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A number of new layer methods for solving the Neumann problem for semilinear parabolic
equations are constructed by using probabilistic representations of their solutions. The
methods exploit the ideas of weak-sense numerical integration of stochastic differential
equations in a bounded domain. In spite of the probabilistic nature these methods are
nevertheless deterministic. Some convergence theorems are proved. Numerical tests on
the Burgers equation are presented.
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1. Introduction

A probabilistic approach to constructing layer methods for solving nonlinear partial
differential equations (PDESs) of parabolic type is proposed in Milstein (1997), Milstein
& Tretyakov (2000a) and Milstein & Tretyakov (2001). The papers Milstein (1997) and
Milstein & Tretyakov (2000a) are devoted to layer approximation methods for the Cauchy
problem for semilinear parabolic equations and the paper Milstein & Tretyakov (2001)
deals with the nonlinear Dirichlet problem. The aim of the present paper is to develop such
methods for nonlinear problems with Neumann boundary conditions.

Let G be a bounded domain iRY, Q = [to, T) x G be a cylinder inR4*tL, " =
Q \ Q. The setl" is a part of the boundary of the cylind€ consisting of the upper
base and the lateral surface. Consider the Neumann problem for the semilinear parabolic
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equation
au 13 9u d . au
— 4+ = allt " b'(t — t =0, (t
o +2in::1 (6% W) +i; t X Wor + 9t xw =0, (X eQ,
(1.1)
with the initial condition
u(T, x) = @(x) (1.2)
and the boundary condition
au
P Y, x,u), tefto, T], x € 3G, (1.3)
Y

wherev is the direction of the internal normal to the bounda@y at the pointx € 9G.

The form of (1.1) is relevant to a probabilistic approach, i.e. the equation is considered
undert < T, and the ‘initial’ condition is prescribed at= T. Using the well known
probabilistic representation of the solution to (1.1)—(1.3) (see Gichman & Skorochod
(1972), Freidlin (1985)), we get

u(t, x) = E(p(Xt,x(T)) + Zt,x,0(T)), (1.4)

whereX; x(S), Zixz(8), o<t <T,s>t, xe G, is asolution of the Cauchy problem
to the Ito system of stochastic differential equations (SDES)

dX =h(s, X, u(s, X)) Ig(X)ds+ a (s, X, u(s, X)) lg(X)dw(s)
+v(X) e (X)du(s), X(t) = x,
dZ = g(s, X, u(s, X)) Ig(X)ds + (s, X, u(s, X))y (X)du(s), Z(t) =z (1.5)

Here w(s) = (w(s),...,w%(s)T is a standard Wiener procesb(s, x,u) =
(bl(s, x,u), ..., bd(s, x,u)) T is a column vector, the matrix = o (s, X, U) is obtained
from the equation

oo =a, o ={o'l(s,x,u)}, a={alsx, Wi, j=1,....d,
u(s) is a local time of the process ondG, and | A(x) is the indicator of a seh.

We recall that the local time is a continuous, nondecreasing random process which
increases only on the st > tg, X, x(t) € dG}. The Lebesgue measure of this set is
zero. A tutorial on processes with reflection is available in, for example, Freidlin (1985,
Section 1.6).

Introduce a time discretization, for definiteness the equidistant one:

T—1o

T=ty>tno1>--->1g, h:= N

The methods pr(ﬂ)osed here give an approximafi@g, x) of th_e solutionu(tk, X),
k=N,...,0, x € G, ie. step by step everywhere in the dom&@nThey exploit the
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ideas of weak-sense numerical integration of SDEs in a bounded domain from Milstein
(1995b, 1996). As a result, we exprasdy, x) recurrently in terms ofi(tx;1, X), k =

N —-1,...,0, i.e. we construct some layer methods which are discrete in the vatiable
only. In spite of their probabilistic nature these methods are nevertheless deterministic.

Let us note that finite-difference methods also express an approximate solution on the
layert = tx recurrently in terms of the solution on the layet tx 1. For their construction,
both the time stepAt and the space stefpx are used. Moreover, the knots of the layer
t = tx;1 used to evaluate(ty, xj) are definitely prescribed. In our methods we use the time
steph only, and the points from the layer= ty1 to evaluatdi(ty, X) arise automatically.

A location of these points depends on the coefficients of the problem considered and
on the weak scheme chosen. As a result, the probabilistic approach takes into account a
coefficient dependence on the space variables and a relationship between diffusion and
advection in an intrinsic manner. In particular, it was demonstrated in numerical tests (see
Milstein & Tretyakov (2001) and Section 7.2 of this paper) that layer methods may be
preferable to finite-difference ones in the case of strong advection. We should also note
that the probabilistic approach gives a natural way to derive many various new methods.

In Section 2, two layer methods for the nonlinear Neumann problem are constructed.
Using probabilistic-type arguments, a convergence theorem is proved in Section 3. To
realize a layer method in practice, a discretization in the variahigth interpolation at
ewvery step is needed to turn the method into an algorithm. Such numerical algorithms are
given in Section 4. A majority of ideas can be demonstrated at 1, and we restrict
ourselves to this case in Sections 2—4. The ahse 2 is discussed in Section 5. Two
additional layer methods are proposed in Section 6. Numerical tests are presented in the
last section. Their results are in complete agreement with theoretical ones.

Traditional numerical analysis of nonlinear PDEs is available, for example in
Quarteroni & Valli (1994), Samarskii (1977), Strikwerda (1989) and Vreugdenhil &
Koren (1993). The probabilistic approach to boundary value problems for linear parabolic
equations is treated in Milstein (1995a,b, 1996) and Costastirdl. (1998). Other
probabilistic approaches are considered in Kushner (1977) and Talay & Tubaro (1996).

2. Construction of layer methods

The Neumann boundary value problem in the one-dimensional case has the form

8u+1 2(txu)82u+b(txu)au+ t,x,uy=0, to<t<T X < B
- - _ —_— = S < . < < p,
8t 20 9 9 8X2 9 9 aX g 9 9 k) O a
2.1)
U(T, x) = @(X), o <X < B; (2.2)
au ou
&(t, a) = Yu(t, u(t, o)), &(t, B) = Ya(t,ut, B), o <t < T. (2.3)

In this caseQ is a partly open rectangl€ = [to, T) x («, B8), and " consists of the
upper bas€T} x [«, 8] and two vertical intervalsito, T) x {a} and(to, T) x {8}. We
assume thad (t, x, u) > o, > 0for (t,x) € Q, —oco0 < U < o0.
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Letu = u(t, x) be a solution to the problem (2.1)—(2.3) which is supposed to exist, to
be unique, and to be sufficiently smooth. Theoretical results on this topic are available in
Ladyzhenskayat al. (1988) and Taylor (1996) (see also references therein).

