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Langevin type equations are an important and fairly large class of systems close to
Hamiltonian ones. The constructed mean-square and weak quasi-symplectic methods
for such systems degenerate to symplectic methods when a system degenerates to a
stochastic Hamiltonian one. In addition, quasi-symplectic methods’ law of phase volume
contractivity is close to the exact law. The methods derived are based on symplectic
schemes for stochastic Hamiltonian systems. Mean-square symplectic methods were
obtained in Milsteinet al. (2002, SIAM J. Numer. Anal., 39, 2066–2088; 2003,SIAM
J. Numer. Anal., 40, 1583–1604) while symplectic methods in the weak sense are
constructed in this paper. Special attention is paid to Hamiltonian systems with separable
Hamiltonians and with additive noise. Some numerical tests of both symplectic and quasi-
symplectic methods are presented. They demonstrate superiority of the proposed methods
in comparison with standard ones.

Keywords: Langevin equations; stochastic Hamiltonian systems; symplectic and quasi-
symplectic numerical methods; mean-square and weak schemes.

1. Introduction

During the last 15–20 years a lot of attention in deterministic numerical analysis has been
paid to symplectic integration of Hamiltonian systems (see e.g. Sanz-Serna & Calvo, 1994;
Hairer et al., 1993, 2002 and references therein). This interest is motivated by the fact
that symplectic integrators in comparison with the usual numerical schemes allow us to
simulate Hamiltonian systems on very long time intervals with high accuracy. The phase
flows of some classes of stochastic systems (stochastic Hamiltonian systems) possess the
property of preserving symplectic structure (symplecticness) (see Bismut, 1981 and also
Milstein et al., 2002). For instance, systems of this type describe synchrotron oscillations of
particles in storage rings under the influence of external fluctuating electromagnetic fields
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(Seeßelberget al., 1994). Another popular model from this class is the Kubo oscillator
(Kuboet al., 1985) which is used in the theory of magnetic resonance and laser physics. In
Milstein et al. (2002, 2003) mean-square symplectic methods for stochastic Hamiltonian
systems were proposed. These methods have significant advantages over standard schemes
for stochastic differential equations (SDEs) (Milstein, 1995; Kloeden & Platen, 1992).

It is natural to expect that making use of numerical methods, which are close, in a
sense, to symplectic ones, also has some advantages when applying to stochastic systems
close to Hamiltonian ones. An important and fairly large class of such systems is Langevin
type equations which can be written as the following system of Ito SDEs:

dP = f (t, Q) dt − ν f̃ (t, P, Q) dt +
m∑

r=1

σr (t, Q) dwr (t), P(t0) = p,

dQ = g(P) dt, Q(t0) = q,

(1.1)

whereP, Q, f , f̃ , g, σr aren-dimensional column vectors,ν is a parameter, andwr (t),
r = 1, . . . , m, are independent standard Wiener processes. It is not difficult to verify that
this system has the same form in the sense of Stratonovich.

The Langevin type equations (1.1) have the widespread occurrence in models from
physics, chemistry, and biology. They are used in dissipative particle dynamics (see e.g.
Ripoll et al., 2001 and references therein), in molecular simulations (see e.g. Skeel, 1999;
Izaguirreet al., 2001 and references therein), for studying lattice dynamics in strongly
anharmonic crystals (Gornostyrevet al., 1996), descriptions of noise-induced transport
in stochastic ratchets (Landa, 1998), investigations of the dispersion of passive tracers
in turbulent flows (see Thomson, 1987; Sawford, 2001 and references therein), etc. In
this paper we construct special numerical methods (we call them quasi-symplectic) which
preserve some specific properties of the Langevin type equations.

In Section 2, we construct mean-square quasi-symplectic methods for Langevin
equations which are an important particular case of (1.1) whenf (t, q) = f (q),
f̃ (t, p, q) = Γ p, Γ is an n × n-dimensional constant matrix,g(p) = M−1 p, M is
a positive definite matrix, andσr (t, q) = σr , r = 1, . . . , m, are constant vectors. The
proposed methods are such that they degenerate to symplectic methods when the system
degenerates to a Hamiltonian one and their law of phase volume contractivity is close to the
exact one. To construct numerical methods, we use the splitting technique (see e.g. Sanz-
Serna & Calvo, 1994; Strang, 1968; Yanenko, 1971) and some ideas of Suris (1991), where
methods for deterministic second-order differential equations with similar properties were
obtained. In Section 3, we generalize mean-square methods of Section 2 to the Langevin
type equations (1.1) and also to more general systems.

Mean-square methods are necessary for direct simulation of stochastic trajectories.
Besides, they are the basis for the construction of weak methods which are important for
many practical applications. As is known (see e.g. Milstein, 1995; Kloeden & Platen, 1992;
Pardoux & Talay, 1985), weak methods are relevant to calculate expectations of functionals
of a solution to SDEs by the Monte Carlo technique, and they are simpler than mean-square
ones in many respects. An important advantage of weak approximations is that they give
an opportunity to avoid the problem of simulating complicated random variables.

Before constructing weak schemes for Langevin type equation, we derive symplectic
methods in the weak sense for stochastic Hamiltonian systems. Consider the Cauchy
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problem for the system of SDEs in the sense of Stratonovich

dP = f (t, P, Q) dt +
m∑

r=1

σr (t, P, Q) ◦ dwr (t), P(t0) = p,

(1.2)

dQ = g(t, P, Q) dt +
m∑

r=1

γr (t, P, Q) ◦ dwr (t), Q(t0) = q,

whereP, Q, f , g, σr , γr aren-dimensional column vectors with the componentsPi , Qi ,
f i , gi , σ i

r , γ i
r , i = 1, . . . , n, andwr (t), r = 1, . . . , m, are independent standard Wiener

processes.
We denote byX (t; t0, x) = (Pᵀ(t; t0, p, q), Qᵀ(t; t0, p, q))ᵀ, t0 � t � t0 + T , the

solution of (1.2). A more detailed notation isX (t; t0, x; ω), whereω is an elementary
event. It is known thatX (t; t0, x; ω) is a phase flow (diffeomorphism) for almost everyω.
See its properties in, for example, Bismut (1981) and Ikeda & Watanabe (1981). If there
are functionsHr (t, p, q), r = 0, . . . , m, such that (Bismut, 1981; Milsteinet al., 2002)

f i = −∂ H0/∂qi , gi = ∂ H0/∂pi ,
(1.3)

σ i
r = −∂ Hr/∂qi , γ i

r = ∂ Hr/∂pi , i = 1, . . . , n, r = 1, . . . , m,

then the phase flow of (1.2) preserves symplectic structure:

dP ∧ dQ = dp ∧ dq, (1.4)

i.e. the sum of the oriented areas of projections onto the coordinate planes(p1, q1), . . . ,
(pn, qn) is an integral invariant (Arnold, 1989). To avoid confusion, we note that the
differentials in (1.2) and (1.4) have different meaning. In (1.2)P, Q are treated as
functions of time andp, q are fixed parameters, while differentiation in (1.4) is made
with respect to the initial datap, q.

Let Pk , Qk , k = 0, . . . , N , tk+1 − tk = hk+1, tN = t0 + T , be a method for (1.2) based
on the one-step approximation̄P = P̄(t + h; t, p, q), Q̄ = Q̄(t + h; t, p, q). Wesay that
the method preserves symplectic structure if

dP̄ ∧ dQ̄ = dp ∧ dq. (1.5)

In Section 4, weak symplectic methods for stochastic Hamiltonian systems with
multiplicative noise are constructed. Section 5 is devoted to symplectic integrators for
Hamiltonian systems with additive noise. Weak symplectic schemes for Hamiltonian
systems with coloured noise are available in the preprint Milstein & Tretyakov (2002).
The proposed symplectic methods are the basis for construction of efficient weak methods
for systems close to Hamiltonian ones and, in particular, for Langevin type equations.

In Section 6, we derive quasi-symplectic methods in the weak sense for Langevin
type equations using weak methods from Sections 4 and 5 together with the ideas of
Sections 2 and 3. It is known (Tropper, 1977; Soize, 1994; Mattinglyet al., 2002) that
the Langevin diffusion is ergodic and for many applications it is interesting to compute
the mean of a given function with respect to the invariant law of the diffusion. Ergodicity
of numerical methods was first investigated in Talay (1990) in the case of non-degenerate
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noise and globally Lipschitz coefficients. For Langevin equations, noise is degenerate and
the coefficients may not be globally Lipschitz. In this case, ergodicity of the numerical
schemes is considered in Mattinglyet al. (2002) and Talay (2002). To evaluate the mean
values with respect to the invariant law, one has to integrate a system over very long time
intervals, especially when dissipation is small. In such a situation, numerical methods
based on symplectic integrators are fairly relevant.

We should note that finite-time convergence of new methods derived in this paper is
proved under traditional conditions on the drift and diffusion coefficients which consist of
the existence and boundedness of their derivatives up to a certain order. In particular, the
traditional conditions contain a rather restrictive one, namely a global Lipschitz condition.
However, the methods can undoubtedly be used much more widely. This fact is well
known in practice for many other methods. Some theoretical results on the convergence of
numerical methods for equations with locally Lipschitz coefficients are obtained in Higham
et al. (2003), Mattinglyet al. (2002) and Talay (2002).

In Section 7, we present numerical tests of both symplectic and quasi-symplectic
methods. They clearly demonstrate the superiority of the proposed methods over very long
time intervals in comparison with standard methods.

2. Quasi-symplectic mean-square methods for Langevin equations

Consider the Langevin equation

dP = f (Q) dt − νΓ P dt +
m∑

r=1

σr dwr (t), P(t0) = p,

(2.1)
dQ = M−1P dt, Q(t0) = q,

whereP, Q, f aren-dimensional column vectors,σr , r = 1, . . . , m, aren-dimensional
constant column vectors,Γ is ann × n-dimensional constant matrix,ν � 0 is aparameter,
M is a positive definite matrix, andwr (t), r = 1, . . . , m, are independent standard Wiener
processes. If there is a scalar functionU0(q) such that

f i (q) = −∂U0

∂qi
, i = 1, . . . , n, (2.2)

and if ν = 0, then the system (2.1) is a Hamiltonian system with additive noise, i.e. its
phase flow preserves symplectic structure (Bismut, 1981; Milsteinet al., 2002).

