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Abstract. Stochastic Hamiltonian systems with multiplicative noise, phase flows of which
preserve symplectic structure, are considered. To construct symplectic methods for such systems,
sufficiently general fully implicit schemes, i.e., schemes with implicitness both in deterministic and
stochastic terms, are needed. A new class of fully implicit methods for stochastic systems is proposed.
Increments of Wiener processes in these fully implicit schemes are substituted by some truncated
random variables. A number of symplectic integrators is constructed. Special attention is paid to
systems with separable Hamiltonians. Some results of numerical experiments are presented. They
demonstrate superiority of the proposed symplectic methods over very long times in comparison with
nonsymplectic ones.
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1. Introduction. Consider the following Cauchy problem for the system of
stochastic differential equations (SDEs) in the sense of Stratonovich:

dP = f(t, P,Q)dt+

m∑
r=1

σr(t, P,Q) ◦ dwr(t), P (t0) = p,(1.1)

dQ = g(t, P,Q)dt+

m∑
r=1

γr(t, P,Q) ◦ dwr(t), Q(t0) = q,

where P, Q, f, g, σr, γr are n-dimensional column vectors with the components P
i,

Qi, f i, gi, σir, γ
i
r, i = 1, . . . , n, and wr(t), r = 1, . . . ,m, are independent standard

Wiener processes. The diffusion coefficients σr, γr depend on P, Q (i.e., (1.1) is a
system with multiplicative noise), in contrast to [3], where stochastic systems with
additive noise are treated.

We suppose that all the coefficients of considered systems are sufficiently smooth
functions defined for (t, p, q) ∈ [t0, t0+T ]×Rd, d = 2n, and they provide the property
of extendability of solutions to the interval [t0, t0+T ]. (Additional conditions in con-
nection with considered methods consist of appropriate behavior of partial derivatives
of the coefficients on infinity.)

We denote by X(t; t0, x) = (P
�(t; t0, p, q), Q�(t; t0, p, q))�, t0 ≤ t ≤ t0 + T, the

solution of problem (1.1). A more detailed notation is X(t; t0, x;ω), where ω is an
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elementary event. It is known that X(t; t0, x;ω) is a phase flow (diffeomorphism) for
almost every ω. See its properties in, e.g., [1, 2].

If there are functions Hr(t, p, q), r = 0, . . . ,m, such that (see [1] and [3])

f i(t, p, q) = −∂H0/∂q
i, gi(t, p, q) = ∂H0/∂p

i,(1.2)

σir(t, p, q) = −∂Hr/∂q
i, γir(t, p, q) = ∂Hr/∂p

i, i = 1, . . . , n, r = 1, . . . ,m,

then the phase flow of (1.1) preserves the following symplectic structure:

dP ∧ dQ = dp ∧ dq;(1.3)

i.e., the sum of the oriented areas of projections onto the coordinate planes (p1, q1), . . . ,
(pn, qn) is an integral invariant [4]. To avoid confusion, we note that the differentials
in (1.1) and (1.3) have different meanings. In (1.1) P, Q are treated as functions of
time and p, q are fixed parameters, while differentiation in (1.3) is made with respect
to the initial data p, q.

Let Pk, Qk, k = 0, . . . , N, tk+1 − tk = hk+1, tN = t0 + T, be a method for (1.1)
based on the one-step approximation P̄ = P̄ (t + h; t, p, q), Q̄ = Q̄(t + h; t, p, q). We
say that the method preserves symplectic structure if

dP̄ ∧ dQ̄ = dp ∧ dq .(1.4)

The present paper deals with symplectic integration of the Hamiltonian system
with multiplicative noise (1.1), (1.3). It is a continuation of [3], where symplectic
methods for Hamiltonian systems with additive noise were proposed. For symplectic
integration of deterministic Hamiltonian systems see, e.g., [5, 6, 7, 8, 9] and references
therein.

As is known [5], in the case of deterministic general Hamiltonian systems sym-
plectic Runge–Kutta (RK) methods are all implicit. Hence it is natural to expect that
to construct symplectic methods for general Hamiltonian systems with multiplicative
noise fully implicit methods are needed. The known implicit methods for stochastic
systems with multiplicative noise (see [10, 11]) contain implicitness in deterministic
terms only. In [12] an implicitness is introduced in stochastic terms as well. However,
the methods of [12] are of a very special form. In section 2 a new class of fully implicit
methods for general stochastic systems is proposed. Increments of Wiener processes
in these implicit schemes are substituted by some truncated random variables. They
are important for both theory and practice of numerical integration of SDEs. We use
these fully implicit methods in section 3 to construct symplectic methods for gen-
eral Hamiltonian systems with multiplicative noise. Section 4 is devoted to a special
case of separable Hamiltonians. Explicit symplectic integrators are constructed for
such systems. In addition, symplectic methods for Hamiltonian systems with small
multiplicative noise can be found in the preprint [13]. There one can also find some
Liouvillian methods for stochastic systems preserving phase volume. Let us recall
that the mean-square methods of higher order contain repeated Ito integrals which
are difficult for simulation. In this paper, we prefer to derive methods which are
efficient with respect to simulation of the used random variables. That is why orders
of the methods derived are not too high. In the last section of the paper we present
numerical tests. They clearly demonstrate superiority of the proposed symplectic
methods over very long times in comparison with nonsymplectic ones.

2. Fully implicit methods. Construction of implicit methods for stochastic
systems with additive noise does not cause any difficulties in principle. However, all
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is much more intricate in the case of stochastic systems with multiplicative noise. The
known implicit methods for such systems (see [10, 11]) contain implicitness restricted
to deterministic terms, e.g., to the drift terms in the implicit Euler scheme. In [12],
an implicitness is introduced in stochastic terms as well. However, methods of [12]
are of a very special form. In particular, this form does not allow us to construct
symplectic methods for stochastic Hamiltonian systems with multiplicative noise. In
this section we construct a sufficiently large class of fully implicit methods of mean-
square order 1/2 for general stochastic systems. These results are of independent
and general interest. That is why in this section we consider SDEs in the Ito sense,
following the traditional way of developing numerical methods. At the same time
we should note that the Stratonovich form is preferable for SDEs preserving integral
invariants.

2.1. The main idea and an example. Let us start with an example. Consider
the Ito scalar equation

dX = σXdw(t).(2.1)

The one-step approximation of the Euler method X̂ for (2.1) is

X̂ = x+ σx∆w(h).(2.2)

We can represent this approximation in the form

X̂ = x+ σX̂∆w + σ(x− X̂)∆w = x− σ2x(∆w)2 + σX̂∆w.

As h is small, (∆w)2 ∼ h, and we obtain the following “natural” implicit method:
X̃ = x− σ2xh+ σX̃∆w(h).(2.3)

However, this method cannot be realized since 1 − σ∆w(h) can vanish for any
small h. Further, for the formal value of X̃ from (2.3)

X̃ =
x(1− σ2h)

1− σ∆w(h) ,

we have E|X̃| =∞. (See [10].) Clearly, the method (2.3) is not suitable. The reason
for this is the unboundedness of the random variable ∆w(h) for any arbitrarily small
h.