Analogously to (1.4), we have the local representation

U(tk, X) = E(U(tkr1, Xeex (ter1) + Zo.x,0(tkr1)), (2.4)

whereX; x(S), Ztx.z(8), o<t < T, s>1t, X € [a, B], satisfy (1.5).
Applying a slightly modified weak scheme with one-step boundary orde?/€) from
Milstein (1995b, 1996) to system (1.5), it is not difficult to obtain

X x (tr1) = Xy x(ter1) = X + hbg + hY/25,&,
Zy x,2(t1) = Zy x,2(ter1) = 2+ hge, if x + hbe £ hY%6, € [a, B;

X x (1) = X + (@ — X) +1/héZ + (@ — x)2,
Zy x,2(t1) = Z+ hdk — Y (t, Ui, @) - (@ — X — b +1/h62 + (@ — x)2),

if x4+ hbx — Y25 < a;

Xiex (tkt1) = X + (B — X) —/h6Z + (B — x)2,
Ziy x,2(tr1) = Z 4 hdk — Ya(t, U(t, ) - (B — X — hbk — \/h62 + (B — x)2),

if x + hbx + h'/25, > B. (2.5)

Hereby, 6y, Ok are the coefficientb(t, x, u), o (t, X, u), g(t, X, u) calculated at the point
(tk, X, U(tk, X)) andén_1, En—2, ... , & are i.i.d. random variables with the laR(& =
+1) =1/2.

One can see that using approximation (2.5) and representation (2.4), we get an implicit
one-step approximation fau(tk, x). Applying the method of simple iteration to this
implicit approximation withu(tx+1, X) as a null iteration, we come to the explicit one-step
approximatiorw(tk, x) of u(t, X):

V(tk, X) = 2U(tir1, X + hbe — hY201) + Ju(tis 1, x + hbe + h201) + hg,

if x + hby & h'20y € [a, B;

V(tk, X) = U(tkr1. @ + \/hof + (@ — X)?)
—¥1(tkt1, Uttt 1, @) - (@ — X — hby +y/ho? + (@ — x)2) + hg,

if x + hb, —hY20, < a;

v(t, X) = U(tks1, B — /o + (B — x)?)
—Y2(tks1, U(tkg1, B)) - (B — X — hbx — y/hoi? + (B — X)?) + hg,

if X+hbk~|—h1/26k>/3;
k=N-1,...,1,0, (2.6)

whereby, oy, gk are the coefficients, o, g calculated at the poirtk, X, u(t+1, X)). Let us
observe that within the limits of the considered accuracy it is possible taakestead of
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tk. Thatis why one can take, for instangg,(tx+-1, U(tk+1, @)) instead ofirq (tk, U(tk+1, @))
in (2.6).

The corresponding explicit layer method for solving the Neumann problem (2.1)—(2.3)
has the form

U(tn, X) = ¢(tn, X), X € [a, B,
0t X) = 30(tkg, X + hbg — hY25) + 2a(ter1, X + hb + hY26y) + hag,
if x + hbx &+ h'/25y € [«, B

(tk, X) = Uttt o +/hG2 + (@ — x)2)
—¥1(tkt1, Ultkga, @) - (@ — X — hb + /G2 + (@ — X)2) + hgk,

if x4+ hbx — hY%5 < a;

U(tc, X) = Utr1, B — /N2 + (B — X)?)
—Ya(tir1, Ultkr1, B)) - (B — X — hbg — \/ha2 + (B — X)?) + hak,

if x + hbx + h'/25, > B;
k=N-1,...,1,0, (2.7)

wherebx = bk(x) = b(tk, X, U(tks1, X)), 0k = 0k(X) = o (I, X, U(tk+1, X)), Gk = Gk (X)
= g(tk, X, U(tkt1, X)).

This layer method has the one-step error near the boundary estimate¢h{?)O
and for internal points estimated by(l¥) (see Lemma 3.1). We prove that its order of
convergence is M) when the boundary condition does not depend on the solution (see
Theorem 3.1). Apparently, this is so in the general case as well (see Remark 3.1).

Another method with the same one-step error is given in Section 6.

Applying the weak scheme with one-step boundary ordgr) @om Milstein (1995b,
1996) to system (1.5), it is not difficult to obtain

X x (tkr1) = Xy x(ter1) = X + hbg + h/26 &,
Zyex.2(ter1) = Zy x,z(tks1) = Z+ W@k, if X + hby = hY25 € [a, B1;
Xiex (tr1) = X +ahY2, Zy y 7(tes1) = 2 — Y (b, u(ty, @))gh®’?,
if x + hbx — hY26y < a;
Xiex (tea1) = X — qhY2, Zy x 2(ter1) = 2+ a(ti, u(te, B))ah*2,
if x + hbx + h'%5 > B. (2.8)

Hereby, 6k, Gk are the coefficientb(t, x, u), o (t, X, u), g(t, x, u) calculated at the point
(tk, X, u(tk, X)), En—1, EN—2, ... , Eg arei.i.d. random variables with the la\(& = +1) =
1/2, andq is a positive humber (see Remark 3.2, where a discussion on chapsing
given). As before, we obtain the following explicit one-step approximatidg, x) of
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u(ty, X):
v(ty, X) = %u(tk+1, X 4+ hbx — h¥?6y) + %U(tk_;,_l, X 4+ hbx + h¥?sy) + ho,
if x + hbx = h'20 € [a, BI;
(tk, X) = U(tky1, X + ghY?) — Y1 (tert, Uter, @))ghY2, if x + hbe — hY20y < a;
v(tk, X) = Uty X — AhY?) + Yot 1, Ultkra, B2, if x + hb + h 20y > B;
k=N-1,...,10. (2.9)
The corresponding explicit layer method for solving the Neumann problem (2.1)—(2.3)
has the form
U(tn, X) = (N, X), X € [a, B],
(t, X) = SU(tkg1, X + b — Y250 + 2h(ter1, x + hb + hY26y) + hgy,
if x + hbe £ h'%5y € [, B1;
0(t, X) = Utk X +h"2) = Ya (s, Gltkra, @))gh™2, if x 4 hbe — W26y < o
G(te, X) = Uty X — GhY2) + Ya(tieps, U(tkr, B))ghY?, if x + hby + Y26 > B;
k=N-1,...,10, (2.10)
whereby = bx(x) = b(tk, X, G(tk+1, X)), 3k = k(X) = o (t, X, Utkt1, X)), Gk = Gk(X)
= g(t, X, U(tk+1, X)).
This layer method is simpler but less accurate than (2.7). Its one-step error near the

boundary is @h) and for internal points is ®?) (see Lemma 3.3). We prove that its order
of convergence is M'/2) when the boundary condition does not depend on the solution
(see Theorem 3.2). Apparently, this is so in the general case as well.