The system (2.1) can be written as the second-order differential equation with additive
noise:

M Q̈ = f (Q) − νΓ M Q̇ +
m∑

r=1

σr ẇr .

Let D0 ∈ Rd , d = 2n, be adomain with finite volume. This domain may be random.
We suppose thatD0 = D0(ω) is independent of the Wiener processeswr (t), t ∈ [t0, t0 +
T ]. The transformation(p, q) �→ (P, Q) mapsD0 into the domainDt . The volumeVt of
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the domainDt is equal to

Vt =
∫
Dt

dP1 . . . dPndQ1 . . . dQn

=
∫
D0

∣∣∣∣∣ D(P1, . . . , Pn, Q1, . . . , Qn)

D(p1, . . . , pn, q1, . . . , qn)

∣∣∣∣∣ dp1 . . . dpndq1 . . . dqn . (2.3)

In the case of the system (2.1) the JacobianJ is equal to (Bismut, 1981; Kunita, 1990;
Milstein et al., 2002)

J = D(P1, . . . , Pn, Q1, . . . , Qn)

D(p1, . . . , pn, q1, . . . , qn)
= exp(−ν trΓ · (t − t0)) . (2.4)

That is, the system (2.1) preserves phase volume forν = 0. If ν > 0 and trΓ > 0 then
phase volume contractivity takes place.

Our aim is to propose mean-square methods based on the one-step approximations

P̄ = P̄(t + h; t, p, q), Q̄ = Q̄(t + h; t, p, q)

such that

RL1. The method applied to (2.1)–(2.2)degenerates to a symplectic method when ν = 0,
i.e. dP̄ ∧ dQ̄ = dp ∧ dq for ν = 0 and f from (2.2);

RL2. The Jacobian

J̄ = D(P̄, Q̄)

D(p, q)

does not depend on p, q.

As is understood, a method is convergent and, consequently,J̄ is close toJ at any rate.
The requirement RL2 is natural since the JacobianJ of the original system (2.1) does not
depend onp, q. RL2 reflects the structural properties of the system which are connected
with the law of phase volume contractivity. It is often possible to reach a stronger property
consisting of the equalitȳJ = J . However, such a requirement is too restrictive in general.
In the context of deterministic equations the requirement RL2 was introduced in Suris
(1991).

To construct methods satisfying RL1–RL2, we use the splitting technique (see e.g.
Sanz-Serna & Calvo, 1994; Strang, 1968). In connection with (2.1), introduce the systems

dPI = f (QI) dt +
m∑

r=1

σr dwr (t), PI(t0) = p,

(2.5)
dQI = M−1PI dt, QI(t0) = q,

dPII

dt
= −νΓ PII , PII (0) = p, (2.6)

and denote their solutions asPI(t; t0, p, q), QI(t; t0, p, q) andPII (t; p), respectively. The
system (2.5) withf (q) from (2.2) is a Hamiltonian system with additive noise. The system
(2.6) is a deterministic linear system with constant coefficients, and its solutionPII (t; p)

can be found explicitly.
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2.1 First-order methods

Introduce a discretization of the time interval[t0, t0 + T ], for definiteness the equidistant
one:

ti+1 = ti + h, i = 0, . . . , N − 1, h = T/N .

Let P̄I = P̄I(t0 + h; t0, p, q), Q̄I = Q̄I(t0 + h; t0, p, q) be a one-step approximation
of a symplectic first-order mean-square method for (2.5), (2.2) (any explicit or implicit
method from Milsteinet al., 2002 can be used). Its Jacobian is equal to one, i.e.

D(P̄I(t0 + h; t0, p, q), Q̄I(t0 + h; t0, p, q))

D(p, q)
= 1.

We construct the one-step approximation̄P, Q̄ for the solution of (2.1)–(2.2) as
follows:

P̄ = P̄(t0 + h; t0, p, q) := PII (h; P̄I(t0 + h; t0, p, q)),
(2.7)

Q̄ = Q̄(t0 + h; t0, p, q) := Q̄I(t0 + h; t0, p, q).

We have

J̄ = D(P̄, Q̄)

D(p, q)
= D(PII , Q̄I)

D(P̄I, Q̄I)

D(P̄I, Q̄I)

D(p, q)
= J . (2.8)

Further, ifν = 0, thenP̄ = P̄I , Q̄ = Q̄I , i.e. the approximation (2.7) degenerates to the
symplectic method for (2.1)–(2.2) withν = 0. Thus, the approximation̄P, Q̄ satisfies both
requirements RL1 and RL2.

LEMMA 2.1 Let P̄I , Q̄I be a one-step approximation corresponding to any first-order
mean-square method for the system (2.5). ThenP̄, Q̄ defined in (2.7) is a one-step
approximation of the first-order mean-square method for the system (2.1).

Proof. Due to the assumption, we can write

P̄I = p +
m∑

r=1

σr∆wr + h f (q) + r1,

(2.9)
Q̄I = q + hM−1 p + r2,

where

∆wr = ∆wr (h) = wr (t0 + h) − wr (t0)

and the remaindersr1 andr2 are such that

|Eri | = O(h2), Er2
i = O(h3), i = 1, 2.

We have

PII (h; p) = p − hνΓ p + ρ, ρ = O(h2). (2.10)
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Using (2.9), (2.10), and (2.7), we get

P̄ = p +
m∑

r=1

σr∆wr + h ( f (q) − νΓ p) + R, (2.11)

where

R = r1 + ρ − hνΓ · (P̄I − p).

It is not difficult to see that

|E R| = O(h2), E R2 = O(h3).

Denote byP̃, Q̃ the Euler one-step approximation applied to (2.1). It follows from (2.9)
and (2.11) that

∣∣∣∣E
([

P̄
Q̄

]
−

[
P̃
Q̃

])∣∣∣∣ = O(h2),

[
E

([
P̄
Q̄

]
−

[
P̃
Q̃

])2
]1/2

= O(h3/2).

Then, recalling that the Euler method has the first mean-square order of accuracy for
systems with additive noise and using the main theorem on mean-square convergence from
Milstein (1995, p. 12), we get the result.

Thus, due to (2.8), we obtain the following convergence theorem. �

THEOREM 2.1 Let P̄I , Q̄I be a one-step approximation corresponding to a symplectic
first-order mean-square method for the system (2.5), (2.2). ThenP̄, Q̄ defined in (2.7)
is a one-step approximation of the first-order mean-square method for the system (2.1)
such that (i) it is symplectic when applied to (2.1)–(2.2) withν = 0, (ii) its phase volume
changes according to the same law as the phase volume of (2.1) does, i.e. the Jacobians
J̄ = D(P̄, Q̄)/D(p, q) andJ = D(P, Q)/D(p, q) are equal.

Let us take two concrete schemes forP̄I , Q̄I from Milstein et al. (2002). The first one
is explicit:

Q = q + αhM−1 p, P = p + h f (Q),

Q̄I = Q + (1 − α)hM−1P, P̄I = P +
m∑

r=1

σr∆wr ,
(2.12)

whereα is a parameter. The second method

P̄I = p + h f ((1 − α)Q̄I + αq) +
m∑

r=1

σr∆wr ,

(2.13)
Q̄I = q + hM−1(α P̄I + (1 − α)p).

is implicit for 0 < α < 1. Substitution ofP̄I , Q̄I from (2.12) or (2.13) in (2.7) gives us the
concrete one-step approximations for (2.1).
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REMARK 2.1 Theorem 2·1 also holds for the method based on the following one-step
approximation:

P̄ = P̄(t0 + h; t0, p, q) := P̄I(t0 + h; t0, PII (h; p), q),
(2.14)

Q̄ = Q̄(t0 + h; t0, p, q) := Q̄I(t0 + h; t0, PII (h; p), q).

There is another possibility to propose methods for (2.1) satisfying RL1–RL2. It
consists in direct application of symplectic methods. For instance, the parametric first-
order family of implicit methods from Milsteinet al. (2002) in application to (2.1) takes
the form

P̄ = p + h f ((1 − α)Q̄ + αq) − hνΓ · (α P̄ + (1 − α)p) +
m∑

r=1

σr∆wr ,

(2.15)
Q̄ = q + hM−1(α P̄ + (1 − α)p).

However, it satisfies the requirement RL2 forα = 0 and α = 1 only. Moreover, due
to their specific structure, not all the symplectic methods (see, for example, the explicit
method (2.12)) can be directly applied to the Langevin equation (2.1) itself. Thus, in the
direct application of symplectic methods to (2.1) we have rather restrictive opportunities.
Nevertheless, we can obtain in this way some new methods.

2.2 Second-order methods

In order to construct second-order methods for the Langevin equation (2.1) with the
properties RL1 and RL2, we use ideas of the method of fractional steps (Yanenko, 1971;
Sanz-Serna & Calvo, 1994; Strang, 1968). In the deterministic case (i.e. whenσr = 0,
r = 1, . . . , m) a second-order method satisfying RL1 and RL2 can be based on the
following one-step approximation:

P̄ = P̄(t0 + h; t0, p, q) := PII

(
h

2
; P̄I

(
t0 + h; t0, PII

(
h

2
; p

)
, q

))
,

(2.16)
Q̄ = Q̄(t0 + h; t0, p, q) := Q̄I

(
t0 + h; t0, PII

(
h

2
; p

)
, q

)
,

where P̄I , Q̄I corresponds to a one-step approximation of a symplectic method for (2.5),
(2.2) withσr = 0.