Our basic idea consists of replacement of ∆w(h) = ξ
√
h, where ξ is an N (0, 1)-

distributed random variable, by another random variable ζ
√
h = ζh

√
h such that ζ

√
h

is bounded and the Euler type method

X̌ = x+ σxζ
√
h(2.4)

is of the mean-square order 1/2 as well. To achieve this, it is sufficient to require

E(X̌ − X̂) = O(h3/2), E(X̌ − X̂)2 = O(h2).(2.5)

We take a symmetric ζ. Then E(X̌− X̂) = 0. To satisfy the second equation in (2.5),
the condition E(ζh − ξ)2 = O(h) is sufficient.

We shall require a stronger inequality,

E(ζh − ξ)2 ≤ hk, k ≥ 1.(2.6)
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For Ah > 0 let

ζh =




ξ, |ξ| ≤ Ah,
Ah, ξ > Ah,

−Ah, ξ < −Ah.
(2.7)

Since

E(ζh − ξ)2 = 2√
2π

∫ ∞

Ah

(x−Ah)
2e−x2/2dx

=
2√
2π
e−A2

h/2

∫ ∞

Ah

y2e−y2/2e−Ahydy < e−A2
h/2,

the inequality (2.6) is fulfilled if e−A2
h/2 ≤ hk, i.e., A2

h ≥ 2k| lnh|. Thus, if

Ah =
√
2k| lnh|, k ≥ 1,

then the method based on the one-step approximation (2.4) has the mean-square
order 1/2.

Lemma 2.1. Let Ah =
√
2k| lnh|, k ≥ 1, and ζh be defined by (2.7). Then the

following inequality holds:

0 ≤ E(ξ2 − ζ2h) = 1− Eζ2h ≤
(
1 + 2

√
2k| lnh|

)
hk.(2.8)

Proof. We have

1− Eζ2h =
2√
2π

∫ ∞

Ah

(x2 −A2
h)e

−x2/2dx

=
2√
2π

∫ ∞

Ah

[
(x−Ah)

2 + 2Ah(x−Ah)
]
e−x2/2dx

≤ e−A2
h/2 +

4Ah√
2π

∫ ∞

Ah

xe−x2/2dx = e−A2
h/2

(
1 +

4Ah√
2π

)
≤ (1 + 2Ah)e

−A2
h/2,

whence (2.8) follows.
Now consider the following implicit method (for definiteness we put k = 1 and

Ah =
√
2| lnh|):

X̄ = x− σ2xh+ σX̄ζh
√
h,(2.9)

X̄ =
x(1− σ2h)

1− σζh
√
h
.

Since |ζh| ≤
√
2| lnh|, this method is realizable for all h satisfying the inequality

2h| lnh| < 1

σ2
.(2.10)

Proposition 2.2. The method (2.9) is of the mean-square order 1/2.
Proof. Let us compare method (2.9) with the Euler method (2.2). We get

EX̄ = x(1− σ2h)E

∞∑
m=0

σmζmh h
m/2 = x(1− σ2h)E

∞∑
m=0

σ2mζ2mh hm.
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It is obvious from here that the principal term in the expansion of E(X̄ − X̂) is equal
to xσ2h(Eζ2h − 1). Due to Lemma 2.1, we obtain for all sufficiently small h

|E(X̄ − X̂)| ≤ C|x|σ2
(
1 + 2

√
2| lnh|

)
h2,(2.11)

where C is a positive constant.
Further,

E(X̄ − X̂)2 = E
(
−σ2xh+ σX̄ζh

√
h− σxξ

√
h
)2

(2.12)

≤ 2σ4x2h2 + 2E
(
σX̄ζh

√
h− σxξ

√
h
)2

= 2σ4x2h2 + 2E
(
σ ·
(
x− σ2xh+ σX̄ζh

√
h
)
ζh

√
h− σxξ

√
h
)2

≤ 2σ4x2h2 + 2σ2x2hE(ζh − ξ)2 + C1x
2h2 ≤ C2x

2h2

for all sufficiently small h and some positive constants C1 and C2. The inequalities
(2.11) and (2.12) imply the mean-square convergence of implicit method (2.9) with
order 1/2.

Introduction of implicitness in the stochastic term leads to the appearance of
the compensating term −σ2xh in (2.9). This can be explained in the following way.
Since X̄ must be close to x + σxζh

√
h, the expression x + σX̄ζh

√
h is close to x +

σxζh
√
h + σ2xζ2hh. Consequently, making use of the compensating term results in

x + σX̄ζh
√
h − σ2xh = x + σxζh

√
h + σ2x(ζ2h − 1)h ≈ x + σxζh

√
h; i.e., we get the

correct result.
Now let us consider the expression σ((1−β)x+βX̄)ζh

√
h which introduces implic-

itness in the stochastic term with the parameter 0 ≤ β ≤ 1. Clearly, the compensating
term in this case is equal to −σ2βxh. Thus, we derive the following method:

X̄ = x− σ2βxh+ σ((1− β)x+ βX̄)ζh
√
h, 0 ≤ β ≤ 1.(2.13)

The following proposition can be proved analogously to Proposition 2.2.
Proposition 2.3. The method (2.13), as well as the methods

X̄ = x− σ2βxζ2hh+ σ((1− β)x+ βX̄)ζh
√
h, 0 ≤ β ≤ 1,(2.14)

X̄ = x− σ2β((1− α)x+ αX̄)h+ σ((1− β)x+ βX̄)ζh
√
h, 0 ≤ α, β ≤ 1,(2.15)

are of the mean-square order 1/2.

2.2. Convergence theorem. Now we are in position to introduce fully implicit
methods for general systems of SDEs. For simplicity in writing we deal here with the
following scalar Ito SDE:

dX = a(t,X)dt+ b(t,X)dw(t).(2.16)

We suppose that a(t, x), b(t, x), ∂b
∂x (t, x) are continuous for t0 ≤ t ≤ T, x ∈ R,

and there exists a positive constant L such that

|a(t, y)− a(t, x)| ≤ L|y − x|,
∣∣∣∣ ∂b∂x (t, x)

∣∣∣∣ ≤ L, t0 ≤ t ≤ T, x, y ∈ R.(2.17)

Note that below the same letter L (or K, or C) is used for various constants.
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Consider the implicit one-step approximation (cf. (2.9))

X̄ = x+ a(t, X̄)h− b(t, x) ∂b
∂x
(t, x)h+ b(t, X̄)ζh

√
h,(2.18)

where ζh is defined by (2.7) with Ah =
√
2| lnh| for definiteness.

Lemma 2.4. There exist constants K > 0 and h0 > 0 such that for any h ≤
h0, t0 ≤ t ≤ T, x ∈ R (2.18) has a unique solution X̄ which satisfies the inequality

|X̄ − x| ≤ K(1 + |x|)
(
|ζh|

√
h+ h

)
.(2.19)

The solution X̄ of (2.18) can be found by the method of simple iteration with x
as the initial approximation.

Proof. For any fixed t, x, and h, let us introduce the function

ϕ(z) = x+ a(t, z)h− b(t, x) ∂b
∂x
(t, x)h+ b(t, z)ζh

√
h.

