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NUMERICAL ALGORITHMS FOR FORWARD-BACKWARD
STOCHASTIC DIFFERENTIAL EQUATIONS∗
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Abstract. Efficient numerical algorithms are proposed for a class of forward-backward stochas-
tic differential equations (FBSDEs) connected with semilinear parabolic partial differential equations.
As in [J. Douglas, Jr., J. Ma, and P. Protter, Ann. Appl. Probab., 6 (1996), pp. 940–968], the algo-
rithms are based on the known four-step scheme for solving FBSDEs. The corresponding semilinear
parabolic equation is solved by layer methods which are constructed by means of a probabilistic
approach. The derivatives of the solution u of the semilinear equation are found by finite differences.
The forward equation is simulated by mean-square methods of order 1/2 and 1. Corresponding con-
vergence theorems are proved. Along with the algorithms for FBSDEs on a fixed finite time interval,
we also construct algorithms for FBSDEs with random terminal time. The results obtained are
supported by numerical experiments.
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1. Introduction. Forward-backward stochastic differential equations (FBSDEs)
have numerous applications in stochastic control theory and mathematical finance
(see, e.g., [7, 5, 9, 25, 12] and references therein). Consider an FBSDE of the form

dX = a(t,X, Y )dt + σ(t,X, Y )dw(t), X(t0) = x,(1.1)

dY = −g(t,X, Y )dt− fᵀ(t,X, Y )Zdt + Zᵀdw(t), Y (T ) = ϕ(X(T )).(1.2)

Here X = X(t) and a = a(t, x, y) are d-dimensional vectors; σ = σ(t, x, y) is a d× n-
matrix; Y = Y (t), g = g(t, x, y), and ϕ = ϕ(x) are scalars; Z = Z(t) and f =
f(t, x, y) are n-dimensional vectors; and w(t) is an n-dimensional {Ft}t≥0-adapted
Wiener process, where (Ω,F ,Ft, P ), t0 ≤ t ≤ T, is a filtered probability space. It
is known (see, e.g., [1, 11, 19, 25, 12] and also references therein) that there exists
a unique {Ft}t≥0-adapted solution (X(t), Y (t), Z(t)) of the system (1.1)–(1.2) under
some appropriate smoothness and boundedness conditions on its coefficients.

Due to the four-step scheme from [11] (we recall it in the next section), the
solution of (1.1)–(1.2) is connected with the Cauchy problem for the semilinear partial
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differential equation (PDE):

∂u

∂t
+

d∑
i=1

ai(t, x, u)
∂u

∂xi
+

1

2

d∑
i,j=1

aij(t, x, u)
∂2u

∂xi∂xj
(1.3)

= −g(t, x, u) −
n∑

k=1

fk(t, x, u)

d∑
i=1

σik(t, x, u)
∂u

∂xi
, t < T, x ∈ Rd,

u(T, x) = ϕ(x),(1.4)

where

aij :=

d∑
k=1

σikσjk.

In turn the corresponding solution of the semilinear PDE has a probabilistic represen-
tation using the FBSDE (1.1)–(1.2), which is a generalization of the Feynman–Kac
formula (see, e.g., [22, 20, 19, 21, 25, 12]).

Our aim is to find an effective numerical algorithm for solving (1.1)–(1.2) in the
mean-square sense. Not many works have been devoted to numerical integration of
FBSDEs, but let us mention [4, 6, 2, 3]. Among these works, the present paper is most
closely connected with [6]. As in [6], we exploit the four-step scheme for numerical
solution of (1.1)–(1.2). Unlike [6], we use another approach for numerical solution
of the corresponding semilinear PDE (1.3)–(1.4), which is developed in [14] (see also
[16, 17, 18]).

The most significant distinction between our paper and [6] consists of numeri-
cal evaluation of Z. According to the four-step scheme, Z is expressed through first
derivatives of the solution u(t, x) to (1.3)–(1.4) with respect to xi, i = 1, . . . , d, while
finding X and Y of (1.1)–(1.2) requires knowledge of u only. In [6] the authors write
a system of semilinear PDEs for u and ∂u/∂xi, i = 1, . . . , d, and solve it numerically
in order to simulate then X, Y, and Z. This approach is rather expensive from the
computational point of view. We approximate the derivatives by finite differences;
thus we need to simulate u only. As it is proved in section 3, this approximation gives
quite accurate results.