A method of the same convergence order is proposed for the linear Neumann problem
in Costantiniet al. (1998). This method is extended to the nonlinear problem in Section 6.

3. Convergencetheorems

We make the following assumptions.
(i) There exists a unique solutiart, x) of the problem (2.1)—(2.3) such that

—00 < U < Uy UL, X) KU  <U <00, tg<t LT, X€[a, B, (3.1)
whereu., u,, U*, U° are some constants, and there exist the uniformly bounded derivatives:

——1<K,i=0j]=1234i=1 =012 1=2, j=0;
ot'ox!

to<t<T, X€la,pBl (3.2)
(i) The coefficientsb(t, x, u), o(t, x,u), g(t, x,u) are uniformly bounded and
uniformly satisfy the Lipschitz condition with respectt@andu:
bl <K, lo| <K, |g| <K,
< K (X2 = xa| + |uz — u1]),
to<t<T, Xxela,B], Uo < U< U°. (3.3)
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Below we use the letterk andC without any index for various constants which do
not depend om, k, X.
Let us evaluate the one-step ergdiy, X) of method (2.7).

LEMMA 3.1 Under assumptions (i) and (ii), the one-step epr@k, X) of method (2.7) is
estimated as

p(t, X)| = |v(tk, X) — U(tk, X)| < Ch?, x + hby & hY20y € [a, BI; (3.4)

Lo (te, X)| = Jv(ty, X) — U(ti, X)] < Ch¥?, x + hbx — h'?0y < « or x + hby
+ h¥20, > B, (3.5)

wherev(tk, X) is the corresponding one-step approximation, @rabes not depend dm,
K, X.

Proof. If both the pointsx 4+ hby & h1/20y belong to[«, B], we have
V(tk, X) = SU(tr1, X + hbe — hY201) + 2u(tiss, X + hbe + hY20) + hge.  (3.6)

Expanding the terms of (3.6) at the poiftit, x) and taking into account thai(t, x) is
the solution of problem (2.1)-(2.3), we get (3.4) (see also Milstein (1997), Milstein &
Tretyakov (2000a), where similar assertions are proved in detail).

Let us consider the case when the point hb, — h'/20y < «. Due to (2.6), we get

v(tk, X) = U(tkr1, X + AXY) — Y1(ter1, Utk @) - (AX® —hby) + hge,  (3.7)

where

AXY ::a—x+,/h0k2+(a—x)2.

Itis clear that
la — x| < ChY2, |AX*| < ChY/2, (3.8)

Taking into account thai1 (tk+1, U(tk1, ) = Ui (tkr1, @) (See (2.3)), then expanding
the functionsu(tk1, X + AX*) anduy (tk+1, X + (¢ — X)) at the point(tg, X), and using
assumptions (i), (ii), and inequalities (3.8), we get

ou au 192U
t, X) =U+ —h+ —AXY + = —— (AX%)2
V(i X) = Ut Zrh o A+ o e (4%
O (AX, = hb ) 82”( X) AXY 4 gch 4+ O(h¥?)
X o k 2 o Ok

—uth( MY g +
= ot T kg T

192u

5 2 AX(AXY = 2 =) + O(h*/%), (3.9)

where the functiom and its derivatives are calculated at the patpi x). The expression
AX*(AX® — 2(a — X)) is equal toha .
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Due to assumptions (i) and (ii), we obtain
bk = b(tk, X, U(tk11, X)) = bk + O(h), of = &7 + O(h), gk = Gk + O(h),

whereby, &y, Gk are calculated at the poirt, x, u(tg, X)).
Then we get from (3.9):

au au o029
= h(—+b— + —— h%/2). 1
v(tk, X) = U+ <8t+b8x+ 23X2+g>+0( ) (3.10)

Sinceu(t, x) is the solution of problem (2.1)—(2.3), the relation (3.10) implies
v(t, X) = U(tk, X) + O(h¥/?).
The casex + hby + h'26y > B can be considered analogously. O

To prove the theorem on global convergence for method (2.7), we need some auxiliary
constructions. Let us introduce the random sequetice; :

Xk =X, Zx =0,
Xit1= Xi +hby + h/26i&, Zij1=Z +hg,
if X; + hb; £ h'%5; € [a, B];
Xip1=Xi + AXY, Zij1=Z +h§ — y1tit1) - (AXT — hby),

AXY = (o — Xi) +/h&2 + (@ — Xi)2,

if Xi +hbi —hY26; < «a;
Xit1= X + AXiﬂ, Zit1 = Zj + hGi — ¥2(tita) - (Axiﬂ — hb),

AXP = (B — X)) — JhZ+ (B — X)?,
if X; + hb; +h'%5 > B;
i=k..,N—1 k>0 (3.11)

Here & are iid. random variables with the laR(¢ = +1) = 5 andb =
bi (Xi) = b(ti, Xj, G(ti+1, X)), 6i = 6i(Xj) = o(tj, Xi, U(tiy1, Xi)), § = G(Xj) =
g(ti, X, G(ti+1, Xj)). Let us note that the functiom(tj, x),i = 0, ..., N, x € [«, 8], is
uniquely defined by (2.7). Evidently, the sequelizeX;) is a Markov chain.

Introduce the boundary lay@” e Q: for all the points(tx, X) € Q \ a1, both the
pointsx + hbk(x) £+ h1/25y(x) belong to[w, A1, and for the pointsty, x) € 31", either
X + hbg(x) — h26,(x) ¢ [a, B] or X 4+ hbk(X) + hY/26y(x) ¢ [«, B].

LEMMA 3.2 Under assumptions (i) and (ii), the mean number of stgpgs x), which the
Markov chain(tj, Xj),i =Kk, ..., N,k > 0, Xx = x, spends in the layetI’, is estimated
as

Ex(tx, X) <

’

Elk

whereC does not depend dm Kk, x.
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The proof of Lemma 3.2 differs only little from the proof of the corresponding lemma
on the mean number of steps in the case of the linear Neumann problem given in Milstein
(1996) and is therefore omitted.

THEOREM 3.1 Letthe Neumann problem for (2.1) with condition (2.2) have the following
boundary conditions:

d d
%(t, &) = Y1 (b), %(t, B) = valt), to <t <T. (3.12)

Under assumptions (i) and (ii), the method (2.7) has the first order of convergence with
respect tdh, i.e.

|U(tk, X) — u(t, X)| < Kh,
whereK does not depend dm Kk, Xx.

Proof. Here we exploit ideas of proving convergence theorems for probabilistic methods
from Milstein (1995a,b, 1996); Milstein & Tretyakov (2001).