Then (2.18) can be written as

X̄ = ϕ(X̄).

There is a positive constant C such that for any z ∈ R

|ϕ(z)− x| ≤ |a(t, x)|h+ |a(t, z)− a(t, x)|h+ |b(t, x)||ζh|
√
h+ |b(t, z)− b(t, x)||ζh|

√
h

+

∣∣∣∣b(t, x) ∂b∂x (t, x)
∣∣∣∣h ≤ C(1 + |x|)

(
|ζh|

√
h+ h

)
+ L|z − x|

(
|ζh|

√
h+ h

)
.

Further, for any z1, z2 ∈ R

|ϕ(z2)− ϕ(z1)| ≤ L|z2 − z1|
(
|ζh|

√
h+ h

)
.

Clearly, there exist positive constants K and h0 such that for any h ≤ h0, x ∈ R

L
(
|ζh|

√
h+ h

)
< 1,

and if

|z − x| ≤ K(1 + |x|)
(
|ζh|

√
h+ h

)
,

then

|ϕ(z)− x| ≤ K(1 + |x|)
(
|ζh|

√
h+ h

)
.

Let us note that the constants K in the last two inequalities are the same. Now the
lemma follows from the contraction mapping principle.

In addition to (2.17) suppose that there exist continuous ∂a/∂t, ∂b/∂t, and
∂2b/∂x2 and the inequalities∣∣∣∣∂a∂t (t, x)

∣∣∣∣ ≤ L(1 + |x|),
∣∣∣∣∂b∂t (t, x)

∣∣∣∣ ≤ L(1 + |x|), t0 ≤ t ≤ T, x ∈ R(2.20)

hold.
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Theorem 2.5. Assume (2.17) and (2.20). Let there exist δ > 0 such that if
|y − x| ≤ δ(1 + |x|), then the inequality∣∣∣∣b(t, x) ∂2b

∂x2
(t, y)

∣∣∣∣ ≤ L, t0 ≤ t ≤ T(2.21)

holds.
Then the implicit method based on the one-step approximation (2.18) converges

in mean-square with the order 1/2.
Proof. Let X̂ be the Euler approximation for (2.16):

X̂ = x+ a(t, x)h+ b(t, x)∆w(h).

Using the condition (2.17) only, we get

E|X̄ − X̂|2 ≤ E
∣∣∣∣a(t, X̄)h− a(t, x)h+ b(t, X̄)ζh√h− b(t, x)∆w(h)− b(t, x) ∂b∂x (t, x)h

∣∣∣∣
2

≤ LE|a(t, X̄)− a(t, x)|2h2 + LE|b(t, X̄)− b(t, x)|2ζ2hh

+Lb2(t, x)E(ζh − ξ)2h+ L
∣∣∣∣b(t, x) ∂b∂x (t, x)

∣∣∣∣
2

h2

≤ LE|X̄ − x|2h2 + LE|X̄ − x|2ζ2hh+ L(1 + |x|)2E(ζh − ξ)2h+ L(1 + |x|)2h2.

It follows from here, Lemma 2.4, the inequality Eζ4 < Eξ4 = 3, and (2.6) that

E|X̄ − X̂|2 ≤ L(1 + |x|)2h2.(2.22)

Now let us proceed to the evaluation of E(X̄ − X̂). We have

|E(X̄ − X̂)| ≤ |Ea(t, X̄)− a(t, x)|h+
∣∣∣∣E(b(t, X̄)− b(t, x))ζh√h− b(t, x) ∂b∂x (t, x)h

∣∣∣∣ .
(2.23)

Due to Lemma 2.4, E|X̄ − x| ≤ K(1 + |x|)(E|ζh|
√
h+ h). Then

|Ea(t, X̄)− a(t, x)|h ≤ C(1 + |x|)h3/2.(2.24)

We have

(b(t, X̄)− b(t, x))ζh
√
h− b(t, x) ∂b

∂x
(t, x)h(2.25)

=
∂b

∂x
(t, x+ θ(X̄ − x)) · (X̄ − x)ζh

√
h− b(t, x) ∂b

∂x
(t, x)h

=
∂b

∂x
(t, x+ θ(X̄ − x)) ·

(
a(t, X̄)h+ b(t, X̄)ζh

√
h− b(t, x) ∂b

∂x
(t, x)h

)
ζh

√
h

− b(t, x) ∂b
∂x
(t, x)h

=
∂b

∂x
(t, x+ θ(X̄ − x)) ·

(
a(t, X̄)− b(t, x) ∂b

∂x
(t, x)h

)
ζhh

3/2

+
∂b

∂x
(t, x+ θ(X̄ − x)) · b(t, X̄)ζ2hh− b(t, x)

∂b

∂x
(t, x)h,
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where 0 ≤ θ ≤ 1.
Since |X̄ − x| ≤ ρ(1 + |x|), where ρ → 0 as h → 0, we get |X̄| ≤ |x|+ |X̄ − x| ≤

K(1 + |x|) for all sufficiently small h. Therefore∣∣∣∣E ∂b∂x (t, x+ θ(X̄ − x)) · a(t, X̄)ζhh3/2

∣∣∣∣ ≤ KE|a(t, X̄)ζh|h3/2(2.26)

≤ KE(1 + |X̄|)|ζh|h3/2 ≤ K(1 + |x|)h3/2.

Clearly, ∣∣∣∣E ∂b∂x (t, x+ θ(X̄ − x)) · b(t, x) ∂b
∂x
(t, x)ζhh

3/2

∣∣∣∣ ≤ K(1 + |x|)h3/2.

Let us estimate the last two terms in (2.25). We obtain

∂b

∂x
(t, x+ θ(X̄ − x)) · b(t, X̄)ζ2hh− b(t, x)

∂b

∂x
(t, x)h

=

(
∂b

∂x
(t, x+ θ(X̄ − x))− ∂b

∂x
(t, x)

)
b(t, X̄)ζ2hh

+
∂b

∂x
(t, x)(b(t, X̄)− b(t, x))ζ2hh+

∂b

∂x
(t, x)b(t, x)(ζ2h − 1)h

=
∂2b

∂x2
(t, x+ θ1(X̄ − x)) · θ(X̄ − x) · b(t, X̄)ζ2hh

+
∂b

∂x
(t, x)

∂b

∂x
(t, x+ θ(X̄ − x)) · (X̄ − x)ζ2hh+

∂b

∂x
(t, x)b(t, x)(ζ2h − 1)h,

where 0 ≤ θ, θ1 ≤ 1. Due to Lemma 2.4, we get |x + θ1(X̄ − x) − X̄| ≤ |X̄ − x| ≤
K(|ζh|

√
h + h)(1 + |x|). For all sufficiently small h we have K(|ζh|

√
h + h) < δ and

consequently due to (2.21)∣∣∣∣ ∂2b

∂x2
(t, x+ θ1(X̄ − x)) · b(t, X̄)

∣∣∣∣ ≤ L.(2.27)

Using (2.27), the conditions (2.17), and Lemmas 2.1 and 2.4, we obtain for the
last two terms in (2.25)∣∣∣∣E ∂b∂x (t, x+ θ(X̄ − x)) · b(t, X̄)ζ2hh− b(t, x)

∂b

∂x
(t, x)h

∣∣∣∣ ≤ K(1 + |x|)h3/2.(2.28)

Thus, (2.23)–(2.28) give

|E(X̄ − X̂)| ≤ K(1 + |x|)h3/2.(2.29)

It follows from (2.22) and (2.29) (see [10]) that the method based on (2.18) is of
the mean-square order 1/2.