Along with the algorithms for FBSDEs on a fixed finite time interval, we also
construct algorithms for FBSDEs with random terminal time. To the authors’ best
knowledge, numerical solution of FBSDEs with random terminal time is considered for
the first time. Let us note that in this case the approach of [6] leads to a complicated
system of boundary value problems whose numerical solution is less effective than the
algorithms proposed here.

For clarity of exposition, we state and prove our results for the one-dimensional
case (d = 1, n = 1) although it is not difficult to generalize them to any dimension.
However, since the obtained algorithms require simulation of nonlinear PDEs, they
can realistically be used in practice for solving FBSDEs with forward equation of
dimension three or lower (d ≤ 3). At the same time, the variable Y can be of a high
dimension; in such a case we shall deal with a system of semilinear parabolic PDEs
instead of (1.3)–(1.4).

Let us note that in [6] a more general FBSDE than (1.1)–(1.2) is considered; it
is connected with quasi-linear parabolic equations. We will consider this case in a
separate publication.
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In section 2 we recall the four-step scheme due to [11] and the probabilistic ap-
proach to numerical solution of the Cauchy problem (1.3)–(1.4) from [14] (see also
[18]). In section 3 we obtain some results concerning accuracy of approximating deriva-
tives ∂u/∂xi by finite differences. In section 4 we prove the mean-square convergence
of the Euler method for FBSDEs when using the approximations of u and ∂u/∂x given
in the previous two sections. Sections 5 and 6 are devoted to FBSDEs with random
terminal time (see e.g., [19, 25] and references therein). In these sections we have to
consider the Dirichlet boundary value problem for semilinear parabolic PDEs instead
of (1.3)–(1.4). For solving the Dirichlet problem we use the probabilistic approach
again [16, 18], and for simulating solutions of FBSDEs with random terminal time
we use the approximations of SDEs in space-time bounded domains [15, 18]. We also
consider the case of unbounded random terminal time, which is connected with the
Dirichlet boundary value problem for semilinear elliptic PDEs. The results obtained
are supported by numerical experiments which are presented in section 7.

2. Preliminaries.

2.1. Four-step scheme for solving FBSDEs. First we recall the four-step
scheme for solving FBSDE (1.1)–(1.2) [11]. Assume that the solution u(t, x) of the
Cauchy problem (1.3)–(1.4) is known. Consider the following SDE:

dX = a(t,X, u(t,X))dt + σ(t,X, u(t,X))dw(t), X(t0) = x.(2.1)

Let X(t) = Xt0,x(t) be a solution of the Cauchy problem (2.1). Introduce

Y (t) = u(t,Xt0,x(t)),(2.2)

Zj(t) =

d∑
i=1

σij(t,Xt0,x(t), Y (t))
∂u

∂xi
(t,Xt0,x(t)), j = 1, . . . , n.

It turns out that (X(t), Y (t), Z(t)) defined by (2.1)–(2.2) is the solution of the FBSDE
(1.1)–(1.2). Indeed, it is {Ft}t≥0-adapted and (1.1) is evidently satisfied. To verify
(1.2), it suffices to apply Ito’s formula to Y (t) = u(t,Xt0,x(t)).

2.2. Layer methods for PDEs. Now we recall layer methods for solving the
problem (1.3)–(1.4) due to [14] (see also [18]). For simplicity in writing, we restrict
ourselves to a one-dimensional version of the problem (d = 1, n = 1). Introducing

b(t, x, y) := a(t, x, y) + f(t, x, y)σ(t, x, y),

we get

∂u

∂t
+ b(t, x, u)

∂u

∂x
+

1

2
σ2(t, x, u)

∂2u

∂x2
+ g(t, x, u) = 0, t < T, x ∈ R,(2.3)

u(T, x) = ϕ(x) .(2.4)

The solution to this problem is supposed to exist, be unique, be sufficiently
smooth, and satisfy some conditions on boundedness. One can find theoretical re-
sults on this topic in [10, 23, 8, 24] (see also references therein). For convenience, we
shall assume throughout the paper that the standing assumptions of [6] are fulfilled.
We prefer to state them here in a less specific way since different numerical methods
will require, e.g., different levels of smoothness of the coefficients.
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Assumption 2.1. It is assumed that the coefficients b, σ, g and the function ϕ
are sufficiently smooth and that all these functions together with their derivatives up
to some order are bounded on [t0, T ] × R × R. In addition, it is supposed that σ is
bounded away from zero: σ ≥ σ0, where σ0 is a positive constant.