In the stochastic case the interconnection between terms in (2.1) is more complicated
and a correction to (2.16) is needed to obtain second-order accuracy. Consider the
following approximation for solution of (2.1):

P̄ = P̄(t0 + h; t0, p, q) := PII

(
h

2
; P̄I

(
t0 + h; t0, PII

(
h

2
; p

)
, q

))

−ν

m∑
r=1

Γσr

(
Ir0 − h

2
∆wr

)
, (2.17)

Q̄ = Q̄(t0 + h; t0, p, q) := Q̄I

(
t0 + h; t0, PII

(
h

2
; p

)
, q

)
,
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where P̄I , Q̄I is a one-step approximation corresponding to a symplectic (explicit or
implicit) second-order mean-square method for (2.5), (2.2) (such methods are available
in Milstein et al., 2002),

Ir0 =
∫ t

t0
(wr (s) − wr (t0)) ds.

LEMMA 2.2 Let P̄I , Q̄I be a one-step approximation corresponding to any second-order
mean-square method for the system (2.5). ThenP̄, Q̄ defined in (2.17) is a one-step
approximation of the second-order mean-square method for the system (2.1).

Proof. Due to the assumption, we can write

P̄I(t0 + h; t0, p, q) = p +
m∑

r=1

σr∆wr + h f (q) + h2

2

n∑
i=1

(
M−1 p

)i ∂ f

∂qi
+ r1,

(2.18)

Q̄I(t0 + h; t0, p, q) = q + hM−1 p +
m∑

r=1

M−1σr Ir0 + h2

2
M−1 f (q) + r2,

where the remaindersr1 andr2 are such that

|Eri | = O(h3), Er2
i = O(h5), i = 1, 2.

Wealso have

PII (h; p) = p − hνΓ p + h2

2
ν2Γ 2 p + ρ, ρ = O(h3). (2.19)

Weobtain from (2.17)–(2.19) that

P̄ = p +
m∑

r=1

σr∆wr + h ( f (q) − νΓ p) − ν

m∑
r=1

Γσr Ir0

+h2

2

[
n∑

i=1

(
M−1 p

)i ∂ f

∂qi
+ ν2Γ 2 p − νΓ f (q)

]
+ R1, (2.20)

Q̄ = q + hM−1 p +
m∑

r=1

M−1σr Ir0 + h2

2
M−1 [ f (q) − νΓ p] + R2,

whereR1 andR2 are such that

|E Ri | = O(h3), E R2
i = O(h5), i = 1, 2.

It is not difficult to show that the standard Taylor-type mean-square method of order 3/2
for systems with additive noise (Milstein, 1995, p. 37) has the second order of accuracy
when it is applied to (2.1). Comparing the one-step approximation of this standard method
with (2.20), we obtain that the method based on (2.17) is of mean-square order 2.�
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One can easily check that the approximation (2.17) satisfies our requirements RL1 and
RL2. The following theorem summarizes the result.

THEOREM 2.2 Let P̄I , Q̄I be a one-step approximation corresponding to a symplectic
second-order mean-square method for the system (2.5), (2.2). ThenP̄, Q̄ defined in (2.17)
is a one-step approximation of the second-order mean-square method for the system (2.1)–
(2.2) such that (i) it is symplectic when applied to (2.1)–(2.2) withν = 0, and (ii) its phase
volume changes according to the same law as the phase volume of (2.1)–(2.2) does.

Let us give a concrete example of a method based on (2.17):

P1 = PII

(
h

2
; Pk

)
, Q1 = Qk + h

2
M−1P1,

P2 = P1 +
m∑

r=1

σr∆kwr + h f (Q1), Q2 = Qk + hM−1P1 +
m∑

r=1

M−1σr (Ir0)k

+h2

2
M−1 f (Q1), (2.21)

Pk+1 = PII

(
h

2
;P2

)
− ν

m∑
r=1

Γσr (Ir0 − h

2
∆wr ), Qk+1 = Q2, k = 0, . . . , N − 1.

Toobtain (2.21), we use one of the explicit symplectic second-order partitioned Runge–
Kutta (PRK) methods from Milsteinet al. (2002), which is a generalization of the Störmer–
Verlet method.

The random variables∆kwr , (Ir0)k have a Gaussian joint distribution, and they can be
simulated at each step by 2m mutually independentN (0, 1)-distributed random variables
ξrk andηrk , r = 0, . . . , m:

∆kwr = h1/2ξrk, (Ir0)k = h3/2(ξrk + ηrk/
√

3)/2. (2.22)

In molecular dynamics several methods based on the deterministic Störmer–Verlet
method are used for simulation of the Langevin equation (2.1) with diagonal matrixΓ (see
Skeel, 1999; Izaguirreet al., 2001 and references therein). Effective numerical methods for
this type of Langevin equation can be constructed by the following splitting:

dPI = −νΓ PI dt +
m∑

r=1

σr dwr (t), dQI = M−1PI dt, dPII = f (q) dt .

SincePI , QI satisfy the linear system with additive noise, they can be simulated exactly. A
number of concrete schemes satisfying our requirements RL1–RL2 can be derived using
the exactPI , QI and a deterministic symplectic method. Such a second-order method based
on the Sẗormer–Verlet scheme coincides with the method proposed in Skeel (1999).

2.3 Third-order methods

Using ideas of the method of fractional steps, as we did in the previous sections, it is
possible to construct a third-order method for (2.1) which satisfies the requirements RL1
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and RL2. But such a method contains two fractional steps at which we have to approximate
the Hamiltonian system (2.5), (2.1) using a third-order symplectic method. This makes
the method too complicated, and we will use another approach. In Suris (1991) a similar
problem for deterministic second-order differential equations was solved by a modification
of symplectic Runge–Kutta–Nyström (RKN) methods from Suris (1989). Here we modify
the symplectic RKN method from Milsteinet al. (2002) using some ideas of Suris (1991).

As a result, we obtain the method

Q1 = Qk + 7

24
hM−1Pk, P1 = Pk + 7

24
h [ f (Q1) − νΓP1] ,

Q2 = Qk + 25

24
hM−1Pk + h2

2
M−1 [ f (Q1) − νΓP1] ,

P2 = Pk + 2

3
h [ f (Q1) − νΓP1] + 3

8
h [ f (Q2) − νΓP2] , (2.23)

Q3 = Qk + hM−1Pk + 17

36
h2M−1 [ f (Q1) − νΓP1] + 1

36
h2M−1 [ f (Q2) − νΓP2] ,

P3 = Pk + 2

3
h [ f (Q1) − νΓP1] − 2

3
h [ f (Q2) − νΓP2] + h [ f (Q3) − νΓP3] ,

Pk+1 = P3 +
m∑

r=1

σr∆kwr − ν

m∑
r=1

Γσr · (Ir0)k

+
m∑

r=1

[
n∑

i=1

(M−1σr )
i ∂ f

∂qi
(Q3) + ν2Γ 2σr

]
(Ir00)k, (2.24)

Qk+1 = Q3 +
m∑

r=1

M−1σr · (Ir0)k − ν

m∑
r=1

M−1Γσr (Ir00)k, k = 0, . . . , N − 1,

where

(Ir00)k :=
tk+h∫
tk

ϑ1∫
tk

(wr (ϑ2) − wr (tk)) dϑ2 dϑ1.

The joint distribution of the random variables∆kwr , (Ir0)k, (Ir00)k is Gaussian. They can
be simulated at each step by 3m independentN (0, 1)-distributed random variablesξrk ,
ηrk , andζrk , r = 0, . . . , m:

∆kwr = h1/2ξrk, (Ir0)k = h3/2(ξrk + ηrk/
√

3)/2,

(Ir00)k = h5/2(ξrk + √
3ηrk/2 − ζrk/(2

√
5))/6.

(2.25)
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Using (2.25), the method (2.23)–(2.24) can be written in constructive form. This is implicit
in the componentsP1, P2, P3 and can easily be resolved at each step since the
dependence onP is linear.

For ν = 0 the method (2.23)–(2.24) coincides with the third-order symplectic method
from Milstein et al. (2002) and so it satisfies the requirement RL1. Forσr = 0, r =
1, . . . , m (deterministic case), the RKN method (2.23)–(2.24) satisfies conditions set up
in Suris (1991, Section 5). These conditions ensure that the Jacobian of the deterministic
RKN method depends onνΓ andh only, more precisely (Suris, 1991, Section 5)

J̄0 = J̄0(h, νΓ ) := D(P3,Q3)

D(Pk, Qk)
= det(I − 3

8hνΓ ) det(I + 25
24hνΓ )

det(I + 7
24hνΓ ) det(I + 3

8hνΓ ) det(I + hνΓ )
,

whereI is then × n unit matrix.
We have

J̄ := D(Pk+1, Qk+1)

D(Pk, Qk)
= D(Pk+1, Qk+1)

D(P3,Q3)

D(P3,Q3)

D(Pk, Qk)
= J̄0,

i.e. the Jacobian̄J does not depend on the initial dataPk, Qk . Further, it is possible to
adopt the proof of the corresponding theorem in Milsteinet al. (2002) and prove that the
method (2.23)–(2.24) is of mean-square order 3. Thus, we obtain the following theorem.

THEOREM 2.3 The method (2.23)–(2.24) for the system (2.1) is of mean-square order 3
and it is such that (i) it is symplectic when applied to (2.1)–(2.2) withν = 0 and (ii) the
JacobianD(Pk+1, Qk+1)/D(Pk, Qk) (i.e. the change of phase volume per step) does not
depend onPk , Qk .

REMARK 2.2 A method of mean-square order 7/2 for (2.1) contains complicated Ito
integrals, and it is not efficient with respect to simulation of the random variables used.

REMARK 2.3 All the methods of this section can be carried over to non-autonomous
Langevin equations.

3. Quasi-symplectic mean-square methods for general Langevin type equations

Here we generalize the methods of Section 2 to the Langevin type system (cf. (1.1))

dP = f (t, Q) dt − ν f̃ (t, P, Q) dt +
m∑

r=1

σr (t, Q) dwr (t), P(t0) = p,

dQ = g(P) dt, Q(t0) = q,

(3.1)

whereP, Q, f , f̃ , g, σr aren-dimensional column vectors,ν is a parameter, andwr (t),
r = 1, . . . , m, are independent standard Wiener processes.