Remark 2.1. The condition (2.21) is satisfied if, for instance,

|b(t, x)| ≤ L,
∣∣∣∣ ∂2b

∂x2
(t, x)

∣∣∣∣ ≤ L, t0 ≤ t ≤ T, x ∈ R(2.30)

or ∣∣∣∣ ∂2b

∂x2
(t, x)

∣∣∣∣ ≤ L

1 + |x| , t0 ≤ t ≤ T, x ∈ R(2.31)
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holds.
Let us underline that the conditions of Theorem 2.5 are not necessary and the

method is applicable more widely. This is true for other methods proposed in the
paper as well.

Remark 2.2. Let the function c(t, x) := b(t, x) ∂b∂x (t, x) satisfy the condition

|c(t, y)− c(t, x)| ≤ L|y − x|.(2.32)

Consider the implicit one-step approximation

X̄ = x+ a(t, X̄)h− b(t, X̄) ∂b
∂x
(t, X̄)h+ b(t, X̄)ζh

√
h.(2.33)

It is not difficult to prove that Theorem 2.5 is true for the implicit method based
on (2.33) provided (2.32) is fulfilled.

2.3. General construction. Let

dXi = ai(t,X)dt+

m∑
r=1

bir(t,X)dwr(t), i = 1, . . . , d.(2.34)

Introduce the following one-step approximation:

X̄i = xi +

l∑
k=1

λika
i(t+ νikh, (1− αi

k1)x
1 + αi

k1X̄
1, . . . , (1− αi

kd)x
d + αi

kdX̄
d)h

(2.35)

+

m∑
r=1

l∑
k=1

µirkb
i
r(t+ ν

i
rkh, (1− βirk1)x

1 + βirk1X̄
1, . . . , (1− βirkd)xd + βirkdX̄d)ζrh

√
h

+Ai,

where 0 ≤ ν, α, β ≤ 1, λ, µ ≥ 0,
∑l

k=1 λ
i
k = 1,

∑l
k=1 µ

i
rk = 1, i = 1, . . . , d, l is a

positive integer, and Ai are some expressions to be found. Substituting the Euler-type
approximation

X̂j = xj + aj(t, x)h+

m∑
s=1

bjs(t, x)ζsh
√
h

instead of X̄j , j = 1, . . . , d, in bir, we obtain

bir(t+ ν
i
rkh, (1− βirk1)x

1 + βirk1X̄
1, . . . , (1− βirkd)xd + βirkdX̄d)

≈ bir(t, x) +
d∑

j=1

∂bir
∂xj

(t, x)βirkj

m∑
s=1

bjs(t, x)ζsh
√
h.

It is clear from here that either

Ai = −
m∑
r=1

l∑
k=1

µirk

d∑
j=1

∂bir
∂xj

(t, x)βirkj

m∑
s=1

bjs(t, x)ζsh
√
hζrh

√
h(2.36)

or

Ai = −
m∑
r=1

l∑
k=1

µirk

d∑
j=1

∂bir
∂xj

(t, x)βirkjb
j
r(t, x)h(2.37)
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can be put in (2.35).
Substituting one of these expressions in (2.35), we obtain a multiparameter family

of implicit methods. It is also possible to introduce implicitness in Ai by changing t, x
as it was done in the terms connecting with ai. Moreover, the family can be extended
if some ai or bir are represented as sums of terms. In this case the coefficients λ,
ν, α, µ, β can differ for different terms.

It can be proved that under appropriate conditions of smoothness and bound-
edness on the coefficients of (2.34) the method based on the one-step approximation
(2.35) with Ai as in (2.36) or (2.37) is of the mean-square order 1/2. The proof is
analogous to the proof of Theorem 2.5.

Here and below we will not precisely indicate conditions on the coefficients a and
br assuming that appropriate conditions on the coefficients hold. These conditions
can be restored using the general theory [10] and Theorem 2.5. (See also Remarks 2.1
and 2.2.)

Let us give an example of fully implicit methods:

X̄ = x+ a(t, X̄)h−
m∑
r=1

d∑
j=1

∂br
∂xj

(t, X̄)bjr(t, X̄)h+

m∑
r=1

br(t, X̄)ζrh
√
h.

Further, in the case of SDEs in the sense of Stratonovich,

dX = a(t,X)dt+

m∑
r=1

br(t,X) ◦ dwr(t),(2.38)

we construct the following derivative-free fully implicit method (midpoint method):

Xk+1 = Xk + a

(
tk +

h

2
,
Xk +Xk+1

2

)
h+

m∑
r=1

br

(
tk,
Xk +Xk+1

2

)
(ζrh)k

√
h.

(2.39)

For bir = 0, this method coincides with the well-known deterministic midpoint
scheme, which has the second order of convergence.

In the general case the method (2.39) is of the mean-square order 1/2. In the
commutative case, i.e., when Λibr = Λrbi (here the operator Λr := (br, ∂/∂x)), or in
the case of a system with one noise (i.e., m = 1), the midpoint method (2.39) has the
first mean-square order of convergence which is stated in the next theorem. (Its proof
is available in the preprint [13].)

Theorem 2.6. Suppose that the commutative conditions Λibr = Λrbi, i, r =
1, . . . ,m, are fulfilled. Let ζrh be defined by (2.7) with Ah =

√
4| lnh|. Then the

method (2.39) for the system (2.38) has the first mean-square order of convergence.

3. Symplectic methods for the general Hamiltonian system. Here, using
the results of the previous section, we construct symplectic methods for the general
Hamiltonian system with multiplicative noise (1.1), (1.3). Its Ito form reads

dP = fdt+
1

2

m∑
r=1

n∑
j=1

∂σr
∂pj

σjrdt+
1

2

m∑
r=1

n∑
j=1

∂σr
∂qj

γjrdt+

m∑
r=1

σrdwr(t),(3.1)

dQ = gdt+
1

2

m∑
r=1

n∑
j=1

∂γr
∂pj

σjrdt+
1

2

m∑
r=1

n∑
j=1

∂γr
∂qj

γjrdt+

m∑
r=1

γrdwr(t).
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Introduce the following implicit method:

Pk+1 = Pk + fh− 1

2

m∑
r=1

n∑
j=1

(
∂σr
∂pj

σjr −
∂σr
∂qj

γjr

)
h+

m∑
r=1

σr · (ζrh)k
√
h,(3.2)