Assumption 2.1 ensures the existence of a unique bounded solution u(t, x) with
bounded derivatives up to some order. We note that these assumptions are more
than necessary (for instance, other types of assumptions are given in [14] (see also
[18, pp. 419, 422])), and the methods constructed in this paper can be used under
broader conditions.

We introduce a time discretization; to be definite let us take the equidistant one:

T = tN > tN−1 > · · · > t0, h :=
T − t0
N

.

Layer methods proposed in [14] (see also [18]) give an approximation ū(tk, x) of the
solution u(tk, x), k = N, . . . , 0, to (2.3)–(2.4). These methods are based on the local
probabilistic representation of the solution to (2.3)–(2.4):

u(tk, x) = E

(
u(tk+1, Xtk,x(tk+1)) +

∫ tk+1

tk

g(s,Xtk,x(s), u(s,Xtk,x(s)))ds

)
,(2.5)

where Xtk,x(s) is the solution of the Cauchy problem for the SDE

dX = b(s,X, u(s,X))ds + σ(s,X, u(s,X))dw(s), X(tk) = x.(2.6)

Exploiting the weak Euler scheme, the following layer method is constructed [14, 18]:

ũ(tN , x) = ϕ(x),(2.7)

ũ(tk, x) =
1

2
ũ(tk+1, x + hb(tk, x, ũ(tk+1, x)) −

√
hσ(tk, x, ũ(tk+1, x)))

+
1

2
ũ(tk+1, x + hb(tk, x, ũ(tk+1, x)) +

√
hσ(tk, x, ũ(tk+1, x)))

+hg(tk, x, ũ(tk+1, x)) , k = N − 1, . . . , 1, 0.

It is proved (see either [14] or [18, p. 420]) that this method is of order one; i.e.,

|ũ(tk, x) − u(tk, x)| ≤ Kh ,(2.8)

where K does not depend on x, h, k.
To obtain a numerical algorithm, we need to discretize (2.7) in the variable x.

Consider the equidistant space discretization

xj = x0 + jκh, j = 0,±1,±2, . . . ,

where x0 is a point on R and κ is a positive number; i.e., the step hx of space
discretization is equal to κh, where h = ht is the step of time discretization. Using,
for instance, linear interpolation, we construct the following algorithm on the basis of
the layer method (2.7).

Algorithm 2.2.

ū(tN , x) = ϕ(x),(2.9)



NUMERICAL ALGORITHMS FOR FBSDEs 565

ū(tk, xj) =
1

2
ū(tk+1, xj + hb(tk, xj , ū(tk+1, xj)) −

√
hσ(tk, xj , ū(tk+1, xj)))

+
1

2
ū(tk+1, xj + hb(tk, xj , ū(tk+1, xj)) +

√
hσ(tk, xj , ū(tk+1, xj)))

+hg(tk, xj , ū(tk+1, xj)), j = 0,±1,±2, . . . ,

ū(tk, x) =
xj+1 − x

κh
ū(tk, xj) +

x− xj

κh
ū(tk, xj+1), xj ≤ x ≤ xj+1,(2.10)

k = N − 1, . . . , 1, 0.

Algorithm 2.2 is of order one; i.e.,

|ū(tk, x) − u(tk, x)| ≤ Kh ,(2.11)

where K does not depend on x, h, k (see either [14] or [18, p. 423] for a proof).
Along with linear interpolation, a spline approximation is also considered and the

cubic interpolation with step hx = κ
√
h is used to reduce the number of nodes xj (see

[14, 18]). Clearly, both the method and algorithm can be considered with variable
time and space steps. Algorithms for the multidimensional parabolic problems (such
as (1.3)–(1.4) with d > 1) are available in [14, 18] as well.