If there are HamiltoniansH0(t, p, q) = V0(p)+U0(t, q) andHr (t, q), r = 1, . . . , m,
such that

f i = −∂ H0/∂qi , gi = ∂ H0/∂pi , σ i
r = −∂ Hr/∂qi , i = 1, . . . , n, (3.2)
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and if ν = 0, then (3.1) is a Hamiltonian system with multiplicative noise (Bismut, 1981;
Milstein et al., 2002, 2003).

Our aim is to construct methods for (3.1) such that they inherit the properties RL1–RL2
of the specific methods for the Langevin equation (2.1). More precisely, we require

RLT1. The methods become symplectic when the system degenerates to a Hamiltonian
one;

RLT2. The methods degenerate to those satisfying the requirement RL2 from Section 2
when the system degenerates to the Langevin equation (2.1).

We recall that the Euler method for general systems with multiplicative noise is of
order 1/2. But due to specific features of system (3.1), the Euler method (and other usual
methods of order 1/2) applied to (3.1) is of order 1. Therefore, we start with methods of
order 1.

3.1 First-order methods based on splitting

In connection with (3.1), introduce the systems (cf. (2.5)–(2.6))

dPI = f (t, QI) dt +
m∑

r=1

σr (t, QI) dwr (t), PI(t0) = p,

(3.3)
dQI = g(PI) dt, QI(t0) = q,

dPII

dt
= −ν f̃ (t, PII , q), PII (t0) = p, (3.4)

and denote their solutions asPI(t; t0, p, q), QI(t; t0, p, q) andPII (t; t0, p, q), respectively.
The system (3.3), (3.2) is a Hamiltonian system with separable Hamiltonians.

Symplectic integrators for such systems are proposed in Milsteinet al. (2003). The system
(3.4) is deterministic.

Let P̄I , Q̄I be a one-step approximation corresponding to a symplectic method for (3.3),
(3.2) andP̄II be a one-step approximation of a deterministic method for (3.4). Introduce
the approximation for (3.1) as follows:

P̄ = P̄(t0 + h; t0, p, q) := P̄II (t0 + h; t0, P̄I(t0 + h; t0, p, q), Q̄I(t0 + h; t0, p, q)),

Q̄ = Q̄(t0 + h; t0, p, q) := Q̄I(t0 + h; t0, p, q). (3.5)

Clearly, the approximation (3.5) satisfies the requirements RLT1 and RLT2. Further,
using arguments similar to those in the proof of Lemma 2.1, we prove the following
theorem.

THEOREM 3.1 Let P̄I , Q̄I be a one-step approximation corresponding to a symplectic
first-order mean-square method for the system (3.3), (3.2) andP̄II be a one-step
approximation corresponding to a first-order deterministic method for the system (3.4).
Then P̄, Q̄ defined in (3.5) is a one-step approximation of the first-order mean-square
method for the system (3.1) such that (i) it is symplectic when applied to (3.1)–(3.2) with
ν = 0 and (ii) it satisfies the requirement RL2 from Section 2 when (3.1) degenerates to
the Langevin equation (2.1).
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Let us give a concrete example of a first-order splitting method (to this end we use a
PRK method from Milsteinet al., 2003):

Q1 = Qk + αhg(Pk), P1 = Pk + h f (tk + αh,Q1),

Q2 = Q1 + (1 − α)hg(P1), P2 = P1 +
m∑

r=1

σr (tk,Q2)∆kwr , (3.6)

Qk+1 = Q2, Pk+1 = P2 − hν f̃ (tk,P2,Q2).

REMARK 3.1 Theorem 3.1 also holds for the method based on the one-step approximation

P̄ := P̄I(t0 + h; t0, P̄II (t0 + h; t0, p, q), q),

Q̄ := Q̄I(t0 + h; t0, P̄II (t0 + h; t0, p, q), q).
(3.7)

REMARK 3.2 The discussion in the end of Section 2.1 is also valid here: there are
first-order implicit symplectic methods which directly applied to (3.1) give the methods
satisfying the requirements RLT1–RLT2.

The particular case of system (3.1), whenf̃ (t, p, q) = Γ (q)p, Γ is an m × m-
dimensional matrix, is of a special interest, in particular due to its application in dissipative
particle dynamics (see e.g. Ripollet al., 2001 and references therein). In this case the
system (3.4) becomes a deterministic linear system with constant coefficients, which can
be solved exactly. If in addition tõf (t, p, q) = Γ (q)p the system (3.1) is with additive
noise (i.e.σr (t, q) = σr (t), r = 1, . . . , q) andg(p) = M−1 p, then the method (3.9) (see
Section 3.2) becomes of mean-square order 2. An important example of such systems is
the Van der Pol oscillator under external excitations:

Q̈ = −ω2Q + ε2(1 − Q2)Q̇ + σẇ.

Further, our approach can easily be applied to a more general system of Stratonovich
SDEs:

dP =
(

f (t, P, Q) − ν f̃ (t, P, Q)
)

dt +
m∑

r=1

σr (t, P, Q) ◦ dwr (t), P(t0) = p,

(3.8)
dQ = (g(t, P, Q) − ν g̃(t, P, Q)) dt +

m∑
r=1

γr (t, P, Q) ◦ dwr (t), Q(t0) = q,

whereν � 0 is a parameter,P, Q and all the coefficients aren-dimensional column
vectors, andf , g, σr , γr satisfy (1.3). Forν = 0 it coincides with the general Hamiltonian
system (1.2). As usual, we can split (3.8) in two parts: in the Hamiltonian system (1.2) and
the deterministic system, and then use a relation like (3.5) or (3.7) to approximate (3.8). In
such an approximation we havēPI , Q̄I corresponding to a full implicit symplectic method
from Milstein et al. (2003). As a result, we obtain the approximationP̄, Q̄ for (3.8) which
satisfies the requirements RLT1–RLT2. Such a method for (3.8) based on an approximation
of this kind has the mean-square order 1/2.
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3.2 Methods of order 3/2

Using the fractional step method, we propose the following approximation for (3.1):

P̄(t0 + h; t0, p, q)

:= P̄II

(
t0 + h

2
; t0, P̄I

(
t0 + h; t0, P̄II

(
t0 + h

2
; t0, p, q

)
, q

)
,

Q̄I

(
t0 + h; t0, P̄II

(
t0 + h

2
; t0, p, q

)
, q

))

−ν

m∑
r=1

n∑
i=1

σ i
r

∂ f̃

∂pi
(t0, p, q)

[
Ir0 − h

2
∆wr

]
− h2

4
ν
∂ f̃

∂t
(t0, p, q),

Q̄(t0 + h; t0, p, q) := Q̄I

(
t0 + h; t0, P̄II

(
t0 + h

2
; t0, p, q

)
, q

)
,

(3.9)

whereP̄I , Q̄I is a one-step approximation corresponding to a symplectic method of order
3/2 for (3.3), (3.2) (such methods are available in Milsteinet al., 2003) andP̄II is a one-step
approximation of a second-order deterministic method for (3.4).

By argument similar to those exploited in previous sections, we prove the following
theorem.

THEOREM 3.2 Let P̄I , Q̄I be a one-step approximation corresponding to a symplectic
mean-square method of order 3/2 for the system (3.3), (3.2), andP̄II be a one-step
approximation corresponding to a second-order deterministic method for the system (3.4).
Then P̄, Q̄ defined in (3.9) is the one-step approximation of mean-square method of order
3/2 for the system (3.1) which satisfies the requirements RLT1–RLT2.

4. Symplectic methods in the weak sense for Hamiltonian systems with multiplicative
noise

Let us recall some facts from the theory of numerical integration of SDEs in the weak sense.
Further details are available in Milstein (1995) and Kloeden & Platen (1992). Consider the
system of SDEs in the Ito sense

dX = a(t, X) dt +
m∑

r=1

br (t, X) dwr (t), X (t0) = X0, (4.1)

whereX , a(t, x1, . . . , xd), br (t, x1, . . . , xd) ared-dimensional column vectors andwr (t),
r = 1, . . . , m, are independent standard Wiener processes.

Suppose the functionsa(t, x) andbr (t, x) are defined and continuous fort ∈ [t0, t0 +
T ], x ∈ Rd and satisfy a uniform (global) Lipschitz condition: for allt ∈ [t0, t0 + T ],
x, y ∈ Rd there exists a constantL > 0 such that

|a(t, x) − a(t, y)| +
m∑

r=1

|br (t, x) − br (t, y)| � L |x − y| . (4.2)
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DEFINITION 4.1 If for some method we have∣∣E F(X̄k) − E F(X (tk))
∣∣ � K hl ,

for F from a sufficiently large class of functions, where the constantK does not depend
onk andh, then we say that̄Xk approximates the solutionX (tk) of (4.1) in the weak sense
with (weak) order of accuracyl (or O(hl)).

DEFINITION 4.2 A function F(x), x ∈ Rd , is said to belong to the classF, F ∈ F, if
there are constantsK > 0 and � 0 such that the inequality

|F(x)| � K · (1 + |x |)

holds for anyx ∈ Rd .

The following general convergence theorem is proved in Milstein (1995) (see also
Kloeden & Platen, 1992).

THEOREM 4.1 Suppose that
(1) the coefficients of (4.1) are continuous, satisfy a Lipschitz condition (4.2) and

together with their partial derivatives of order up to 2l + 2 belong to the classF;
(2) the following inequalities hold:∣∣∣∣∣E

(
s∏

j=1

∆i j −
s∏

j=1

∆̄i j

)∣∣∣∣∣ � K (x)hl+1, s = 1, . . . , 2l + 1, (4.3)

E
2l+2∏
j=1

|∆̄i j | � K (x)hl+1, l > 0, K (x) ∈ F, (4.4)

where∆i := Xi
t,x (t + h) − xi and∆̄i := X̄ i

t,x (t + h) − xi ;
(3) the functionF(x) together with its partial derivatives up to order 2l + 2 belong to

the classF;
(4) for a sufficiently large number̄m, the momentsE |Xk |m̄ exist and are uniformly

bounded with respect toN , k = 0, . . . , N .
Then the methodXk approximates the solutionX (tk) with the weak orderl.