Qk+1 = Qk + gh− 1

2

m∑
r=1

n∑
j=1

(
∂γr
∂pj

σjr −
∂γr
∂qj

γjr

)
h+

m∑
r=1

γr · (ζrh)k
√
h,

where all the functions have t, Pk+1, Qk as their arguments.
Theorem 3.1. The implicit method (3.2) for the system (3.1), (1.3) (or for

system (1.1), (1.3)) is symplectic and of the mean-square order 1/2.
Proof. The method (3.2) belongs to the family (2.35) and, consequently, the

assertion about its order of convergence follows from the previous section. Let us prove
symplecticness of the method. It is convenient to write the one-step approximation
corresponding to (3.2) in the form

(3.3)

P̄ i = pi − ∂H0

∂qi
h− 1

2

m∑
r=1

n∑
j=1

∂2Hr

∂qi∂pj
∂Hr

∂qj
h− 1

2

m∑
r=1

n∑
j=1

∂2Hr

∂qi∂qj
∂Hr

∂pj
h−

m∑
r=1

∂Hr

∂qi
ζrh

√
h,

Q̄i = qi +
∂H0

∂pi
h+

1

2

m∑
r=1

n∑
j=1

∂2Hr

∂pi∂pj
∂Hr

∂qj
h+

1

2

m∑
r=1

n∑
j=1

∂2Hr

∂pi∂qj
∂Hr

∂pj
h+

m∑
r=1

∂Hr

∂pi
ζrh

√
h,

where i = 1, . . . , n and all the functions have t, P̄ , q as their arguments.
Introduce the following function F (t, p, q) (h, ζrh are fixed here):

F (t, p, q) = H0(t, p, q)h+
1

2

m∑
r=1

n∑
j=1

∂Hr

∂qj
(t, p, q)

∂Hr

∂pj
(t, p, q)h+

m∑
r=1

Hr(t, p, q)ζrh
√
h.

Then (3.3) can be written as

P̄ i = pi − ∂F

∂qi
(t, P̄ , q),(3.4)

Q̄i = qi +
∂F

∂pi
(t, P̄ , q).

We have (the arguments everywhere are t, P̄ , q)

n∑
i=1

dP̄ i ∧ dQ̄i =

n∑
i=1

dP̄ i ∧

dqi + n∑

j=1

F ′′
pipjdP̄ j +

n∑
j=1

F ′′
piqjdq

j




=
n∑

i=1

dP̄ i ∧ dqi +
n∑

i=1

n∑
j=1

F ′′
pipjdP̄ i ∧ dP̄ j +

n∑
i=1

n∑
j=1

F ′′
piqjdP̄

i ∧ dqj .

Since dP̄ i ∧ dP̄ j = −dP̄ j ∧ dP̄ i, we get

n∑
i=1

dP̄ i ∧ dQ̄i =

n∑
i=1

dP̄ i ∧ dqi +
n∑

i=1

n∑
j=1

F ′′
piqjdP̄

i ∧ dqj(3.5)

=

n∑
i=1

dP̄ i ∧ dqi +
n∑

i=1

n∑
j=1

F ′′
qipjdP̄ j ∧ dqi.
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Further,

dP̄ i = dpi −
n∑

j=1

F ′′
qipjdP̄ j −

n∑
j=1

F ′′
qiqjdq

j .

Substituting
∑n

j=1 F
′′
qipjdP̄ j from here in (3.5), we obtain

n∑
i=1

dP̄ i ∧ dQ̄i =

n∑
i=1

dP̄ i ∧ dqi +
n∑

i=1


dpi − dP̄ i −

n∑
j=1

F ′′
qiqjdq

j


 ∧ dqi

=

n∑
i=1

dpi ∧ dqi −
n∑

i=1

n∑
j=1

F ′′
qiqjdq

j ∧ dqi =
n∑

i=1

dpi ∧ dqi.

A more general symplectic method for the Hamiltonian system (1.1), (1.3) has
the form

Pk+1 = Pk + f(tk + βh, αPk+1 + (1− α)Pk, (1− α)Qk+1 + αQk)h(3.6)

+

(
1

2
− α

) m∑
r=1

n∑
j=1

(
∂σr
∂pj

σjr −
∂σr
∂qj

γjr

)
h+

m∑
r=1

σr · (ζrh)k
√
h,

Qk+1 = Qk + g(tk + βh, αPk+1 + (1− α)Pk, (1− α)Qk+1 + αQk)h

+

(
1

2
− α

) m∑
r=1

n∑
j=1

(
∂γr
∂pj

σjr −
∂γr
∂qj

γjr

)
h+

m∑
r=1

γr · (ζrh)k
√
h,

where σr, γr, r = 1, . . . ,m, and their derivatives are calculated at (tk, αPk+1 + (1−
α)Pk, (1− α)Qk+1 + αQk), and α, β ∈ [0, 1] are parameters.

Using arguments similar to ones in the proof of Theorem 3.1, we obtain the
following theorem.

Theorem 3.2. The implicit method (3.6) for the system (1.1), (1.3) (or for
system (3.1), (1.3)) is symplectic and of the mean-square order 1/2.

The method (3.2) is a particular case of (3.6) when α = 1, β = 0. If α = β = 1/2
the method (3.6) becomes the midpoint method (cf. (2.39)):

Pk+1 = Pk + f

(
tk +

h

2
,
Pk + Pk+1

2
,
Qk +Qk+1

2

)
h(3.7)

+
m∑
r=1

σr

(
tk,
Pk + Pk+1

2
,
Qk +Qk+1

2

)
(ζrh)k

√
h,

Qk+1 = Qk + g

(
tk +

h

2
,
Pk + Pk+1

2
,
Qk +Qk+1

2

)
h

+
m∑
r=1

γr

(
tk,
Pk + Pk+1

2
,
Qk +Qk+1

2

)
(ζrh)k

√
h.

Remark 3.1. In the commutative case, i.e., when Λibr = Λrbi, or in the case of
a system with one noise (i.e., m = 1), the symplectic method (3.7) for (1.1), (1.3) has
the first mean-square order of convergence.

Remark 3.2. In the case of Hamiltonians that are separable in the noise part,
i.e., when Hr(t, p, q) = Ur(t, q) + Vr(t, p), r = 1, . . . ,m, we can obtain symplectic



HAMILTONIAN METHODS FOR STOCHASTIC SYSTEMS 1595

methods for (1.1), (1.3) which are explicit in stochastic terms and do not need trun-
cated random variables. For instance, (3.2) acquires the form

Pk+1 = Pk + f(tk, Pk+1, Qk)h(3.8)

+
h

2

m∑
r=1

n∑
j=1

∂σr
∂qj

(tk, Qk) · γjr(Pk+1) +

m∑
r=1

σr(tk, Qk)∆kwr,

Qk+1 = Qk + g(tk, Pk+1, Qk)h

− h

2

m∑
r=1

n∑
j=1

∂γr
∂pj

(Pk+1) · σjr(tk, Qk) +

m∑
r=1

γr(tk, Pk+1)∆kwr.

Of course, if it is necessary, fully implicit methods which require truncated random
variables can be used in the case of separable Hamiltonians as well.

