 0 0.5 15 2

1
Outer GMRES iteration number Re(A)
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© The class of constrained runs schemes

@ Comparison: FI versus NK
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Comparison: Fl versus NK

w Fl NK Precond. NK
0.1 oo (00) 1.9e-02 (518) [ 1.9e-02 (266)
0.2 0o (00) 1.2e-03 (492) 1.2e-03 (120)
0.3 0o (00) 1.3e-04 (468) 1.3e-04 (64)
0.4 0o (00) 5.9e-05 (308) 5.9e-05 (40
0.5 0o (00) 2.6e-05 (132) 2.6e-05 (30
0.6 0o (00) 1.2e-05 (64) 1.2e-05 (24

)
)
0.7 | 5.86-06 (56) | 5.8e-06 (36) | 5.8e-06 (18)
0.8 | 3.0e-06 (38) | 3.0e-06 (20) | 3.0e-06 (16)
0.0 | 1.6e-06 (24) | 1.6e-06 (14) | 1.6e-06 (14)
)
)
)
)
)

1.0 | 80e07 (4) | 8.9e07 (8) | 8.9e-07 (10

11 | 5.0e07 (26) | 5.0e07 (14) | 5.0e07 (16

(
12 | 2.8e-07 (50) | 2.8e-07 (16) | 2.8e-07 (20
13 50 (o0) 16e-07 (16) | 3.8e-07 (42
14 oo (0) 9.1e-08 (18) | 1.2e-07 (72
15 oo (9) T.1e-07 (152) | 1.6e-07 (180)

©

LBM, 128 spatial grid points, w variable, A\ = 100, m = 1, to/ = 1078
Accuracy (compared to m = 4 solution) and efficiency (# LBM
calls; 2 per GMRES iteration)

©

@ Fl: can only be used in a limited range of w-values
@ NK: can always be used
o After convergence, the accuracy is the same (same fixed point)
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Comparison: Fl versus NK

w Fl NK Precond. NK
0.1 50 (o9) 1.0e:02 (518) | 1.9e-02 (266)
0.2 50 (o0) 1.0¢-:03 (492) | 1.2e-03 (120)
03 50 (o0) 1.3c.04 (468) | 1.3e-04 (64)
04 o0 (0) 5.0¢-05 (308) | 5.9e-05 (40
0.5 oo (o0) 2.6e-05 (132) 2.6e-05 (30
0.6 oo (00) 1.2e-05 (64) 1.2e-05 (24

)
)
0.7 | 5.8¢-06 (56) | 5.8e-06 (36) | 5.8-06 (18)
0.8 | 3.0e-06 (38) | 3.0e-06 (20) | 3.0e-06 (16)
0.0 | 1.6e-06 (24) | 1.6e-06 (14) | 1.6e-06 (14)
)
)
)
)
)

10 | 8.9¢-07 (4) 8.0e-07 (8) 8.0e-07 (10

T1 | 50e07 (26) | 5.0e07 (14) | 5.0e07 (16
T2 | 2.8e-07 (50) | 2.8e-07 (16) | 2.8e-07 (20
(
(

1.3 oo (00) 1.6e-07 (16) 3.8e-07 (42
1.4 oo (00) 9.1e-08 (18) 1.2e-07 (72
15 o0 (o0) 1.1e07 (152) | L.6e.07 (180)

¢

NK is more efficient, even without preconditioning
Only near w = 0, NK becomes very expensive (oversolving!)
There the preconditioner may keep the cost acceptable

® ¢

©

Much larger preconditioning gain when finer LBM discretization
Coarse time integration: lifting may become (much) cheaper (p
smoother — residual smoother — faster convergence!)

¢



Analysis of the CTS (II)

Outline

@ Accuracy and stability of the coarse time-stepper (I1)



The coarse time-stepper

Lifting with constrained runs

Lift

Analysis of the CTS (II)
@00

Microscopic

NE

Microscopic

Bk

p”

.
2

Macroscopic

-

p

Macrgstopic
timg-stépper

Macroscopic

/p\

10U188Y

o Lifting: K steps of the constrained runs functional iteration (m = 0)

o Simulation: 1 LBM step

@ Restriction: return p
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Accuracy and stability of the coarse time-stepper

Ip(x, t)  &p(x,t)
at  ox2

Pure diffusion with D = 1: p(0,t) = p(1,t) =0.

CTS with K steps of the constrained runs functional iteration (m = 0)

— o — 24 92(1 — WKL\ H2
@ Truncation error: T(x,t) = 5? — (w +2( 5 w) ) Tg
w— X

¢ Small K: again solution of diffusion equation with different D
o As K grows: fast linear convergence D — 1, rate |1 — w| (again!)
@ Truncation error if K = oo:

o*p

2 2

2 0t? 6 12 Ax?
@ Stability interval:

K=0 K=1 K=2 K=4 K=6 K=8 K=25 K=100 K=o0
Wmin | 0.000 0.500 0.352 0.305 0.253 0.217 0.107 0.038 0.000
wmax | 2.000 1.250 1.201 1.200 1.200 1.200  1.200 1.200 1.200

o Now unstable if w > 1.2 (if At is too small!)
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The influence of increasing the number of LBM steps M

CTS with constrained runs lifting until convergence:
@ Accuracy gets better
@ Stability interval (0, wmax):

M=1 M=2 M=3 M=4 M=5 M=6 M=8 M=10

Wmax | 1.200 1500 1.500 1500 1.858 1583 1.708 1.814

@ The stability improves when M is increased (not monotonically)
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Conclusions

We studied the numerical properties of different aspects of equation-free
computing when the microscopic simulator is a lattice Boltzmann model

@ For time-dependent problems, sufficiently accurate lifting is crucial
to obtain a coarse time-stepper that mimics the macroscopic system

o Constrained runs numerically implements such a good lifting

o if m increases: lifting more accurate but numerics less stable
@ can be stabilized with a (preconditioned) Newton-Krylov solver

@ Even if the lifting is sufficiently accurate, the coarse time-stepper
may be unstable for sometimes surprising parameter values.
Increasing the coarse time step may help
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