We assume the conditions on certain smoothness of the drift and diffusion coefficients
and boundedness of their derivatives to be fulfilled. At the same time we underline once
again (see Introduction) that these traditional requirements are not necessary.

4.1 Implicit first-order methods for general stochastic Hamiltonian systems

In this section weak symplectic methods for the stochastic Hamiltonian system (1.2),
(1.3) are constructed. All the methods in this section are fully implicit (i.e. implicit
in both deterministic and stochastic components). Let us recall that in the case of
deterministic general Hamiltonian systems symplectic Runge–Kutta (RK) methods are
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all implicit (Sanz-Serna & Calvo, 1994). The standard implicit methods for SDEs with
multiplicative noise (see Milstein, 1995; Kloeden & Platen, 1992) contain implicitness
in deterministic terms only. Meanwhile, to construct symplectic methods for general
stochastic Hamiltonian systems, fully implicit methods are needed. Such mean-square
methods are proposed in Milsteinet al. (2003). Increments of Wiener processes in these
implicit schemes are substituted by some truncated random variables. As a result, general
mean-square symplectic methods are obtained in Milsteinet al. (2003). We should note
that the problem in obtainingfully implicit weak methods is much simpler because standard
weak schemes exploit bounded random variables for their construction.

On the basis of a symplectic method of mean-square order 1/2 from Milstein et al.
(2003), we propose the weak method

Pk+1 = Pk + h f (tk + βh, αPk+1 + (1 − α)Pk, (1 − α)Qk+1 + αQk)

+ h

(
1

2
− α

) m∑
r=1

n∑
j=1

(
∂σr

∂p j
σ

j
r − ∂σr

∂q j
γ

j
r

)
+ h1/2

m∑
r=1

σrξrk,

(4.5)
Qk+1 = Qk + hg(tk + βh, αPk+1 + (1 − α)Pk, (1 − α)Qk+1 + αQk)

+ h

(
1

2
− α

) m∑
r=1

n∑
j=1

(
∂γr

∂p j
σ

j
r − ∂γr

∂q j
γ

j
r

)
+ h1/2

m∑
r=1

γrξrk,

whereσr , γr , r = 1, . . . , m, and their derivatives are calculated at(tk, αPk+1 + (1 −
α)Pk, (1−α)Qk+1+αQk), the parametersα, β ∈ [0, 1], andξrk are i.i.d. random variables
with the law

P(ξ = ±1) = 1/2. (4.6)

Note that ifα = β = 1/2 the method (4.5) becomes the derivative-free (midpoint)
method. The method requires solution of a nonlinear equation at each step (its solvability
is proved within the next theorem).

THEOREM 4.2 The implicit method (4.5) for the system (1.2), (1.3) is symplectic and of
the first weak order.

Proof. The symplecticness is proved in the same way as in Theorem 3.2 from Milstein
et al. (2003). Let us prove convergence of the method. Denote byX̄ = X̄(t + h; t, x) =
(P̄ᵀ, Q̄ᵀ)ᵀ the one-step approximation corresponding to the method (4.5):

P̄ = p + h f (t + βh, α P̄ + (1 − α)p, (1 − α)Q̄ + αq)

+ h

(
1

2
− α

) m∑
r=1

n∑
j=1

(
∂σr

∂p j
σ

j
r − ∂σr

∂q j
γ

j
r

)
+ h1/2

m∑
r=1

σrξr ,

(4.7)
Q̄ = q + hg(t + βh, α P̄ + (1 − α)p, (1 − α)Q̄ + αq)

+ h

(
1

2
− α

) m∑
r=1

n∑
j=1

(
∂γr

∂p j
σ

j
r − ∂γr

∂q j
γ

j
r

)
+ h1/2

m∑
r=1

γrξr ,
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whereσr , γr , r = 1, . . . , m, and their derivatives are calculated at(t, α P̄ + (1−α)p, (1−
α)Q̄ + αq).

Using the Lipschitz condition (4.2), one can prove (cf. Lemma 2.4 in Milsteinet al.,
2003) that there are constantsK > 0 andh0 > 0 such that for anyh � h0, t0 � t � t0+T ,
x = (pᵀ, qᵀ)ᵀ ∈ Rd , d = 2n, the equation (4.7) has a unique solutionX̄ which satisfies
the inequality

|X̄ − x | � K (1 + |x |)√h, (4.8)

and this solution can be found by the method of simple iteration withx = (pᵀ, qᵀ)ᵀ as the
initial approximation.

The condition (4.4) withl = 1 of Theorem 4.1 holds for the approximation (4.7) due
to (4.8). Let us check the fulfillment of condition (4.3) withl = 1. To this end, introduce
the weak Euler approximation̂X = (P̂ᵀ, Q̂ᵀ)ᵀ for the Stratonovich system (1.2), (1.3):

P̂ = p + h f + h

2

m∑
r=1

n∑
j=1

(
∂σr

∂p j
σ

j
r + ∂σr

∂q j
γ

j
r

)
+ h1/2

m∑
r=1

σrξr ,

Q̂ = q + hg + h

2

m∑
r=1

n∑
j=1

(
∂γr

∂p j
σ

j
r + ∂γr

∂q j
γ

j
r

)
+ h1/2

m∑
r=1

γrξr ,

(4.9)

where f , g andσr , γr , r = 1, . . . , m, and their derivatives are calculated at(t, p, q).
Expanding the terms in the right-hand side of (4.7) around(t, p, q) and using (4.8) and

the corresponding conditions on smoothness and boundedness of the coefficients, it is not
difficult to obtain that

∣∣∣∣∣E
(

s∏
j=1

∆̂i j −
s∏

j=1

∆̄i j

)∣∣∣∣∣ � K (x)h2, s = 1, 2, 3, i j = 1, . . . , 2n, K (x) ∈ F, (4.10)

where∆̄i := X̄ i − xi , ∆̂i := X̂ i − xi .
Taking into account (4.10) and the fact that the Euler approximation (4.9) satisfies (4.3)

with l = 1 (Milstein, 1995; Kloeden & Platen, 1992), we get that the approximation (4.7)
satisfies (4.3) withl = 1 as well.

Finally, to check the fourth condition of Theorem 4.1, we use Lemma 9.1 from Milstein
(1995, p. 114) which ensures existence and uniform boundedness of the momentsE |X̄k |m̄
under the conditions (i)|E∆̄| � K (1 + |x |)h and (ii) |∆̄| � M(ξ)(1 + |x |)√h with M(ξ)

having moments of all orders. The inequalities (4.10) and|E∆̂| � K (1 + |x |)h imply
fulfillment of the condition (i), while the condition (ii) holds here due to (4.8). �

REMARK 4.1 In the case of separable Hamiltonians at noise, i.e. whenHr (t, p, q) =
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Ur (t, q) + Vr (t, p), r = 1, . . . m, the method (4.5) withα = 1, β = 0 acquires the form

Pk+1 = Pk + f (tk, Pk+1, Qk)h

+ h

2

m∑
r=1

n∑
j=1

∂σr

∂q j
(tk, Qk) · γ

j
r (tk, Pk+1) + h1/2

m∑
r=1

σr (tk, Qk)ξrk,

(4.11)
Qk+1 = Qk + g(tk, Pk+1, Qk)h

− h

2

m∑
r=1

n∑
j=1

∂γr

∂p j
(tk, Pk+1) · σ

j
r (tk, Qk) + h1/2

m∑
r=1

γr (tk, Pk+1)ξrk

with not too complicated implicitness. Besides, when the Hamiltonians are such that
H0(t, p, q) = V0(t, p) + U0(t, q) and Hr (t, p, q) = Γ�

r (t)p + Ur (t, q), r = 1, . . . m,
Γr (t) aren-dimensional vectors, one obtains fully explicit symplectic methods.

REMARK 4.2 As is known (Milstein, 1995; Kloeden & Platen, 1992), there are effective
methods of weak order 2 for general systems of SDEs. These methods applied to (1.2),
(1.3) are not symplectic. We have not constructed a symplectic method of weak order 2 for
the general Hamiltonian system (1.2), (1.3), and this question requires further investigation.
In the next section a symplectic method of weak order 2 is proposed for a particular case
of (1.2), (1.3).

4.2 Explicit first-order methods in the case of separable Hamiltonians

In this and the next sections we consider a special case of the Hamiltonian system (1.2),
(1.3) such that

H0(t, p, q) = V0(p) + U0(t, q), Hr (t, p, q) = Ur (t, q), r = 1, . . . m. (4.12)

In this case we get the following system:

dP = f (t, Q) dt +
m∑

r=1

σr (t, Q) dwr (t), P(t0) = p,

dQ = g(P) dt, Q(t0) = q,

(4.13)

with

f i = −∂U0/∂qi , gi = ∂V0/∂pi , σ i
r = −∂Ur/∂qi , r = 1, . . . m, i = 1, . . . , n.

(4.14)

Recall that the system (4.13) has the same form in the sense of Stratonovich. Due to specific
features of the system (4.13), (4.14) we have succeeded in construction of explicit PRK
methods of a higher order.

On the basis of the mean-square PRK method (4.6) from Milsteinet al. (2003) we
obtain the weak PRK method for (4.13):

Q1 = Qk + αhg(Pk), P1 = Pk + h f (tk + αh,Q1),

Q2 = Q1 + (1 − α)hg(P1),
(4.15)
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Pk+1 = P1 + h1/2
m∑

r=1

σr (tk,Q2)ξrk, Qk+1 = Q2, k = 0, . . . , N − 1, (4.16)

where 0� α � 1 is aparameter andξrk are i.i.d. random variables with the law (4.6).