Remark 3.3. It is possible to construct fully explicit symplectic methods for the
following partitioned system:

dP = f(t, Q)dt+
m∑
r=1

σr(t, Q) ◦ dwr(t), P (t0) = p,(3.9)

dQ = g(P )dt+

m∑
r=1

γr(t)dwr(t), Q(t0) = q,

with f i = −∂U0/∂q
i, gi = ∂V0/∂p

i, σir = −∂Ur/∂q
i, r = 1, . . . ,m, i = 1, . . . , n.

For instance, the explicit partitioned Runge–Kutta (PRK) method (cf. (4.5)–
(4.6))

Q1 = Qk + αhg(Pk),(3.10)

P1 = Pk + hf(tk + αh,Q1) +
h

2

m∑
r=1

n∑
j=1

∂σr
∂qj

(tk,Q1) · γjr(tk),

Q2 = Q1 + (1− α)hg(P1),

Pk+1 = P1 +

m∑
r=1

σr(tk,Q2)∆kwr,(3.11)

Qk+1 = Q2 +

m∑
r=1

γr(tk)∆kwr, k = 0, . . . , N − 1,

with the parameter 0 ≤ α ≤ 1, is symplectic and of the mean-square order 1/2.
A particular case of the system (3.9) is considered in the next section, where

explicit symplectic methods of a higher order are proposed.

4. Explicit symplectic methods in the case of separable Hamiltonians.
Consider a special case of the Hamiltonian system (1.1), (1.3) such that

H0(t, p, q) = V0(p) + U0(t, q), Hr(t, p, q) = Ur(t, q), r = 1, . . . ,m.(4.1)

In this case we get the following system in the sense of Stratonovich:

dP = f(t, Q)dt+

m∑
r=1

σr(t, Q) ◦ dwr(t), P (t0) = p,(4.2)

dQ = g(P )dt, Q(t0) = q,
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with

f i = −∂U0/∂q
i, gi = ∂V0/∂p

i, σir = −∂Ur/∂q
i, r = 1, . . .m, i = 1, . . . , n.

(4.3)

We note that it is not difficult to consider a slightly more general separable Hamilto-
nian H0(t, p, q) = V0(t, p) + U0(t, q), but we restrict ourselves to H0 from (4.1).

It is obvious that the system (4.2) has the same form in the sense of Ito.
For V0(p) =

1
2 (M

−1p, p) with M a constant, symmetric, invertible matrix, the
system (4.2) takes the form

dP = f(t, Q)dt+

m∑
r=1

σr(t, Q)dwr(t), P (t0) = p,(4.4)

dQ =M−1Pdt, Q(t0) = q.

This system can be written as a second-order differential equation with multiplicative
noise. Some physical applications of stochastic symplectic integration for such systems
are discussed in [14].

Due to specific features of the system (4.2), (4.3) we have succeeded in construc-
tion of explicit partitioned Runge-Kutta (PRK) methods of a higher order.

4.1. First-order methods. A PRK method for (4.2) has the form (cf. (3.10)–
(3.11)):

Q1 = Qk + αhg(Pk), P1 = Pk + hf(tk + αh,Q1),(4.5)

Q2 = Q1 + (1− α)hg(P1),

Pk+1 = P1 +

m∑
r=1

σr(tk,Q2)∆kwr, Qk+1 = Q2, k = 0, . . . , N − 1,(4.6)

where 0 ≤ α ≤ 1 is a parameter.
Theorem 4.1. The explicit method (4.5)–(4.6) for the system (4.2) with (4.3) is

symplectic and of the first mean-square order.
Proof. In the case of the system (4.2) the operators Λr take the form Λr =

(σr, ∂/∂p). Since σr do not depend on p, we get Λiσj = 0. It is known [10] that in
such a case the Euler method has the first mean-square order of accuracy. Comparing
the method (4.5)–(4.6) with the Euler method, it is not difficult to get that the method
(4.5)–(4.6) is of the first mean-square order as well.

Due to (4.3), ∂σir/∂q
j = ∂σjr/∂q

i. Using this, we obtain dPk+1 ∧ dQk+1 = dP1 ∧
dQ2. It is easy to prove that dP1 ∧ dQ2 = dP1 ∧ dQ1 = dPk ∧ dQk. Therefore the
method (4.5)–(4.6) is symplectic.

Remark 4.1. By swapping the roles of p and q, we can propose the following
symplectic method of the first mean-square order for the system (4.2) with (4.3):

P = Pk + αhf(tk, Qk), Q = Qk + hg(P),(4.7)

Pk+1 = P + (1− α)hf(tk+1,Q) +
m∑
r=1

σr(tk,Q)∆kwr, Qk+1 = Q.(4.8)
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4.2. Methods of order 3/2. Consider the relations

Pi = p+ h

s∑
j=1

αijf(t+ cjh,Qj) +

s∑
j=1

m∑
r=1

σr(t+ djh,Qj)
(
λijϕr + µijψr

)
,(4.9)

Qi = q + h

s∑
j=1

α̂ijg(Pj), i = 1, . . . , s,

P̄ = p+ h

s∑
i=1

βif(t+ cih,Qi) +

s∑
i=1

m∑
r=1

σr(t+ dih,Qi) (νiϕr + κiψr) ,(4.10)

Q̄ = q + h

s∑
i=1

β̂ig(Pi),

where ϕr, ψr do not depend on p and q, the parameters αij , α̂ij , βi, β̂i, λij , µij , νi,
κi satisfy the conditions

βiα̂ij + β̂jαji − βiβ̂j = 0,(4.11)

νiα̂ij + β̂jλji − νiβ̂j = 0, κiα̂ij + β̂jµji − κiβ̂j = 0, i, j = 1, . . . , s,

and ci, di are arbitrary parameters.
If σr ≡ 0 the relations (4.9)–(4.10) coincide with a general form of s-stage PRK

methods for deterministic differential equations. (See, e.g., [5, p. 34].) It is known
[9, 5] that the symplectic condition holds for P̄ , Q̄ from (4.9)–(4.10) with (4.11) in
the case of σr ≡ 0. By a generalization of the proof of Theorem 6.2 from [5], we prove
the following lemma. (Another generalization is given in [3].)

Lemma 4.2. The relations (4.9)–(4.10) with conditions (4.11) preserve symplectic
structure, i.e., dP̄ ∧ dQ̄ = dp ∧ dq.

Proof. Denote for awhile: fi = f(t + cih,Qi), gi = g(Pi), σri = σr(t + dih,Qi).
We get

dP̄ ∧ dQ̄ = dp ∧ dq + h
s∑

j=1

β̂jdp ∧ dgj + h
s∑

i=1

βidfi ∧ dq + h2
s∑

i=1

s∑
j=1

βiβ̂jdfi ∧ dgj

(4.12)

+

s∑
i=1

m∑
r=1

(νiϕr + κiψr) dσri ∧ dq + h
s∑

i=1

s∑
j=1

m∑
r=1

(νiϕr + κiψr) β̂jdσri ∧ dgj .