3. Approximation of the derivative ∂u/∂x by finite differences. Con-
sider the solution u(t, x) of the Cauchy problem for semilinear parabolic equation
(2.3)–(2.4) and its approximations ũ(tk, x) by the layer method (2.7) and ū(tk, x) by
Algorithm 2.2.

Proposition 3.1. The following formula holds:

∂u

∂x
(tk, x) =

ū(tk, x + γ
√
h) − ū(tk, x− γ

√
h)

2γ
√
h

+ O(h1/2),(3.1)

where γ is a positive number and h is the time step which is the same as in (2.9)–
(2.10).

The analogous formula is valid if the function ū is substituted by ũ.
Proof. Since the solution u has bounded third derivatives with respect to x

(we assume that the functions from Assumption 2.1 have continuous bounded first
derivative with respect to t and second derivatives with respect to x and u including
the mixed ones), we have

∂u

∂x
(tk, x) =

u(tk, x + γ
√
h) − u(tk, x− γ

√
h)

2γ
√
h

+ O(h).

Now (3.1) immediately follows from the inequality (2.11).
Remark 3.2. Analogous to (3.1), we also get

∂u

∂x
(tk, x) =

ū(tk, x + γh1/3) − ū(tk, x− γh1/3)

2γh1/3
+ O(h2/3).(3.2)



566 G. N. MILSTEIN AND M. V. TRETYAKOV

In fact, it is possible to prove a more accurate result than (3.1) or (3.2) for the
layer approximation ũ from (2.7).

Theorem 3.3. The following formula holds:

∂u

∂x
(tk, x) =

ũ(tk, x + γ
√
h) − ũ(tk, x− γ

√
h)

2γ
√
h

+ O(h),(3.3)

where γ is a positive number and h is the time step which is the same as in (2.7).
Proof. Clearly, the pair of functions u(t, x) and v(t, x) := ∂u

∂x (t, x) satisfy the
Cauchy problem for two parabolic equations consisting of (2.3)–(2.4) and

∂v

∂t
+ b(t, x, u)

∂v

∂x
+

1

2
σ2(t, x, u)

∂2v

∂x2
+

(
σ
∂σ

∂x
+ σ

∂σ

∂u
v

)
∂v

∂x
(3.4)

+

(
∂b

∂x
+

∂b

∂u
v

)
v +

∂g

∂x
+

∂g

∂u
v = 0, t < T, x ∈ R,

v(T, x) = ϕ′(x) .(3.5)

To solve the problem (2.3)–(2.4), (3.4)–(3.5), we use a layer method based on a
local probabilistic representation. To this aim, introduce the system of SDEs with
respect to X and scalars P, Q, R :

dX = b(s,X, u(s,X))ds + σ(s,X, u(s,X))dw(s), X(tk) = x,(3.6)

dP = g(s,X, u(s,X))ds, P (tk) = 0,

dQ =

(
∂b

∂x
+

∂b

∂u
v(s,X)

)
Qds +

(
∂σ

∂x
+

∂σ

∂u
v(s,X)

)
Qdw(s), Q(tk) = 1,

dR =

(
∂g

∂x
+

∂g

∂u
v(s,X)

)
Qds, R(tk) = 0,

where ∂b/∂x, ∂b/∂u, and the other derivatives are known functions of s, X, u(s,X).
One can verify that the following local probabilistic representation holds (cf. (2.5)–
(2.6)):

u(tk, x) = E [u(tk+1, Xtk,x(tk+1)) + Ptk,x,0(tk+1)] ,(3.7)

v(tk, x) = E [v(tk+1, Xtk,x(tk+1))Qtk,x,1(tk+1) + Rtk,x,1,0(tk+1)] .