THEOREM 4.3 The explicit method (4.15)–(4.16) for the system (4.13), (4.14) is
symplectic and of the first weak order.

Proof. Due to (4.14),∂σ i
r /∂q j = ∂σ

j
r /∂qi . Using this, we obtain dPk+1 ∧ dQk+1 =

dP1 ∧ dQ2. It is easy to prove that dP1 ∧ dQ2 = dP1 ∧ dQ1 = dPk ∧ dQk . Therefore the
method (4.15)–(4.16) is symplectic. The order of convergence is proved as in Theorem 4.2
(even simpler). �

4.3 Explicit second-order method in the case of separable Hamiltonians

Introduce the explicit PRK method for the system (4.13), (4.14):

Q1 = Qk + h

2
g(Pk), P1 = Pk + h f

(
tk + h

2
,Q1

)
+ h1/2

m∑
r=1

σr

(
tk + h

2
,Q1

)
ξrk,

Pk+1 = P1, Qk+1 = Q1 + h

2
g(P1), k = 0, . . . , N − 1, (4.17)

whereξrk are i.i.d. random variables with the law

P(ξ = 0) = 2/3, P(ξ = ±√
3) = 1/6. (4.18)

It follows from Lemma 4.1 from Milsteinet al. (2003) that this method is symplectic.
Comparing (4.17) with the standard Taylor type second-order weak method from Milstein
(1995, p. 115) applied to (4.13), we prove the following theorem.

THEOREM 4.4 The explicit method (4.17) for the system (4.13), (4.14) is symplectic and
of the second weak order.

5. Symplectic methods in the weak sense for Hamiltonian systems with additive noise

Consider Hamiltonian systems with additive noise

dP = f (t, P, Q) dt +
m∑

r=1

σr (t) dwr (t), P(t0) = p,

(5.1)
dQ = g(t, P, Q) dt +

m∑
r=1

γr (t) dwr (t), Q(t0) = q,

where f andg satisfy (1.3).
The first-order method for (5.1) follows from the method (4.5).
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5.1 Implicit second-order methods in the case of general Hamiltonian system

On the basis of a mean-square symplectic method of order 3/2 from Milsteinet al. (2002),
we construct the weak method:

P1 = Pk + α

2
h f

(
tk + α

2
h,P1,Q1

)
+ λ1h1/2

m∑
r=1

σr

(
tk + h

2

)
ξrk,

Q1 = Qk + α

2
hg

(
tk + α

2
h,P1,Q1

)
+ λ1h1/2

m∑
r=1

γr

(
tk + h

2

)
ξrk,

P2 = Pk + αh f
(

tk + α

2
h,P1,Q1

)
+ 1 − α

2
h f

(
tk + 1 + α

2
h,P2,Q2

)

+λ2h1/2
m∑

r=1

σr

(
tk + h

2

)
ξrk,

Q2 = Qk + αhg
(

tk + α

2
h,P1,Q1

)
+ 1 − α

2
hg

(
tk + 1 + α

2
h,P2,Q2

)

+λ2h1/2
m∑

r=1

γr

(
tk + h

2

)
ξrk,

Pk+1 = Pk + h

[
α f

(
tk + α

2
h,P1,Q1

)
+ (1 − α) f

(
tk + 1 + α

2
h,P2,Q2

)]

+h1/2
m∑

r=1

σr

(
tk + h

2

)
ξrk,

Qk+1 = Qk + h

[
αg

(
tk + α

2
h,P1,Q1

)
+ (1 − α)g

(
tk + 1 + α

2
h,P2,Q2

)]

+h1/2
m∑

r=1

γr

(
tk + h

2

)
ξrk,

(5.2)

where the parametersα, λ1, λ2 are such that

αλ1 + (1 − α)λ2 = 1

2
, αλ2

1 + (1 − α)λ2
2 = 1

2
, (5.3)

andξrk are i.i.d. random variables with the law (4.18).
For example, the following set of parameters satisfies (5.3):

α = 1

2
, λ1 = 0, λ2 = 1. (5.4)

The symplecticness follows from Lemma 3.5 of Milsteinet al. (2002). The order of
convergence is proved similarly to the proof of Theorem 4.2 comparing (5.2) with the
standard Taylor type second-order weak method from Milstein (1995, p. 115) applied to
(5.1).

THEOREM 5.1 The implicit method (5.2), (5.3) for the system (5.1) is symplectic and of
the second weak order.
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5.2 A third-order method in a particular case of Hamiltonian system

In this section we propose a symplectic weak method of order 3 for the system with additive
noise:

dP = f (t, Q) dt +
m∑

r=1

σr (t) dwr (t), f i (t, Q) = −∂U0

∂qi
, P(t0) = p,

dQ = M−1P dt, Q(t0) = q.

(5.5)

On the basis of a symplectic mean-square method of order 3 from Milsteinet al. (2002),
we construct the weak method:

Q1 = Qk + 7

24
hM−1Pk, P1 = Pk + 2

3
h f

(
tk + 7h

24
,Q1

)
,

Q2 = Q1 + 3

4
hM−1P1, P2 = P1 − 2

3
h f

(
tk + 25h

24
,Q2

)
, (5.6)

Q3 = Q2 − 1

24
hM−1P2, P3 = P2 + h f (tk + h,Q3),

Pk+1 = P3 + h1/2
m∑

r=1

σr (tk)ξrk + h3/2
m∑

r=1

σ ′
r (tk)(ξr/2 − ηr )k + h5/2

m∑
r=1

σ ′′
r (tk)ξrk/6

+h5/2
m∑

r=1

n∑
i=1

(M−1σr (tk))
i ∂ f

∂qi
(tk,Q3)ξrk/6,

(5.7)

Qk+1 = Q3 + h3/2
m∑

r=1

M−1σr (tk)(ξr/2 + ηr )k + h5/2
m∑

r=1

M−1σ ′
r (tk)ξrk/6,

k = 0, . . . , N − 1,

whereξrk , ηrk are mutually independent random variables distributed by the laws

P(ξ = 0) = 1

3
, P(ξ = ±1) = 3

10
, P(ξ = ±√

6) = 1

30
,

P(η = ±1/
√

12) = 1

2
.

(5.8)

The symplecticness of this method follows from Theorem 5.3 of Milsteinet al. (2002).
The order of convergence can be proved by standard arguments (Milstein, 1995, Section
10) using the fact that the corresponding mean-square method from Milsteinet al. (2002)
has the third order of convergence or by comparing the method (5.6)–(5.7) with the weak
method of order 3 from Milstein (1995, p. 126) applied to (5.5).

THEOREM 5.2 The explicit method (5.6)–(5.7) for the system (5.5) is symplectic and of
the third weak order.

6. Weak methods for Langevin type equations

Symplectic methods in the weak sense proposed in Sections 4 and 5 together with the ideas
of Sections 2 and 3 allow us to derive efficient weak methods for Langevin type equations.
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6.1 Langevin equation: linear damping and additive noise

In this section we propose weak methods for the Langevin equation (2.1), which satisfy
the requirements RL1–RL2 from Section 2.

Using the splitting ideas presented in Section 2, we obtain the first-order method.

THEOREM 6.1 Let P̄I , Q̄I be a one-step approximation corresponding to a symplectic
method of first weak order for the system (2.5), (2.2). ThenP̄, Q̄ defined in (2.7) or in
(2.14) is a one-step approximation of the method of first weak order for the system (2.1)
which satisfies the requirements RL1–RL2.

As for P̄I , Q̄I appearing in the above theorem, one can take the approximation
corresponding to the symplectic implicit method (4.5) or to the explicit one (4.15)–(4.16).

REMARK 6.1 The implicit method (4.5) can directly be applied to the Langevin equation
(2.1). Of course, it satisfies the requirement RL1. The method (4.5) satisfies the
requirement RL2 forα = 0 and α = 1 only (see also the discussion in the end of
Section 2.1).

Now we construct a method of weak order 2. To this end, consider the following
approximation for (2.1) (cf. (2.17)):

P̄ = P̄(t0 + h; t0, p, q) := PII

(
h

2
; P̄I

(
t0 + h; t0, PII

(
h

2
; p

)
, q

))
,

Q̄ = Q̄(t0 + h; t0, p, q) := Q̄I

(
t0 + h; t0, PII

(
h

2
; p

)
, q

)
,

(6.1)

whereP̄I , Q̄I is a one-step approximation corresponding to any symplectic weak second-
order method for (2.5), (2.2) (for instance, one can use the implicit method (5.2) or the
explicit method (4.17)), andPII (t) is the exact solution of (2.6).

THEOREM 6.2 Let P̄I , Q̄I be a one-step approximation corresponding to a symplectic
method of second weak order for the system (2.5), (2.2). ThenP̄, Q̄ defined in (6.1) is a
one-step approximation of the method of second weak order for the system (2.1) which
satisfies the requirements RL1–RL2.

To get a method of weak order 3 for (2.1), we modify the symplectic RKN method
(5.6)–(5.7) as we did in Section 2.3 in the case of mean-square methods. On this way we
obtain the following method

Q1 = Qk + 7

24
hM−1Pk, P1 = Pk + 7

24
h [ f (Q1) − νΓP1] ,

Q2 = Qk + 25

24
hM−1Pk + h2

2
M−1 [ f (Q1) − νΓP1] ,

P2 = Pk + 2

3
h [ f (Q1) − νΓP1] + 3

8
h [ f (Q2) − νΓP2] ,

(6.2)
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Q3 = Qk + hM−1Pk + 17

36
h2M−1 [ f (Q1) − νΓP1] + 1

36
h2M−1 [ f (Q2) − νΓP2] ,

P3 = Pk + 2

3
h [ f (Q1) − νΓP1] − 2

3
h [ f (Q2) − νΓP2] + h [ f (Q3) − νΓP3] ,

Pk+1 = P3 + h1/2
m∑

r=1

σrξrk − νh3/2
m∑

r=1

Γσr · (ξr/2 + ηr )k

+h5/2
m∑

r=1

[
n∑

i=1

(M−1σr )
i ∂ f

∂qi
(Q3) + ν2Γ 2σr

]
ξrk/6,

(6.3)

Qk+1 = Q3 + h3/2
m∑

r=1

M−1σr · (ξr/2 + ηr )k

−νh5/2
m∑

r=1

M−1Γσrξrk/6, k = 0, . . . , N − 1,

whereξrk , ηr k are mutually independent random variables distributed by the laws (5.8).
The weak order of this method can be proved by standard arguments (Milstein, 1995)

and its phase volume contractivity properties are proved by the same arguments as those
before Theorem 2.3.