Then we express dp ∧ dgj from

dPj ∧ dgj = dp ∧ dgj + h
s∑

i=1

αjidfi ∧ dgj +
s∑

i=1

m∑
r=1

(
λjiϕr + µjiψr

)
dσri ∧ dgj

and substitute it in (4.12). Analogously, we act with dfi ∧ dq and dσri ∧ dq finding
them from the expressions for dfi ∧ dQi and dσri ∧ dQi. As a result, using (4.11), we
obtain

dP̄ ∧ dQ̄ = dp ∧ dq + h
s∑

i=1

β̂idPi ∧ dgi + h
s∑

i=1

βidfi ∧ dQi

+

s∑
i=1

m∑
r=1

(νiϕr + κiψr) dσri ∧ dQi.
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Taking into account that the wedge product is skew-symmetric, the vector func-
tions f, g, σr are gradients, f, σr do not depend on p, and g does not depend on q, it
is not difficult to see that each of the terms dPi ∧ dgi, dfi ∧ dQi, dσri ∧ dQi vanishes.
Therefore dP̄ ∧ dQ̄ = dp ∧ dq.

Introduce the following 2-stage explicit PRK method for the system (4.2), (4.3):

Q1 = Qk, P1 = Pk +
h

4
f(tk,Q1) +

1

2

m∑
r=1

σr(tk,Q1) (3(Jr0)k −∆kwr) ,(4.13)

Q2 = Q1 +
2

3
hg(P1),

P2 = P1 +
3

4
hf

(
tk +

2

3
h,Q2

)
+
3

2

m∑
r=1

σr

(
tk +

2

3
h,Q2

)
(−(Jr0)k +∆kwr) ,

Pk+1 = P2, Qk+1 = Q2 +
h

3
g(P2), k = 0, . . . , N − 1,(4.14)

where

Jr0 :=
1

h

∫ t+h

t

(wr(ϑ)− wr(t)) dϑ.(4.15)

Theorem 4.3. The explicit PRK method (4.13)–(4.14) for system (4.2), (4.3)
preserves symplectic structure and has the mean-square order 3/2.

Proof. The method (4.13)–(4.14) has the form of (4.9)–(4.10), and its parameters
satisfy the conditions (4.11). Then, Lemma 4.2 implies that this method preserves
symplectic structure.

Now let us prove mean-square order of convergence of (4.13)–(4.14). To this end,
introduce the one-step approximation for (4.2):

P̃ = p+

m∑
r=1

σr∆wr + hf +

m∑
r=1

[
∂σr
∂t

+
n∑

i=1

gi
∂σr
∂qi

]
I0r +

h2

2

[
∂f

∂t
+

n∑
i=1

gi
∂f

∂qi

]
,

(4.16)

Q̃ = q + hg +

m∑
r=1

n∑
i=1

σir
∂g

∂pi
Ir0 +

h2

2


 n∑

i=1

f i
∂g

∂pi
+
1

2

m∑
r=1

n∑
i,j=1

σirσ
j
r

∂2g

∂pi∂pj


 ,

where

I0r =

∫ t+h

t

(ϑ− t) dwr(ϑ), Ir0 =

∫ t+h

t

(wr(ϑ)− wr(t)) dϑ = hJr0,(4.17)

and all the coefficients are calculated at (t, p, q). We note that

(∆wr − Jr0)h = I0r.
Using the general theory of numerical integration of SDEs [10], it is not difficult

to show that the method based on (4.16) is of the mean-square order 3/2. Our nearest
aim is to prove that the one-step approximation P̄ , Q̄ corresponding to the method
(4.13)–(4.14) is such that

∣∣∣∣E
[
P̄ − P̃
Q̄− Q̃

]∣∣∣∣ = O(h3),

(
E

[
P̄ − P̃
Q̄− Q̃

]2)1/2

= O(h2).(4.18)
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Expanding the right-hand sides of the approximation P̄ , Q̄ about (t, p, q), we
obtain

P̄ = p+ hf +
h2

2

∂f

∂t
+
3

4
h

n∑
i=1

∆Qi
2

∂f

∂qi
+

m∑
r=1

σr∆wr(4.19)

+
3

2

m∑
r=1

n∑
i=1

∆Qi
2

∂σr
∂qi

(∆wr − Jr0) + h
m∑
r=1

∂σr
∂t

(∆wr − Jr0) + ρ1,

Q̄ = q + hg +
h

3

n∑
i=1

(
2∆Pi

1 +∆Pi
2

) ∂g
∂pi

+
h

6

n∑
i,j=1

(2∆Pi
1∆Pj

1 +∆Pi
2∆Pj

2)
∂2g

∂pi∂pj
+ ρ2,

∆P1 := P1 − p = h

4
f +

1

2

m∑
r=1

σr (3Jr0 −∆wr) ,

∆Q2 := Q2 − q = 2

3
hg +

2

3
h

n∑
i=1

∆Pi
1

∂g

∂pi
+
h

3

n∑
i,j=1

∆Pi
1∆Pj

1

∂2g

∂pi∂pj
+ r1,

∆P2 := P2 − p = hf +
m∑
r=1

σr∆wr + r2,

where all the coefficients are calculated at (t, p, q).
Due to properties of the Wiener process and Ito integrals, we have

E∆wi = 0, E∆wi∆wj = δijh, E∆wi∆wj∆wk = 0, E (∆wi)
4
= 3h2,(4.20)

EJi0 = 0, EJi0Jj0 = δij
h

3
, EJi0Jj0Jk0 = 0, E (Ji0)

4
=
h2

3
,

E∆wiJj0 = δij
h

2
, E∆wi∆wjJk0 = 0, E∆wiJj0Jk0 = 0.

Then, under appropriate conditions on smoothness and boundedness of the coef-
ficients of (4.2), we get

|Eρi| = O(h3), E (ρi)
2
= O(h5), i = 1, 2,(4.21)

|Er1| = O(h3), E (r1)
2
= O(h5), |Er2| = O(h2), E (r2)

2
= O(h3).

In addition to (4.20) we note that

E (∆wr − Jr0) (3Jr0 −∆wr) = 0, E (3Jr0 −∆wr)
2
= h.(4.22)

Using (4.20)–(4.22), we obtain from (4.19)

P̄ = p+

m∑
r=1

σr∆wr + hf +

m∑
r=1

[
∂σr
∂t

+
n∑

i=1

gi
∂σr
∂qi

]
I0r +

h2

2

[
∂f

∂t
+

n∑
i=1

gi
∂f

∂qi

]
+R1,

Q̄ = q + hg +

m∑
r=1

n∑
i=1

σir
∂g

∂pi
Ir0 +

h2

2

[
n∑

i=1

f i
∂g

∂pi
+
1

2

m∑
r=1

n∑
i,j=1

σirσ
j
r

∂2g

∂pi∂pj

]
+R2
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with Ri, i = 1, 2, such that

|ERi| = O(h3), E (Ri)
2
= O(h4), i = 1, 2.

This implies (4.18). It follows from (4.18) that the method (4.13)–(4.14) is of the
mean-square order 3/2.

Remark 4.2. The random variables ∆kwr(h), (Jr0)k have a Gaussian joint dis-
tribution, and they can be simulated at each step by 2m independent N (0, 1)-distributed
random variables ξrk and ηrk, r = 0, . . . ,m :

∆kwr(h) = ξrk
√
h, (Jr0)k =

(
ξrk/2 + ηrk/

√
12
)√

h .