The corresponding layer method ũ(tk, x), ṽ(tk, x) is given by the formulas (2.7) for ũ
while ṽ is found from

ṽ(tN , x) = ϕ′(x),(3.8)

ṽ(tk, x) =
1

2
ṽ(tk+1, x + hb̃k −

√
hσ̃k)

×
[
1 + h

(
∂b̃k
∂x

+
∂b̃k
∂u

ṽ(tk+1, x)

)
− h1/2

(
∂σ̃k

∂x
+

∂σ̃k

∂u
ṽ(tk+1, x)

)]

+
1

2
ṽ(tk+1, x + hb̃k +

√
hσ̃k)

×
[
1 + h

(
∂b̃k
∂x

+
∂b̃k
∂u

ṽ(tk+1, x)

)
+ h1/2

(
∂σ̃k

∂x
+

∂σ̃k

∂u
ṽ(tk+1, x)

)]

+h

(
∂g̃k
∂x

+
∂g̃k
∂u

ṽ(tk+1, x)

)
, k = N − 1, . . . , 1, 0,
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where b̃k := b(tk, x, ũ(tk+1, x)), σ̃k := σ(tk, x, ũ(tk+1, x)), and the notation ∂b̃k/∂x

means ∂b̃k
∂x := ∂b

∂x (tk, x, ũ(tk+1, x)) and so on. The layer method (2.7), (3.8) for the
system (2.3)–(2.4), (3.4)–(3.5) is of order one. The order of convergence can be proved
due to [18] if we assume that the functions from Assumption 2.1 have continuous
bounded second mixed derivatives with respect to t, x and t, u and third derivatives
with respect to x and u including the mixed ones. This also implies that ũ(tk, x) has,
in particular, a continuous bounded third derivative with respect to x.

Further, it is straightforward to verify

∂ũ

∂x
(tk, x) = ṽ(tk, x).

Thus we get

∂u

∂x
(tk, x) = v(tk, x) = ṽ(tk, x) + O(h) =

∂ũ

∂x
(tk, x) + O(h).(3.9)

Since ũ(tk, x) has a bounded third derivative with respect to x, we obtain

∂ũ

∂x
(tk, x) =

ũ(tk, x + γ
√
h) − ũ(tk, x− γ

√
h)

2γ
√
h

+ O(h).(3.10)

The formulas (3.9) and (3.10) imply (3.3).
Remark 3.4. We have not succeeded in a rigorous proof of the relation

∂u

∂x
(tk, x) =

ū(tk, x + γ
√
h) − ū(tk, x− γ

√
h)

2γ
√
h

+ O(h)(3.11)

for ū(tk, x) from Algorithm 2.2. At the same time, we have some heuristic arguments
justifying (3.11). It is possible to obtain the following representation for ū(t0, x):

ū(t0, x) = ũ(t0, x) + R(x, h)h +

N∑
k=1

ζkh
2 + O(h3/2).(3.12)

Moreover, it is reasonable to consider R(x, h) a function which changes in x slowly
or, more exactly, that R satisfies the inequality

R(x + γ
√
h, h) −R(x− γ

√
h, h) = O(

√
h).(3.13)

In (3.12) ζk are related to the distances between xj+hb(tk, xj , ū(tk+1, xj))±
√
hσ(tk, xj ,

ū(tk+1, xj)) and the nearest node xi. These distances are random, in a sense, and it
is natural to assume that ζk are independent and identically distributed (i.i.d.) uni-
formly bounded random variables with zero mean and variance V arζ. Then, due to
the central limit theorem, we get

N∑
k=1

ζkh
2 .

= η
√
V arζ ·

√
N h2,(3.14)

where η is a standard Gaussian random variable. The relation (3.11) follows from
(3.12)–(3.14). We also note here in passing that if in Algorithm 2.2 we would put hx =
κh5/4 instead of hx = κh, then it would not be difficult to prove (3.11) rigorously.
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In the multidimensional case ((1.3)–(1.4) with d > 1) we use the approximation

∂u

∂xi
(tk, x) ≈ ū(tk, x

1, . . . , xi + γ
√
h, . . . , xd) − ū(tk, x

1, . . . , xi − γ
√
h, . . . , xd)

2γ
√
h

,

(3.15)

i = 1, . . . , d,

where ū is found by a multidimensional algorithm analogous to Algorithm 2.2 [14, 18].
Proposition 3.1 and Remark 3.4 are valid for (3.15) as well.