Let Xi, Zj,i =k,...,N, Xk = X, Zx = 0, be the sequence defined by (3.11). Itis
clear that

U(t, X) = E[U(tn, XN) + ZN] = Ee(tn, XN) + Zn] = E[u(tn, Xn) + ZN] .
Introduce the notatioRR(tk, X) := G(tk, X) — u(tk, X). Then we get
R(tk, X) = E[u(tn, Xn) + Zn] — u(tk, X)

1
E [utiy1. Xit1) —uti, Xi) + Zi11 — Zi]

I
z
[

I
=~

N-1
= Z Elgur i, Xi) [utita, Xit1) —uti, Xi) + Zit1 — Zi]

i—k

N—-1
+ ) Elyrti, Xi) [uttiy1, Xiz1) — ucti, Xi) + Ziy1 — Zi]. (3.13)

=~

Denote the first sum in the right-hand side of (3.13)RY (tx, X) and the second one
by R® (t, X).

Below we use the known properties of conditional expectations taking into account that
the indicator functionsg, , - andl, » are measurable with respectXp. We have

N-1

RP(t, x) = Y Elgyyrti, Xi) [Uttiya, Xiyn) —utt, Xi) + Zija— Z]  (3.14)
i=k

N-1

= E(lguor®, XDE(ti11, Xit) —ut, Xi) + Zit1 — Zi /X, Zi]).
i=k
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To calculate the conditional expectation in (3.14), we exploit a lemma from Gichman &
Skorochod (1972, Section 10). The lemma allows us to evaluate a conditional expectation
as the ordinary expectation under fixed values of the random varixb)&% . According
to (3.11), we obtain fott;, Xj) € Q\ aI":
A == E[u(tiz1, Xigy) —uti, Xi) + Ziy1 — Zi / Xi. Zi]
= 3u(ti+1, Xi +hb —h"25) + Ju(tis1, Xi +hb +h"%5) +hg.  (3.15)

Expanding the functions(t; 11, X; + hby & h'/25,) at the point(t;, X;), we get

U(ti+1, Xi + hi ihl/z&) = ut, Xi) + —h+ (hb; + hl/z“.)—
5292
U 3%u o a3u
+232 |0| I3t8x 683 + O(h?) ( )

where the derivatives are calculated at the pdintX;).

Here we have to assume for a while that the val(tg, 1, X) + R(tj 11, X) for X € [«, 8]
remains in the intervalu., u®) for a sufficiently smallh (see conditions (ii)). Clearly,
R(tn, X) = 0, and below we prove recurrently thRtt;, x) is sufficiently small under a
sufficiently smallh. Thereupon, thanks to (3.1), this assumption will be justified for such
h.

Then due to assumptions (i) and (ii), we obtain

bi (X) = b(ti, X, G(ti 41, X)) = b(ti, X, U(ti11, X) + R(ti11, X))
= b(ti, X, U(ti+1, X)) + Ab(ti 41, X) = b(ti, X, u(ti, X)) + Ab(ti 41, X) + O(h)
= b (X) + Ab; (x) + O(h), (3.17)
whereAb; (x) := Ab(tjy1, X),
| Abi (¥)] < K[R(ti+1, X)[, [O(h)| < Kh
Analogously
52(x) = o (X) + Ao (x) + O(h), G (X) = g (X) + Agi (X) + O(h),
|Aa?(X)], |Agi (0] < KIR(ti 11, %)]. (3.18)

Substituting (3.16) in (3.15) and taking into account (3.17)—(3.18), we come to the
relation

au au o9
A =h bi— + 2 — +0i | +ri +0(h?
i (8t+'8X+28x2+g'>+'+ ( ),
where

Iri| < Kh|R(ti+1, Xi)|, |0(h?)| < Ch?,

the derivatives are calculated at the pditt X;), andbj, oj, gi are calculated att;, X;,
u(ti, Xj)). Sinceu(t, x) is the solution of problem (2.1)—(2.3), this relation implies

A =r;i + O(h?).
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Therefore

N-1
RD (ty, X) = Z Elgyr(ti. Xplri + O(h?)]. (3.19)
i=k

Now considerR®@ (t, x). Let (ti, X;) € 9" be such thatX; is close tox. Then
according to (3.11), we obtain

Bi := E [u(tiy1, Xi+1) — Uti, Xi) + Ziy1 — Zi /X, Zi |
= U(ti41. Xi + AX®) —u(ti, Xi) — Y1(ti+1)(AX® — hby) + hg;
au . .
=u(ti+1, Xi + AXia) —u(ty, Xj) — a—x(ti+1, ) - (Axi" —hbj) +hg. (3.20)

We evaluate this conditional expectation using the same arguments as in (3.15).
Clearly

IXi —al < Cvh, |AX¥| < Cvh. (3.21)

Expanding the terms of (3.20) at the poitit X;) and taking into account assumptions
(i), (i), relations (3.17), (3.18), and (3.21), we obtain (see (3.9), (3.10)):

du du o202
B =h(—+b—+-1—+g )+ +0h¥?,
i <8t+I8X+28X2+gl>+I+ (h™)

where
il < Kh|R(ti 1, Xi)l,

the derivatives are calculated at the pdityf X;), andbj, oi, g;i are calculated att;, X;,
u(ti, Xj)). Sinceu(t, x) is the solution of problem (2.1)—(2.3), this relation implies

B =i + O(h%?),
An analogous relation can be obtained for, Xj) € d1" with X; being close to3.
Therefore

N-1
R@ (ty, X) = El,r(ti, X[ +Oh¥?)]. (3.22)
=k

=
Substituting (3.19) and (3.22) in (3.13), we get

N-1 N-1

R(t, X) = Y Elgy (i, XDIri + O]+ Y Elyp(t, XpIfi + O(h¥?)]. (3.23)
i=k i=k

Let R := maxea, g1 | R(tk, X)|. Due to Lemma 3.2, we obtain from (3.23)

N-1

Rc< Kh) R1+Ch. (3.24)
i=k
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Introducesy ;== Kh Y ' Riy1+ Ch, k=N —1,...,0. From (3.24)R < & and
consequentlyy = KhRxy1 + k1 < (1 + Kh)egya, k = N —2,...,0. Then (since
en—1=Ch)

Re<ex<CekT- . h k=N,...,0.
O

REMARK 3.1 Apparently, the conclusion of Theorem 3.1 is true under the boundary
conditions (2.3). We have not succeeded in proving such a general theorem but we can
prove it in the case of the linear boundary conditions

9 9
a—)l:(t, a) = p1(Ou(t, a) + Y (b), a—i(t, B) = p20u(t, B) +v2(t), o<t KT,
(3.25)

(the corresponding proof is rather long in comparison with the case of (3.12) and is not
given here). Moreover, numerical experiments confirm the just mentioned conjecture (see
Section 7.1).