THEOREM 6.3 The method (6.2)–(6.3) for the system (2.1) has third weak order and
satisfies the requirements RL1–RL2.

REMARK 6.2 The methods given in this section can be carried over to non-autonomous
Langevin equations. It is also possible to apply the presented approach to Langevin
equations with coloured noise using symplectic methods from Milstein & Tretyakov
(2002).

6.2 Langevin type equation: nonlinear damping and multiplicative noise

In this section we propose weak methods for the Langevin type equation (3.1) which satisfy
the requirements RLT1–RLT2 from Section 3. As for first-order methods, we have the
following theorem.

THEOREM 6.4 Let P̄I , Q̄I be a one-step approximation corresponding to a symplectic
method of first weak order for the system (3.3), (3.2), andP̄II be a one-step approximation
corresponding to a first-order deterministic method for the system (3.4). ThenP̄, Q̄ defined
in (3.5) or (3.7) is a one-step approximation of the method of first weak order for the system
(3.1) which satisfies the requirements RLT1–RLT2.

A concrete method based on̄P, Q̄ from the above theorem can be written using the
implicit symplectic method (4.5) or the explicit one (4.15)–(4.16) forP̄I , Q̄I . Further, as
in the case of mean-square methods, the proposed approach can be generalized to a more
general system of the form (3.8) (see the comment in the end of Section 3.1).

By the method of fractional steps (as in Sections 2.2 and 3.2) we construct the second-
order weak method for (3.1) on the basis of the symplectic method (4.17). The method has
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the form

P1 = P̄II

(
tk + h

2
; tk, Pk, Qk

)
, Q1 = Qk + h

2
g(P1),

P2 = P1 + h f

(
tk + h

2
,Q1

)
+ h1/2

m∑
r=1

σr

(
tk + h

2
,Q1

)
ξrk, Q2 = Q1 + h

2
g(P2), (6.4)

Pk+1 = P̄II

(
tk + h

2
; tk,P2,Q2

)
− h2

4
ν
∂ f̃

∂t
(tk, Pk, Qk), Qk+1 = Q2, k = 0, . . . , N − 1,

whereξrk are i.i.d. random variables with the law (4.18) andP̄II is a one-step approximation
of any second-order deterministic method for system(3·4).

Using a specific approximation instead ofP̄II , it ispossible to modify the method (6.4)
in such a way that it will become a derivative-free method (i.e. the correction with the
derivative∂ f̃ /∂t can be incorporated in̄PII ) but we do not consider this here.

The following theorem holds for the method (6.4).

THEOREM 6.5 The method (6.4) for the system (3.1) has the second weak order and
satisfies the requirements RLT1–RLT2.

We note that for f̃ (t, p, q) = Γ (q)p, Γ – m × m dimensional matrix,PII (t) can be
found explicitly. Consequently, we can putPII instead ofP̄II in (6.4) (see also the discussion
after Remark 3.2).

7. Examples

The first example (Section 7.1) deals with testing weak symplectic methods by simulation
of a model describing synchrotron oscillations of particles. In Section 7.2 we give a
comparative analysis of Euler schemes and a quasi-symplectic method considering a
stochastic linear oscillator with linear damping. Numerical tests of quasi-symplectic
methods by simulating a stochastic oscillator with cubic restoring force are presented in
Section 7.3.

7.1 A model for synchrotron oscillations of particles in storage rings

In Seeßelberget al. (1994) a model describing synchrotron oscillations of particles
in storage rings under the influence of external fluctuating electromagnetic fields was
considered. This model can be written in the following form:

dP = −ω2 sin(Q) dt − σ1 cos(Q) dw1 − σ2 sin(Q) dw2,

dQ = P dt,
(7.1)

whereP andQ are scalars. The system (7.1) is of the form (4.13) and therefore its phase
flow preserves symplectic structure.
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Let us mention that a certain weak numerical method for the system (4.13) with
g(p) = M−1 p was proposed in Seeßelberget al. (1994). In the absence of noise this
method coincides with a deterministic symplectic method but in the stochastic case the
method of Seeßelberget al. (1994) is not symplectic (also see similar methods in Tretyakov
& Tret’jakov, 1994). Here we demonstrate an efficiency of symplectic integrators proposed
in the present paper in comparison with ordinary (nonsymplectic) methods for SDEs.
We test four weak methods: two first-order methods (the Euler method, which is not
symplectic, and the symplectic method (4.15)–(4.16)) and two second-order methods (a
standard second-order weak method (Milstein, 1995; Kloeden & Platen, 1992) and the
symplectic method (4.17)).

The weak Euler method for (7.1) takes the form

Pk+1 = Pk − hω2 sin(Qk) − h1/2(σ1 cos(Qk)ξ1k + σ2 sin(Qk)ξ2k),

Qk+1 = Qk + h Pk,
(7.2)

whereξ1k , ξ2k are i.i.d random variables with the law (4.6).
In application to (7.1) the first-order symplectic method (4.15)–(4.16) withα = 1 is

written as

Q = Qk + h Pk,

Pk+1 = Pk − hω2 sin(Q) − h1/2(σ1 cos(Q)ξ1k + σ2 sin(Q)ξ2k), Qk+1 = Q,
(7.3)

whereξ1k , ξ2k are i.i.d random variables with the law (4.6).
The standard second-order method from Milstein (1995) and Kloeden & Platen (1992)

applied to (7.1) has the form

Pk+1 = Pk − h1/2(σ1 cos(Qk)ξ1k + σ2 sin(Qk)ξ2k) − hω2 sin(Qk)

+h3/2

2
(σ1 sin(Qk)ξ1k − σ2 cos(Qk)ξ2k)Pk − h2

2
ω2 cos(Qk)Pk, (7.4)

Qk+1 = Qk + h Pk − h3/2

2
(σ1 cos(Qk)ξ1k + σ2 sin(Qk)ξ2k) − h2

2
ω2 sin(Qk),

whereξ1k , ξ2k are i.i.d. random variables with the law (4.18).
The second-order symplectic method (4.17) is written for the system (7.1) as

Q1 = Qk + h

2
Pk, P1 = Pk − hω2 sin(Q1) − h1/2(σ1 cos(Q1)ξ1k + σ2 sin(Q1)ξ2k),

(7.5)
Pk+1 = P1, Qk+1 = Q1 + h

2
P1,

whereξ1k , ξ2k are i.i.d. random variables with the law (4.18).
Consider the quantity

E(p, q) = p2

2
− ω2 cos(q).

Its mean valueEE(P(t), Q(t)) is treated in physical literature (see e.g. Seeßelberget al.,
1994 and references therein) as a mean energy of the system. Under the assumptionσ1 =
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TABLE 1 The model (7.1). Simulation of EE(P(t), Q(t)) with P(0) = 1, Q(0) = 0, ω =
4, σ1 = σ2 = 0·3, t = 200 for various time steps h by the Euler method (7.2), the first-
order symplectic method (7.3), the standard second-order method (7.4), and the second-order
symplectic method (7.5). The exact solution is −6·5. M is a number of independent realizations
in the Monte Carlo simulation. Note that the ‘±’ reflects the Monte Carlo error only (cf. (7.7)),
it does not reflect the error of a method

h M (7.2) (7.3) (7.4) (7.5)
0·1 105 493·3 ± 0·3 −6·268± 0·059 462·2 ± 0·6 −6·316± 0·059
0·05 105 966·1 ± 0·7 −6·397± 0·059 0·896± 0·094 −6·421± 0·058
0·01 4· 106 234·5 ± 0·06 −6·503± 0·009 −6·456± 0·009 −6·502± 0·009

σ2 = σ one can obtain that

EE(P0,p,q(t), Q0,p,q(t)) = E(p, q) + σ 2

2
t . (7.6)

In Table 1 we compare results produced by the four methods given above. We have two
types of errors in numerical simulations here: error of a weak method used and a Monte
Carlo error. The results in the table are approximations ofEE(P̄(t), Q̄(t)) calculated as

EE(P̄(t), Q̄(t))
·= 1

M

M∑
m=1

E(P̄(m)(t), Q̄(m)(t)) ± 2

√
D̄M

M
, (7.7)

where

D̄M = 1

M

M∑
m=1

[E(P̄(m)(t), Q̄(m)(t))]2 −
[

1

M

M∑
m=1

E(P̄(m)(t), Q̄(m)(t))

]2

,

i.e. EE(P̄(t), Q̄(t)) belongs to the interval defined in this formula with probability 0·95
(we recall that for sufficiently smallh the sampling variance is sufficiently close to the
variance ofE(P̄(t), Q̄(t))). Note that the ‘±’ reflects the Monte Carlo error only, it does
not reflect the error of a method.