4. Numerical integration of FBSDEs. Let ū(tk, x) be defined by Algorithm 2.2
and introduce the notation

Δū

Δx
(tk, x) :=

ū(tk, x + γ
√
h) − ū(tk, x− γ

√
h)

2γ
√
h

for some γ > 0(4.1)

and also Δkw := w(tk +h)−w(tk). In practice it is advisable to choose the parameter
γ close to the diffusion σ at the point (tk, x).

Consider two numerical schemes for the FBSDE (1.1)–(1.2) with d = n = 1:
the Euler scheme

X0 = x,(4.2)

Xk+1 = Xk + a(tk, Xk, ū(tk, Xk))h + σ(tk, Xk, ū(tk, Xk))Δkw, k = 0, . . . , N − 1,

and the first-order scheme

X0 = x,(4.3)

Xk+1 = Xk + a(tk, Xk, ū(tk, Xk))h + σ(tk, Xk, ū(tk, Xk))Δkw

+
1

2
σ(tk, Xk, ū(tk, Xk))

(
∂σ

∂x
(tk, Xk, ū(tk, Xk))

+
∂σ

∂u
(tk, Xk, ū(tk, Xk))

Δū

Δx
(tk, Xk)

)
×
(
Δ2

kw − h
)
, k = 0, . . . , N − 1;

the components Y and Z of the solution to (1.1)–(1.2) are approximated as

Yk = ū(tk, Xk), Zk = σ(tk, Xk, Yk)
Δū

Δx
(tk, Xk),(4.4)

where Xk is either from (4.2) or (4.3).
Let us note that the first-order scheme (4.3) becomes the Euler scheme in the

case of additive noise in (1.1).
Theorem 4.1. (i) The Euler scheme (4.2), (4.4) has the mean-square order of

convergence 1/2; i.e.,

[
E
[
(X(tk) −Xk)

2
+ (Y (tk) − Yk)

2
+ (Z(tk) − Zk)

2
]]1/2

≤ K (1 + x2)1/2h1/2,

(4.5)

where K does not depend on x, k, and h.
(ii) The scheme (4.3), (4.4) has the first mean-square order of convergence for X

and Y ; i.e., [
E
[
(X(tk) −Xk)

2
+ (Y (tk) − Yk)

2
]]1/2

≤ K (1 + x2)1/2h,(4.6)
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and if ∣∣∣∣Δū

Δx
(tk, x) − ∂u

∂x
(tk, x)

∣∣∣∣ ≤ Ch,(4.7)

then [
E (Z(tk) − Zk)

2
]1/2

≤ K (1 + x2)1/2h,(4.8)

where K does not depend on x, k, and h.
With respect to the assumption (4.7), see Remark 3.4.
Proof. (i) Let us prove that the Euler scheme satisfies

[
E (X(tk) −Xk)

2
]1/2

≤ K (1 + x2)1/2h1/2.(4.9)

Assume for a while that the solution u(t, x) to (1.3)–(1.4) is known exactly. Then the
coefficients in (1.1) are known functions of t and x and we can apply the standard
mean-square Euler scheme

X̂k+1 = X̂k + a(tk, X̂k, u(tk, X̂k))h + σ(tk, X̂k, u(tk, X̂k))Δkw, k = 0, . . . , N − 1,

(4.10)

which is of mean-square order 1/2; i.e., X̂k from (4.10) satisfies a relation like (4.9).
Now we compare Xk and X̂k. To this end, we exploit the fundamental convergence

theorem (see [13] or [18, p. 4]). It states that if a one-step approximation X̄t,x(t+ h)
of the solution Xt,x(t + h) satisfies the conditions

|E(Xt,x(t + h) − X̄t,x(t + h))| ≤ K(1 + |x|2)1/2hp1 ,(4.11)

[
E|Xt,x(t + h) − X̄t,x(t + h)|2

]1/2 ≤ K(1 + |x|2)1/2hp2(4.12)

with p2 > 1/2 and p1 ≥ p2 + 1/2, then the corresponding mean-square method Xk

has order of convergence p2 − 1/2; i.e.,

[
E (X(tk) −Xk)

2
]1/2

≤ K (1 + x2)1/2hp2−1/2.