It turns out that method (2.10) in the case (3.12) (and in the case (3.25) as well) is
convergent with order MY/2). As above, this fact is apparently true for the general case
of boundary conditions.

Let us formulate the corresponding results. First we note that the method (2.10)
generates a Markov chaif), X;) for which Lemma 3.2 takes place.

LEMMA 3.3 Under assumptions (i) and (ii), the one-step epr@xk, X) of method (2.10)
is estimated as

lp(tk, X)| = [v(t, X) — U(tk, X)| < Ch?, x 4 hby & hY20y € [, B

Lo (te, X)| = |v(te, X) — U(ty, X)| < Ch, x + hbx — %26y < « or x + hby + h¥?y > B,
wherev(tk, X) is defined by (2.9)C does not depend dm k, x.

THEOREM 3.2 Under assumptions (i) and (ii), the method (2.10) for the Neumann
problem (2.1)—(2.3), (3.12) is@Y?) , i.e.

|(tk, X) — (e, )| < Kh'/2, (3.26)
whereK does not depend dm K, X.

Proofs of Lemma 3.3 and Theorem 3.2 are similar to that of Lemma 3.1 and
Theorem 3.1, and we do not give them here.

REMARK 3.2 The layer method (2.10) has the parametewhich, in principle, may be

any positive number. Naturally, the value @faffects the method accuracit: of (3.26)
depends om. By an extended analysis of the one-step boundary error and of the mean
number of steps of the corresponding Markov chain in the boundary ddyewe get

1
K <Cq1- |- max + Co,
q t,x)eQ

whereC;j, i =1, 2, do not depend oh, k, x, andqg.

82u

Ix2

ou +q max
ot 2 (’[,X)ea
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Evidently, both large and small values@fare not appropriate. If we know estimates
of derivatives of the solution for a considered problem, it is not difficult to indicate an
appropriatey. But generally the choice af requires special consideration.

Letb(t, x, u) = 0andg(t, x, u) = 0. In this case the one-step boundary epr@, x)
of method (2.10) near is evaluated as

192
p(tk, X) = Ea_xl;(t"’ X) - (g%h 4 2(x — @)gh?2 — ho?) + O(h*?), x — hY%0y < a,

and analogously neg. Takinggh'/2 = o — x +,/ho? + (o — x)2, we obtainp (tx, X) =

0O(h%?2). Substitution of suchy (depending ork andx) in (2.10) gives us a method with
convergence order @), which coincides with the method (2.7). Such an analysis also
suggests that it is preferable to take- o.

4. Numerical algorithms

To become numerical algorithms, the layer methods of Section 2 need a discretization in
the variablex. Consider the equidistant space discretization with spacehstéecall that
the notation for time step is): x; =a + jhx, | =0,1,2,... , M, hy = (8 —a)/M.

Using linear interpolation, we construct the following algorithm on the basis of
method (2.7) (we denote it @gty, X) again, since this should not cause any confusion):

U(tn, X) = ¢(tn, X), X € [a, B],
G(tk, Xj) = %U(tk+1, Xj +hb | — h'26 ) + %U(tk+1, Xj + hby | +hY25y ) + hak .,
if Xj +hb | £ h'26 j € [o, BI;

Ut X)) = Utip1. @ + /hG2 | + (@ = x})?)

— Y1tk a, Oltr1, @) - (@ — X — hby j + \/hffﬁj + (@ = %j)?) + gk j»
if xj + th’j - hl/zé'k,j <
0tk X)) = Uk, B — /G2 + (B = x))?)

~Yatis1. Oltira, ) - (B — Xj — by — /hGZ | + (B — X)) + ha .

if xj +hbej +hY%6 ;> 8 j=12...,M—1, (4.1)
_ Xj+1—X_ X—Xj _
Uk, X) = —— U(tk,Xj)Jrh— Utk, Xj+1), Xj < X < Xj41,
X X
j=0,1,2...,M—1, k=N—1,...,1,0, (4.2)

whereEk,j 10k, j» Ok, j are the coefficientss, o, g calculated at the poirgty, Xj, G(tk+1, Xj)).

THEOREM4.1 Consider the problem (2.1)—(2.3B-12). If the value ofhy is taken equal
to xh, x is a positive constant, then under assumptions (i) and (ii) the algorithm (4.1)—(4.2)
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has the first order of convergence, i.e. the approximatian x) from formulae (4.1)—(4.2)
satisfies the relation

|U(tk, X) — u(tk, X)| < Kh,
whereK does not depend ox, h, k.

Proof. In connection with the algorithm (4.1)—(4.2), we introduce the random sequence
Xi, Zi, i =Kk,...,N.Weput Xx = xj, Zx = 0 (to avoid confusion, we note that the
index k of Xk, Zx means thaiXy, Zx belong to thekth time layer, while the indey of

Xj corresponds to the space discretization introduced at the beginning of this section) and
then

X = Xi+hb £hV%5, i =k, ... ,N—1 (4.3)

Fori =k,... , N—2:

. 1X41 — X 11X 1—X
if X1 € [o, B, thenP(Xip1 = %) = S——— P(Xip1=X41) = > ——,
2 hx 2 hX
1Xmi1 — X{, 1 X, — Xm )
P(Xit1=Xm) = >———— 1 P(Xit1 = Xm41) = 5 ————. Ziy1=Z +hg,
2 hX 2 hX

wherex;, X1, Xm, Xm41 are such thaty < X4 < X+1, Xm < X",y < Xmi1
if Xi_+1 < a, then
Xmy1 — (Xj + AXE)
hx
Ziy1=Zi +hg — ya(tiz1) - (AXF — hby),

whereAX? = (@ — Xi) +,/h&2 + (@ — Xi)2 andXm, Xm+1 are such that

Xm < Xi + AXIO‘ § Xm+1;

P(Xit1 = Xm) = h
X

, P(Xif1=Xms1) =

if X;%,, > B. then
X1 — (Xi + AXE) Xi + AXPy — x
P(Xip1=X) = — h' L P(Xiq1=X41) = — — ,
X X

Ziv1=Zi + g — Potiva) - (AXP — hiyp),

WhereAXiﬂ =(B—Xj)— ,/h&iz + (B — Xi)2 andx|, X1 are such that

X < X —i—AXiﬂ < X|41-
Fori = N —1:

if Xy € [, B], thenP(Xn = X)) = P(Xn = X{) = 3, Zn = Zn-1+ hgn-1;
if Xy <a, then (4.4)
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XN = XnNo1+ AXY g, ZN = Zn-1 +hdno1 — Yan) - (AXE_; — hbn1),
whereAX$, | = (@ — Xn_1) + \/h&,ﬁ_l + (@ — XN_1)Z
if X > B, then
XN = XN-1+ AX’,i_l, ZN = ZN-1+ hgn-1 — Y2(tn) - (Axﬁ_l — hby-1),
whereAXS_; = (8 — Xn-1) — /he3_ + (B — Xn_p2