As a result, the method (4.13)–(4.14) takes the constructive form.
Remark 4.3. It is very unusual that the direct expansion of (4.13)–(4.14) does

not contain the habitual term h2

4

∑m
r=1

∑n
i,j=1

∂2g
∂pi∂pj σ

i
rσ

j
r. The similar term in the

expansion contains some combinations of ∆wr and Jr0 instead of h. (See a similar
remark in [3].)

Remark 4.4. In the case of σr = 0, r = 1, . . . ,m, the method (4.13)–(4.14)
coincides with the well-known deterministic symplectic PRK method of the second
order. Adapting other explicit deterministic second-order PRK methods from [5, 9],
it is possible to construct other explicit symplectic methods of the order 3/2 for the
system (4.2), (4.3).

Remark 4.5. In the case of a more general system than (4.2) methods of the
order 3/2 require simulation of repeated Ito integrals which is a laborious problem from
the computational point of view. We do not consider such methods in the paper. (See
also the introduction.)

Lemma 4.2 can be generalized for the general separable case, i.e., for the system
(1.1), (1.3) with Hr = Vr(p) + Ur(t, q), r = 0, 1, . . . ,m, and it can also be generalized
for the general stochastic Hamiltonian system (1.1), (1.3). In the case of systems with
one noise repeated Ito integrals can effectively be simulated, and generalizations of
Lemma 4.2 can be used for constructing high-order symplectic methods for Hamilto-
nian systems with one noise (i.e., when m = 1).

5. Numerical tests.

5.1. Kubo oscillator. The system of SDEs in the sense of Stratonovich (Kubo
oscillator)

dX1 = −aX2dt− σX2 ◦ dw(t), X1(0) = x1,(5.1)

dX2 = aX1dt+ σX1 ◦ dw(t), X2(0) = x2,

is often used for testing numerical methods. (See, e.g., [15], where some nonsymplectic
stochastic methods based on deterministic symplectic methods are used.) Here a and
σ are constants, and w(t) is a one-dimensional standard Wiener process.

The phase flow of this system preserves symplectic structure. Moreover, the

quantity H(x1, x2) =
(
x1
)2
+
(
x2
)2
is conservative for this system; i.e.,

H(X1(t), X2(t)) = H(x1, x2) for t ≥ 0.

This means that a phase trajectory of (5.1) belongs to the circle with the center at
the origin and with the radius

√H(x1, x2).
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We test here three methods. In application to (5.1) the symplectic PRK method
(3.8) takes the following form:

X1
k+1 = X

1
k − aX2

kh−
σ2

2
X1

k+1h− σX2
k∆kw,(5.2)

X2
k+1 = X

2
k + aX

1
k+1h+

σ2

2
X2

kh+ σX
1
k+1∆kw.

This method is implicit in the deterministic part only.
The midpoint method (3.7) applied to the system with one noise (5.1) reads

X1
k+1 = X

1
k − aX

2
k +X

2
k+1

2
h− σX

2
k +X

2
k+1

2
(ζh)k

√
h,(5.3)

X2
k+1 = X

2
k + a

X1
k +X

1
k+1

2
h+ σ

X1
k +X

1
k+1

2
(ζh)k

√
h.

This is a fully implicit method. Note that due to specific features of the system (5.1),
the formula (5.3) is valid (solvable) not only in the case of the truncated random
variable ζh but also if we put ∆kw instead of (ζh)k

√
h.

The method (5.3) is of the first mean-square order. The method (5.2) is of the
mean-square order 1/2 as well as the Euler method:

X1
k+1 = X

1
k − aX2

kh−
σ2

2
X1

kh− σX2
k∆kw,(5.4)

X2
k+1 = X

2
k + aX

1
kh−

σ2

2
X2

kh+ σX
1
k∆kw,

which, of course, is not symplectic.
Figure 1 gives approximations of a sample phase trajectory of (5.1) simulated by

the symplectic methods (5.2) and (5.3) and by the Euler method (5.4). The initial
condition is x1 = 1, x2 = 0. The corresponding exact phase trajectory belongs to the
circle with the center at the origin and with the unit radius.

We see that the Euler method is not appropriate for simulation of the oscilla-
tor (5.1) on long time intervals, while the symplectic methods preserve conservative
properties of the Kubo oscillator.

These experiments also demonstrate that the midpoint method is much more
accurate than the other methods applied. It is not difficult to check that H(x1, x2)
is conserved by the midpoint method (5.3), but it is not conserved by the symplectic
PRK method (5.2). This is similar to the deterministic case. Indeed, it is known [8, 5]
that symplectic deterministic RK methods (e.g., the midpoint scheme) conserve all
quadratic functions that are conserved by the Hamiltonian system being integrated,
while deterministic PRK methods do not possess this property.

5.2. A model for synchrotron oscillations of particles in storage rings.
In [14] a model describing synchrotron oscillations of particles in storage rings under
the influence of external fluctuating electromagnetic fields was considered. This model
can be written in the following form:

dP = −ω2 sin(Q)dt− σ1 cos(Q)dw1 − σ2 sin(Q)dw2,(5.5)
dQ = Pdt.

P and Q are scalars here. The system (5.5) is of the form (4.2), and therefore its
phase flow preserves symplectic structure.
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Fig. 1. A sample phase trajectory of (5.1) with X1(0) = 1, X2(0) = 0 obtained by the sym-
plectic method (5.2) (top left), the midpoint method (5.3) (top right), and by the Euler method (5.4)
(bottom) for a = 2, σ = 0.3, h = 0.02 on the time interval t ≤ 200.

The Euler method for (5.5) takes the form

Pk+1 = Pk − hω2 sin(Qk)− h1/2(σ1 cos(Qk)∆kw1 + σ2 sin(Qk)∆kw2),(5.6)

Qk+1 = Qk + hPk.

In application to (5.5) the explicit symplectic method (4.5)–(4.6) with α = 1 is written
as

Q = Qk + hPk,(5.7)

Pk+1 = Pk − hω2 sin(Q)− h1/2(σ1 cos(Q)∆kw1 + σ2 sin(Q)∆kw2), Qk+1 = Q.

Both methods are of the first mean-square order.
Approximations of a sample trajectory of (5.5) simulated by the symplectic

method (5.7) and the Euler method (5.6) are plotted on Figure 2. The trajectory
obtained by the symplectic method with h = 0.02 (solid line) visually coincides with
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0

4

8

0 20 40 60 t

Q

Fig. 2. A sample trajectory of (5.5) for ω = 2, σ1 = 0.2, σ2 = 0.1, h = 0.02. Solid line—the
symplectic method (5.7), dashed line—the Euler method (5.6).

the one obtained for a smaller step, e.g., for h = 0.002, using the same sample paths
for the Wiener processes; i.e., this trajectory visually coincides with the exact solu-
tion of (5.5). This figure clearly demonstrates that the Euler method (dashed line) is
unacceptable for simulation of the solution to (5.5) on a long time interval, while the
symplectic method (5.7) produces quite accurate results despite both methods having
the same mean-square order of accuracy.
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