Introduce the one-step approximations corresponding to Xk and X̂k:

X(t + h) ≈ X̄ = x + a(t, x, ū(t, x))h + σ(t, x, ū(t, x))Δw(4.13)

and

X(t + h) ≈ X̂ = x + a(t, x, u(t, x))h + σ(t, x, u(t, x))Δw.(4.14)

It is known [13, 18] that X̂ from (4.14) satisfies (4.11) with p1 = 2 and (4.12) with
p2 = 1. Due to Assumption 2.1 and the relation (2.11), we get

E(X̂ − X̄) = a(t, x, u(t, x))h− a(t, x, ū(t, x))h = O(h2)
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and

E(X̂ − X̄)2 = [a(t, x, u(t, x)) − a(t, x, ū(t, x))]
2
h2 + [σ(t, x, u(t, x)) − σ(t, x, ū(t, x))]

2
h

= O(h3),

whence it follows that X̄ from (4.13) also satisfies (4.11) with p1 = 2 and (4.12) with
p2 = 1. Then, applying the fundamental convergence theorem, we prove (4.9). Now
the rest of (4.5) follows from (2.2), (4.9), (2.11), and (3.1).

(ii) To prove (4.6), we just repeat all the arguments as above. The only difference
is that this time we compare the one-step approximation corresponding to (4.3) with
the one corresponding to the standard first-order mean-square scheme [18] applied to
(1.1), assuming again that u(t, x) is known exactly. We note that the estimate (3.1) is
enough to obtain (4.6) but it would imply the mean-square order 1/2 for Z instead of
(4.8). At the same time, it is clear that by (2.2), (4.6) together with (4.7) we obtain
(4.8).

Remark 4.2. Theorem 4.1 is also valid for other Euler-type methods (e.g., for the
implicit Euler method) as well as for other first-order mean-square methods. Further,
in the case of additive noise this theorem can be extended to constructive mean-square
methods of order 3/2 [18] using second-order methods from [14, 18] for the semilinear
parabolic problem (2.3)–(2.4).

Remark 4.3. Let us consider the weak Euler scheme

X0 = x,(4.15)

Xk+1 = Xk + a(tk, Xk, ū(tk, Xk))h + σ(tk, Xk, ū(tk, Xk))ξk, k = 0, . . . , N − 1,

where ξk, k = 0, . . . , N − 1, are i.i.d. random variables with the distribution P (ξ =
±1) = 1/2 and ū(tk, x) is defined by Algorithm 2.2. It is possible to prove that for
a sufficiently smooth function F (x, y) satisfying some boundedness conditions, the
Euler method (4.15) and (4.4) is of weak order one; i.e.,

EF (X(tk), Y (tk)) − EF (Xk, Yk) = O(h).

The proof is based on the main theorem on convergence of weak approximations [18,
p. 100].

Remark 4.4. It is not difficult to generalize both the numerical algorithm consid-
ered and Theorem 4.1 to the case d > 1 using the multidimensional version of the Euler
method (4.2) and (4.4), a multidimensional algorithm analogous to Algorithm 2.2 (see
[14, 18]) to solve (1.3)–(1.4), and (3.15) to approximate the derivatives.

5. FBSDEs with random terminal time.

5.1. The parabolic case. Let G be a bounded domain in Rd, let Q = [t0, T )×G
be a cylinder in Rd+1, and let Γ = Q \ Q. The set Γ is a part of the boundary of
the cylinder Q consisting of the upper base and the lateral surface. Let ϕ(t, x) be a
function defined on Γ.

Consider the FBSDE with random terminal time (see e.g., [19, 25]):

dX = a(t,X, Y )dt + σ(t,X, Y )dw(t), X(t0) = x ∈ G,(5.1)

dY = −g(t,X, Y )dt− fᵀ(t,X, Y )Zdt + Zᵀdw(t), Y (τ) = ϕ(τ ,X(τ)),(5.2)

where τ = τ t0,x is the first exit time of the trajectory (t,Xt0,x(t)) from the domain Q;
i.e., the point (τ ,X(τ)) belongs to Γ. A solution to (5.1)–(5.2) is defined as an {Ft}t≥0-
adapted vector (X(t), Y (t), Z(t)) together with the Markov moment τ , which satisfy
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(5.1)–(5.2). This solution is connected with the Dirichlet boundary value problem for
the semilinear parabolic equation