Herebi = bi(Xi) = b(ti, Xi, U(ti+1, X)), & = 6i(Xi) = o(ti, Xi, Uti+1, Xi)), and
G = G (Xi) = g(ti, Xi, Uti1, Xj)).
It is clear that
U(tk, Xj) = E[0(tN, XN) + Zn] = E[e(n, XN) + Zn] = E[u(tn, Xn) + ZN]
Introduce the notation

x€la,B]

Using arguments similar to those which led us to (3.23) and taking into account that
the error of linear interpolation is @2), we get

N-1
R(tk. X)) = Y Elgyyp(ti. Xplri + O(h%) + O(hZ)]
i=k

N—1
+ Y Elyp(ti, XpIfi + O(h¥?) + O(h3)], (4.5)
i=k
where
Iril, Ifil < Kh[R(tit+1, Xj)|.
A lemma similar to Lemma 3.2 can be proved for the Markov cliginX;) defined
by (4.3). Then, we obtain from (4.5) fog, = xh:

N-1
IR(tk, Xj)| < Kh Rit+1+ Ch. (4.6)
i=k

We have

Xiji1 — X X — Xi
U(tk, X) = H_T u(ty, Xj) + h—J u(t, Xj41) + O(hi), Xj < X< Xjy1. (4.7)
X X

From (4.7) and (4.2),
Xi — X X — Xj
R(t, X) = 22— Rty, Xj) + —— Rtk, Xj+1) + O(h?),
xh xh

whence due to (4.6)

N-1
IR(t, )] < Kh )~ Riy1+Ch.
i=k

Consequently we get (3.24). O
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REMARK 4.1 We pay attention to the fact that the factarin Theorem 4.1 is arbitrary.

To choosehy, we do not need any stability criteria in comparison to finite-difference
schemes, on which the Lax—Richtmayer equivalence theorem imposes a requirement on
relation between the time steft and the space stefix (see Milstein (1997) for a detailed
discussion). At the same time, accuracy of the algorithm (4.1)-(4.2) depends lan
practice, a choice of is connected with interpolation properties of the solution.

REMARK 4.2 An exploitation of cubic interpolation allows us to take the spacelsiep

x2+/h (in contrast tchy = xh for the linear interpolation) and, thus, to reduce the volume

of computations. Unfortunately, we have not succeeded in proving a convergence theorem
for algorithms with cubic interpolation. In Section 7 we test such algorithms which give
fairly good results. See also some theoretical explanations and numerical tests in Milstein
(1997) and Milstein & Tretyakov (2000a, 2001).

On the basis of linear interpolation and the layer method (2.10), we get the following
algorithm:
U(tn, X) = @(N, X), X € [a, B],
Q(t, Xj) = 30(tks1, Xj + b j — Y25 ) + $0(tr1, Xj + hbi j + Y26 ) + ha j,
if xj + hk_Jk,j + h1/25k,j € [a, Bl;
G(te, Xj) = Utcea, Xj + 4vh) — Ya(tera, Gtcya, @) - gh™/?,
if Xj + hbyj — h1/26k,j <a;
U(t. Xj) = U(tkra. X} — Gvh) + Ya(ter s, Gltsa. B) - gh?2,

if xj +hbj +hY%6 ;> j=12...,M—1, (4.8)
_ Xj+1—X_ X—Xj _
u(tksx) = T u(tkvxj)+ u(tkaxj+l)s Xj <X< Xj+17
X X
j=012...,M—1, k=N-1,...,10, (4.9)

Whereﬁk,j 10k, j» Ok, j are the coefficientss, o, g calculated at the poirity, Xj, G(tky1, Xj)).

THEOREM4.2 Consider the problem (2.1)—(2.3), (3.12). If the valuéngis taken equal

to xh%/4, » is a positive constant, then under assumptions (i) and (i) the algorithm (4.8)—
(4.9) has order of convergencéZh), i.e. the approximatiofi(tx, X) from formulae (4.8)—
(4.9) satisfies the relation

|(tk, X) — u(t, X)| < K+/h,
whereK does not depend ox, h, k.

This theorem is proved by the same arguments as Theorem 4.1.

5. Extension to the multi-dimensional Neumann problem

It is not difficult to generalize the layer methods given above to an arbitkafgr instance,
let us extend the method (2.10) to the casalof 2. Recall thato is a 2 x 2-matrix
satisfying the relatioso " = a.
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Introduce the notationX1 := ( X, 1. i Xiryq)s
i Xipr =X +bgh+a7vh - gt +6¢%vh - 82,
i Xy =X+ bgh+52Vh - gt + 622Vh - €2,
i=1234 x=x%x%eGcC R

wherey§ = (—1, —1), 26 = (~1.1), 3¢ = —1£,4§ = — 2¢ andby = (B} B)), 6 = (5"}
are the coefficientb(t, x, u), o (t, X, u) calculated at the poirty, X, G(tk+1, X))-

If the pointx = (x1, x?) € G is sufficiently far from the bounda§G (more precisely,
if the points; Xk41,i = 1, 2, 3, 4, belong tdG), the layer method has the form (see Milstein
(1997), Milstein & Tretyakov (2001)):

4
Gt X5 X3 =D 0(tkr1, i Xigors i XEpq) + G- h, (5.1)
i=1
whereg is the coefficieng(t, x, u) calculated at the poirty, X, U(tk+1, X)).

If the pointx = (x, x?) € G is close or belongs to the boundai®, then some of
the pointsj Xk+1 = X|}+1, ix§+1), i = 1,2, 3,4, may be outside of the doma. In
this case let us consider the projectionf the pointx ondG. Letv = (v1, v?) be the unit
vector of the internal normal at the poiktClearly, if X # X, v = (X — X)/|Xx — X|. Then
we put

0t X1, X2) = U(ties, X+ ghY2) — Y (tisa, X, O(ters, X)) -gh¥2 (5.2)

Thus, we obtain the method (5.1)—(5.2): the rule (5.1) is to be for priatgx!, x?) €
G such that all the corresponding poink = X1 iX?),i=12234, belong taG, and
the rule (5.2) is to be otherwise. The error of the one-step approximation corresponding to
(5.1) is Oh?) and that corresponding to (5.2) iglD. If the functionys does not depend
on u, we can prove that the layer method (5.1)—(5.2) has the global error estimated by
O(h'/2). These assertions can be checked directly without requiring new ideas than those
in Section 3.