The above experiments with the model (7.1) demonstrate superiority of symplectic
methods in comparison with nonsymplectic ones. In Seeßelberget al. (1994) the system
(7.1) is also considered with coloured noise. In this case symplectic methods for
Hamiltonian systems with coloured noise given in the preprint Milstein & Tretyakov
(2002) can be exploited. We note that the authors of Seeßelberget al. (1994) are
interested in systems with small noise. Effective symplectic methods in the weak sense
for Hamiltonian systems with small noise can be obtained using ideas from Milstein &
Tretyakov (1997b) (see also Milsteinet al., 2002, 2003 where mean-square symplectic
methods for Hamiltonian systems with small noise were obtained).
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7.2 Linear oscillator with linear damping under external random excitation

Let us consider the linear oscillator with linear damping term and additive noise

dX1 = ωX2 dt

dX2 = (−ωX1 − νX2) dt + σ

ω
dw(t),

(7.8)

wherew(t) is a standard Wiener process,ω, ν, σ are positive constants. The system (7.8)
is dissipative, its invariant measureµ is GaussianN (0, R) with the density

ρ(x) = (2π)−1(detR)−1/2 exp

{
−1

2
(R−1x, x)

}
, (7.9)

whereR = (σ 2/2νω2)I is the covariance matrix for the two-dimensional processX =
(X1, X2)�, I denotes the identity matrix.

The discrete system obtained by the explicit Euler scheme has the form

X̄1
k+1 = X̄1

k + ω X̄2
k h

X̄2
k+1 = X̄2

k − (ω X̄1
k + ν X̄2

k )h + σ

ω
∆kw.

(7.10)

The eigenvalues of the homogeneous part of (7.10) are

λ1,2 = 1 − νh

2
± h

√
ν2

4
− ω2. (7.11)

Weconsider the case when the damping term is small, and that is why we suppose that

ν

2
< ω. (7.12)

If (7.12) is fulfilled, then |λ1,2|2 = 1 − νh + ω2h2, and consequently (7.10) is
asymptotically stable if and only if

h <
ν

ω2
. (7.13)

In this case, the system (7.10) possesses a unique invariant measureµh(x) with a
Gaussian densityρh(x) corresponding to the normal lawN (0, Rh) with zero mean and
the covariance matrix

Rh = σ 2

ω2

[
1 − νh/2 + ω2h2/2 −ωh/2

−ωh/2 1

]
,

where

 := 2ν − 2ω2h − ν2h + 3νω2h2

2
− ω4h3

2
.
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Due to (7.12) and (7.13), it is possible to prove that > 0. The elements ofRh can be
represented as

R j j
h = σ 2

2νω2

(
1 + ω2h

ν
+ O(hν) + O

(
h2

ν2

))
, j = 1, 2,

Ri j
h = σ 2

2νω2

(
−ωh

2
− ω3h2

2ν
+ O(h2ν) + O

(
h3

ν2

))
, i 
= j,

where, for instance,O

(
h2

ν2

)
satisfies the inequality

∣∣∣∣∣O
(

h2

ν2

)∣∣∣∣∣ � C
h2

ν2
for all ν > 0, h >

0 such that the ratioh/ν is sufficiently small, andC is a positive number.
Therefore, if one would like to approximateµ(x) by µh(x) quite accurately, then the

steph must be essentially less thanν/ω2, i.e. just the fulfillment of the stability condition
(7.13) is not enough. Suppose that our aim is to evaluate∫

|x |2 dµ(x) =
∫

|x |2ρ(x) dx = lim
T →∞ E |Xx (T )|2,

whereXx (t) is the solution of (7.8) withXx (0) = x .
We can approximate the limit byE |Xx (T )|2 under a sufficiently largeT . To evaluate

E |Xx (T )|2 by the explicit Euler method, we need to performN = T/h steps of (7.10).
If the damping factorν is small then the timeT is rather large and the steph of the Euler
method should be very small to satisfy the above conditionh � ν/ω2. Consequently, the
numberN is huge, and the Euler method is not appropriate for numerical solution of this
problem under smallν.

Let us apply the implicit Euler method to system (7.8):

X̄1
k+1 = X̄1

k + ω X̄2
k+1h

X̄2
k+1 = X̄2

k − (ω X̄1
k+1 + ν X̄2

k+1)h + σ

ω
∆kw.

(7.14)

The eigenvalues of the homogeneous part of (7.14) are

λ1,2 = 1 − νh + 2ω2h2

2(1 + νh + ω2h2)
±

√
ν2h2 − 4ω2h2

2(1 + νh + ω2h2)
.

Under (7.12), the eigenvalues are again complex numbers and

|λ1,2|2 = 1 − νh + ω2h2

1 + νh + ω2h2
.

Therefore, in contrast to the explicit Euler method, we do not need any restriction onh
for asymptotic stability. This can give rise to the illusion about a possibility to choose a
comparatively big steph in the implicit Euler scheme. However, the coming evaluations
show that such an illusion is very dangerous. Indeed, the system (7.14) possesses a unique
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invariant measureµh(x) corresponding to the normal lawN (0, Rh) with zero mean and
the covariance matrixRh with the elements

R j j
h = σ 2

2νω2

(
1 − ω2h

ν
+ O(hν) + O

(
h2

ν2

))
, j = 1, 2,

Ri j
h = σ 2

2νω2

(
ωh

2
− ω3h2

2ν
+ O(h2) + O

(
h3

ν2

))
, i 
= j,

and we are again forced to take a very smallh to reach a satisfactory accuracy.
Now let us use the quasi-symplectic method based on the one-step approximation (2.7)

with P̄I , Q̄I from (2.12) withα = 0. For simplicity we takeP̄II = p − hνp instead of the
exact PII . As aresult, we get

X̄1
k+1 = X̄1

k + ωh(X̄2
k − ωh X̄1

k )

X̄2
k+1 =

(
X̄2

k − ωh X̄1
k + σ

ω
∆kw

)
(1 − νh).

(7.15)

In this case, if

ν

2
< ω − ω2h

2
,

the eigenvaluesλ1,2 are complex and

|λ1,2|2 = 1 − νh.

For all not too largeh the system (7.15) is asymptotically stable and possesses a unique
invariant measure with a Gaussian density. The corresponding normal law has zero mean
and the covariance matrix with the elements

R11
h = σ 2

2νω2
(1 − 2νh + O(h2)), R22

h = σ 2

2νω2

(
1 − 3

2
νh + O(h2)

)
,

Ri j
h = σ 2

2νω2

(
ωh

2
− 5

4
ωνh2 + O(h3)

)
, i 
= j .

We see that the implicit Euler method has advantages in comparison with the explicit
Euler method due to its better stability properties. But both of them require too small a
step to reach a sufficient accuracy, in particular ifν is small. At the same time, the quasi-
symplectic method (7.15) gives very good results for very big steps. This is important,
for instance, for the problem of computing a mean due to an invariant law which needs
numerical integration on very long time intervals.
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7.3 An oscillator with cubic restoring force under external random excitation

Consider the oscillator with cubic restoring force and additive noise (cf. (2.1) withU0(q) =
1

4
q4 − 1

2
q2):

Q̈ = Q − Q3 − ν Q̇ + σẇ. (7.16)

The dynamical system (7.16) is ergodic (see e.g. Mattinglyet al., 2002) and its invariant
measure has the density

ρ(p, q) = C exp

(
− ν

σ 2

(
p2 + 1

2
q4 − q2

))
, (7.17)

whereC is defined by the normalization condition.
Here we compare an implicit quasi-symplectic method and the implicit Euler scheme.

We use the implicit quasi-symplectic method based on the one-step approximation (2.7)
and on the weak implicit symplectic method (4.5) withα = 1/2. For simplicity we take
P̄II = p − hνp instead of the exactPII . As aresult, we get for (7.16):

P̄I = Pk + h

(
Q̄I + Qk

2
−

(
Q̄I + Qk

)3

8

)
+ h1/2σξk,

Q̄I = Qk + h(P̄I + Pk)/2, (7.18)

Pk+1 = (1 − νh)P̄I, Qk+1 = Q̄I,

whereξk are i.i.d. random variables with the law (4.6).
In application to (7.16) the weak implicit Euler scheme has the form

Pk+1 = Pk + h
(
Qk+1 − Q3

k+1 − ν Pk+1
) + h1/2σξk

Qk+1 = Qk + h Pk+1,
(7.19)

whereξk are i.i.d. random variables with the law (4.6).
Figure 1 gives results of evaluation ofE (Q(T ))2 for a largeT by these two methods.

We see that even for such a small step ash = 0·01 the implicit Euler method tends to
a wrong limit with increasingT , while the quasi-symplectic method gives quite accurate
results, e.g. forh = 0·25.

Now consider theexplicit quasi-symplectic method based on the one-step approxima-
tion (2.7) and on the weak explicit symplectic method (4.15)–(4.16) withα = 0. We take
P̄II = p − hνp instead of the exactPII again. This method for (7.16) is written as

Pk+1 = (1 − νh)
(
Pk + h

(
Qk − Q3

k

) + h1/2σξk
)

Qk+1 = Qk + h
(
Pk + h

(
Qk − Q3

k

))
.

(7.20)

Since this quasi-symplectic method is explicit, it is much simpler than (7.18). However,
for comparatively largeh the difference system (7.20) has unstable behaviour (e.g. forν, σ
as in Fig. 1 andh = 0·2). Most likely, for all sufficiently smallh the system (7.20) acquires
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FIG. 1. The oscillator with cubic restoring force (7.16). Behaviour ofE(Q(T ))2 with P(0) = 0, Q(0) = 0,
ν = 0·05, σ = 1, h = 0·25 (left) andh = 0·01 (right) on the time intervalt � 120 in the case of the weak
implicit Euler method (7.19) (dashed line) and the weak quasi-symplectic method (7.18) (solid line). The Monte
Carlo error is not greater than 0·005 with probability 0·95. The dotted line presents the limit value ofE(Q(T ))2

asT → ∞ evaluated due to
∫ ∞
−∞

∫ ∞
−∞ q2ρ(p, q) dp dq with the invariant measureρ(p, q) from (7.17). This

value is equal to 2·435.

stable behaviour (of course, this assertion requires further investigation). For instance,
E Q̄2(T ) obtained by (7.20) forν, σ as in Fig. 1 andh = 0·1 visually coincides with
the results obtained by the implicit quasi-symplectic method (7.18). Thus, even an explicit
quasi-symplectic method can effectively be used for solution of Langevin equations on
long time intervals, in contrast to the implicit Euler method which is more complicated
than (7.20).
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