To construct the corresponding numerical algorithms, we use linear interpolation as in
the previous section. If the domafs is a rectanglell with corners(x&, xg), (x&, x,%,,z),

(X, - X§)» (Xiy,» Xiy,)» Weintroduce the equidistant space discretization:

Ay, = {(le,xlz): le:Xé'-I-thl, X2 =x5+1he, j=0,..., Mg, | =0,..., Mg},

2 2
_ Xv, — X0

M1 x2 M
The values ofi(ty, x1, x2) at the nodes of\y, m, are found in accordance with (5.1)—
i A 1, M2
(5.2). Letxj1 <xt<xl,, x?<x?< x|2+1. Then the value oii(ty, X1, x?) is evaluated

1 1
X X
M 0
hya = — "0 h

j+1
as
1 oyl 2 2 1 g1 2 2
Xi Xt X2 . —X Xi Xt x2 _x
_ +1 111 _ +1 _
0t ' x%) = - Tt X XP) - SOt X X )
x1 x2 x1 x2
1_ 41 2 2 1_yl 2 2
X X5 X — X X X7 X4 — X
i Na _ 1 2 j | - 1 2
+ . U(tk, Xiq, X©) + . Utk, Xiq, X . (5.3
hyet hye (e X} %) hy hye (e X 41 ¥30)- (33)
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If the functiony does not depend am, we can prove that taking,i = »'h%4, i =
1,2, %%, %% > 0, the error of this algorithm is estimated aghd?) .

The case of an arbitrary domairequires a special consideration. For instance, for a
sufficiently wide class of domairs, it is possible to find one-to-one mapping®fonto a
domainG’ with a rectangular grid (see e.g. Fletcher (1991) and references therein). Then
we can use the above given algorithmG@hand map the results ont.

REMARK 5.1 Combining methods from Milstein & Tretyakov (2001) and from this paper,
we can solve mixed boundary value problems, i.e. when we have the Dirichlet condition
on a part of the boundadG and the Neumann condition on the resv .

6. Some other layer methods

In this section two additional methods in the case ef 1 are given.
Using the concept of fictitious knots, we obtain the following method (see details in
Milstein & Tretyakov (2000b)):

U(tn, X) = @(X), X € [a, B],
G(tg, X) = %U(tk_;,_l, X+ ht_)k — hl/zék) + %U(tk+1, X + hE)k + hl/zc_fk) + hgk,

if X + hby + hY%6 € [, B1,

Gk, X) = 30(tks1, 200 — X — hby + h/25y)
— Y1 (tr1, Uty @) - (@ — X — hby + h/25)
+30(tks1, X + hbe + hY260) + hgg, if X + hbx — W26y <
G(ti, X) = 30(tp1, X + hbx — h261) + 30 (tkr1, 28 — x — hbx — hY/%6y)
+Ya(tis1, Ultrs, B)) - (X + hby + hY25, — B) + hai,
if X + hbyx + hl/zc_fk > f;
k=N-1,...,1,0, (6.1)

whereby, Gk, Ok are the coefficients, o, g calculated at the poirty, X, G(tk41, X)).
The method (6.1) is an explicit layer method for solving the Neumann problem (2.1)—
(2.3). We prove that its one-step error near the boundaryti$/€) and for internal points
is O(h?). Apparently, this method has order of convergenck)O
The method (6.1) is more complicated than the method (2.7). At the same time it
demonstrates more accurate results than (2.7) in our numerical tests (see Section 7.1).
The method (2.10) is an extension of the method ¢i'@&?) from Milstein (1996) to
the nonlinear case. In Costantitial. (1998) another method of @'/?) is proposed. Its
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extension to the nonlinear Neumann problem (2.1)—(2.3) has the form
G(tn, X) = @(tn, X), X € [a, B,
U(t, X) = 30(tk41, X + hb — hY25) + 3a(tkg1. X + hbe + hY25) + hak,
if X 4+ hby £ h'/25y € [a, B]:

(t, X) = SU(tkg, @) + S0(tr1, X + hbe + hY25)

Ly (tkir, O(tss, @) (@ — X — hby 4+ hY25y) + gy, if x + hb — hY25 < a;
0(tk, X) = 30(tkt1. X + hb — W25 + Ja(tki1. B)

—3ya(tir1, Ults, B))(B — X — hb — hY25) + ha, if x + hby + hY26, > B;

k=N-1,...,10, (6.2)

whereby = bk(X) = b(lk, X, U(tk+1, X)), ok = ok(X) = o(t, X, U(tk+1, X)), Ok =
Ok(X) = g(tk, X, U(tky1, X)).
We prove that the one-step error of this method near the boundaryhis &nd for
internal points is ©h?). Apparently, this layer method has order of convergende'®3).
It is more complicated near the boundary than (2.10). At the same time the method (6.2)
demonstrates more accurate results than (2.10) in our numerical tests (see Section 7.1).
Algorithms based on linear interpolation and layer methods of this section can be
written down as in Section 4 for the methods from Section 2.

7. Numerical tests
7.1 Testsof various layer methods
Consider the Neumann problem for the one-dimensional Burgers equation:

au 029 au

— =—— —U—, t>0, xXe(—44), 7.1

ot - 2o Ugx 170 xe(=49 (7.1)
o2 sinhx

u@O,X) = ——, X —4, 4], 7.2

(0, x) oSt £ A’ el ] (7.2)

» 1+ Aexp(—o2t/2) cosh 4
7 cosh4+ Aexp—o2t/2)]2’

z—z(t, +4) = — t>0. (7.3)

Here A is a positive constant.
The exact solution to this problem has the form (see Benton & Platzman (1972))
o2 sinhx
coshx + Aexp(—o2t/2)’
In the tests we use cubic interpolation (see Remark 4.2)

uct,x) =—

Gtk X) = Y @} 00U, Xj+i), Xj <X < Xj43,
i=0

& X = Xj4m
o0 =[] (7.4)

m=0,mwi XiH Xj+m’
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TABLE 1 Dependence of the errors err(t) (bottom position) and erf (t) (top
position) inh undert = 2, 0 = 1.5,and A = 2.

h algorithms
(4.1)-(42)  (41),(74)  (6.1),(74) (4.8),(74) (6.2),(7.4)
016 2216-1071 74341071 5967.10% >1 7.333.10°1

8509-1072 1.177-1071 1.380-1072 3.328-10°1 1.098.1071
3170-1072 1.888-1072 3.867-103 3.722.10°1 1.346.10°1
5748.1073 3.737.1073 1.224.10°3 6.161.102 2.192.10°2
0.0016+479-107%  3835.10°% 7.124.107% 1.653.101 4.909.-1072

8.149.1074 7.444.1074% 2.127.10% 2750.-10°2 8172.10°3
000012387 1004 2.711.104 4.639.10° 4.378-102 1.168.10°2

4.479-107° 5.213.10° 1.357.10~° 7.307-10~3 1.968.10°3

0-01

Here we test the following five algorithms: (i) the algorithm (4.1)—(4.2), (ii) the
algorithm based on layer method (2.7) and cubic interpolation (7.4), (iii) the algorithm
based on layer method (6.1) and cubic interpolation (7.4), (iv) the algorithm based on layer
method (2.10) and cubic interpolation (7.4), and (v) the algorithm based on layer method
(6.2) and cubic interpolation (7.4). We take the space Bfeg: h for linear interpolation
andhy = +/h for cubic interpolation. The parametgrof algorithm (4.8), (7.4) is taken
equal to 1.

Table 1 and Fig. 1 give numerical results obtained by these algorithms. In the table
the errors of the approximate solutionsare presented in the discrete Chebyshev norm
(bottom position) and iht-norm (top position):

er(t) = max|u(t, xi) — u(t, x|,

en'(t) =) |a(t, X)) — u(t, x)| - hy. (7.5)
i

In the experiments, the algorithm (4.8), (7.4) and the algorithm (6.2), (7.4) converge
as Qh'/?), the other algorithms converge agh). We note that the algorithm (6.2), (7.4)
gives more accurate results than the algorithm (4.8), (7.4), and the algorithm (6.1), (7.4)
is more accurate than the algorithms (4.1). The algorithms (4.1)—(4.2) and (4.1), (7.4)
demonstrate almost the same accuracy. But the algorithm (4.1)—-(4.2) (as well as other
algorithms based on linear interpolation) requires both larger volume of computations per
time layer and larger amount of memory than the algorithm (4.1), (7.4) based on cubic
interpolation (see also Remark 4.2 in Section 4 and numerical tests in Milstein & Tretyakov
(2001)).

Further, the boundary condition (7.3) can be rewritten in the form

o2 exp(&4)
cosh 4+ Aexp(—o2t/2)’

au 1

—(t, £4) = u(t, :l:4)<—2u(t, +4) — 1) t>0. (7.6)

aX o

In order to provide an experimental verification of the conjecture from Remark 3.1 we
apply the algorithm (4.1), (7.4) to (7.1) with the initial condition (7.2) and the nonlinear
boundary condition (7.6). Taking the same values of parameters as in Table 1, we obtain,
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exact —

N (4.1)-(4.2) ----
(4.0), (7.4)
47,74 —

T T T
-4 -2 0 2 x

FIG. 1. Solution of problem (7.1)—(7.3). Hete= 0-16, other parameters are as in Table 1.

in particular, that foh = 0-01 the error ef(2) = 1.103 x 10~ and forh = 0-0001 the
error erf(2) = 1.138 x 10~° that experimentally confirms the conjecture.

7.2 A comparison analysis of layer methods and finite-difference schemes
Here the test problem is the Burgers equation
u _ o029% U
at 2 9x2 T ax’
with the following initial and boundary conditions:

t>0, X e (—28), (7.7)

a, xe[-20),

u(, x) = p(x) := { (@a+b)/2, x =0, (7.8)
b, x e (0,8],

ou

a—x(t, X) =y, x), t >0, xe{-2 8}, (7.9)

where

. @=-b2ut,0Rtx) [ 2 —x2 b-a
vt x) = 02 (J1(t, X) + Ja(t, X))2 + Tot eXp(zaZt> J(t, x) + Bt,x)’
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TABLE 2 Comparison analysis. Dependence of the errors ert®(t) (bottom position)
and ert (t) (top position) inh undert = 0-6,0 = 04,a=11,andb = 9.

h 001 00016 00004 00001
algorithm  4859x 101 1.031x 10°1 2.659x 1002 6.792x 103
(4.1), (7.4) 1208 3425x 1001 8980x 1072 2.308x 1072
2.531 5057x 1072 1.234x 1072
scheme (7.10) overflow -B75 1261x 101 2.766x 1072
oscillations

and

Ji(t, x) = exp(M) erfc(X —at )

202

b(bt — 2 bt —

Jo(t, X) = exp u erfc X .
202

The exact solution of this problem is

U(t, X) = adi(t, xX) + bd(t, x)
U H ) + ot x)

We compare the algorithm (4.1), (7.4) with the method of differences forward in time
and central differences in space applied to the divergent form of the Burgers equation. This
finite-difference scheme in application to the problem (7.7)—(7.9) is written as

L_‘I(Oa X) = (p(x)s X e [_2, 8]1
O(tky1, X—1) = O(tkg1, X1) — 24X - ¥ (tkt1, X0),
U(tk+1, XM+1) = U(tkg-1, Xm—1) + 24X - ¥ (tkt1, Xm),
_ _ At _
b, X)) = 0t X)) = 57 (0%, Xj42) = 0%(tk, X} 1))

o2

> A2 (U(tk, Xj+1) — 20(t, Xj) + Utk, Xj—1)),
j=0,...,M, k=0,...,N—1, (7.10)

+

where the step of time discretizatiaft := T/N andty = k - At and the step of space
discretizationAx := 10/M andxj = -2+ j - Ax.

The explicit scheme (7.10) is of @t, Ax?). It isused for simulation of the Burgers
equation in Andersoast al. (1984) and Fletcher (1991).

In the experiments we take the space stgp= +/h for the algorithm (4.1), (7.4) and
the space steplx = /At for the finite-difference scheme (7.10) with the relationship
At = h.

Table 2 presents the errors in the discrete Chebyshev norm (bottom position in the table)
and inlt-norm (top position) (see (7.5)). The comment ‘overflamdicates that overflow
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164

14+

124

104

T T . T
4 5 6 X

FiG. 2. Solution of problem (7.7)—(7.9). Solid curve, exact solution; dotted curve, the algorithm (4.1); (7.4),
dashed curve, the scheme (7.10). Here 0-0016, other parameters are as in Table 2.

error occurs during simulation. The comment ‘oscillations’ means that the numerical
solution has oscillations (see Fig. 2). We see that the algorithm (4.1), (7.4) demonstrates a
more stable behaviour than the finite-difference scheme (7.10). In the test problem (7.7)-
(7.9) large values o#, b lead, in particular, to large advection in a neighbourhood of
the front. These experiments confirm that the layer methods allow us to avoid difficulties
stemming from strong advection (see also comparison analysis in Milstein & Tretyakov
(2001)). We note that the algorithms based on layer methods require more CPU time than
finite-difference schemes. For example, in the case of parameters as in Table 2 to solve
(7.7)—(7.9) by the algorithm (4.1), (7.4) with= 0.0004 we need=5 swhile the scheme
(7.10) requires=2-8 s But the algorithm (4.1), (7.4) gives us quite appropriate results with
the greater step = 0-0016 (see Table 2 and Fig. 2) and in this case it requ#@§ s.
Simulations were made on a PC with Intel Pentium 233 MHz processor using Borland C
compiler. A more extensive comparison analysis requires a separate consideration.
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