∂u

∂t
+

d∑
i=1

ai(t, x, u)
∂u

∂xi
+

1

2

d∑
i,j=1

aij(t, x, u)
∂2u

∂xi∂xj
(5.3)

= −g(t, x, u) −
n∑

k=1

fk(t, x, u)

d∑
i=1

σik(t, x, u)
∂u

∂xi
, (t, x) ∈ Q,

u(t, x)|Γ = ϕ(t, x).(5.4)

Let u(t, x) be the solution of (5.3)-(5.4), which is supposed to exist, be unique,
and be sufficiently smooth. One can find many theoretical results on this topic in [10]
(see also references therein and in [16, 18]). To be definite, we assume here that the
conditions like Assumption 2.1 together with sufficient smoothness of the boundary
∂G and of the function ϕ are fulfilled.

Consider the following SDE in Q:

dX = a(t,X, u(t,X))dt + σ(t,X, u(t,X))dw(t), X(t0) = x,(5.5)

with random terminal time τ which is defined as the first exit time of the trajectory
(t,Xt0,x(t)) of (5.5) from the domain Q. Introduce

Y (t) = u(t,Xt0,x(t)), t0 ≤ t ≤ τ ,(5.6)

Zj(t) =

d∑
i=1

σij(t,Xt0,x(t), Y (t))
∂u

∂xi
(t,Xt0,x(t)), j = 1, . . . , n, t0 ≤ t ≤ τ .

Clearly, the four-tuple (Xt0,x(t), Y (t), Z(t), τ) is a solution of (5.1)–(5.2).
In what follows we restrict ourselves to the one-dimensional version of (5.1)–(5.2)

(d = 1, n = 1). Introducing

b(t, x, y) := a(t, x, y) + f(t, x, y)σ(t, x, y),

we get

∂u

∂t
+ b(t, x, u)

∂u

∂x
+

1

2
σ2(t, x, u)

∂2u

∂x2
+ g(t, x, u) = 0, (t, x) ∈ Q,(5.7)

u(t, x)|Γ = ϕ(t, x).(5.8)

In this case Q is the partly open rectangle Q = [t0, T ) × (α, β), and Γ consists of the
upper base {T} × [α, β] and two vertical intervals, [t0, T ) × {α} and [t0, T ) × {β}.

In [16] (see also [18]) we propose a number of algorithms for solving the problem
(5.7)–(5.8). As an example, let us recall one of them. Consider an equidistant space
discretization with a space step hx (recall that the notation for time step is h): xj =
α + jhx, j = 0, 1, 2, . . . ,M, hx = (β − α)/M. The algorithm has the following form.

Algorithm 5.1.

ū(tN , x) = ϕ(tN , x), x ∈ [α, β],(5.9)
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ū(tk, xj) =
1

2
ū(tk+1, xj + b̄k,j · h− σ̄k,j ·

√
h) +

1

2
ū(tk+1, xj + b̄k,j · h + σ̄k,j ·

√
h)

+ ḡk,j · h if xj + b̄k,j · h± σ̄k,j ·
√
h ∈ [α, β];

ū(tk, xj) =
1

1 +
√
λ̄k,j

ϕ(tk+λ̄k,j
, α) +

√
λ̄k,j

1 +
√
λ̄k,j

ū(tk+1, xj + b̄k,j · h + σ̄k,j ·
√
h)

+ ḡk,j ·
√
λ̄k,jh if xj + b̄k,j · h− σ̄k,j ·

√
h < α;

ū(tk, xj) =
1

1 +
√
μ̄k,j

ϕ(tk+μ̄k,j
, β) +

√
μ̄k,j

1 +
√
μ̄k,j

ū(tk+1, xj + b̄k,j · h− σ̄k,j ·
√
h)

+ ḡk,j ·
√
μ̄k,jh, if xj + b̄k,j · h + σ̄k,j ·

√
h > β,

j = 1, 2, . . . ,M − 1;

ū(tk, x) =
xj+1 − x

hx
ū(tk, xj) +

x− xj

hx
ū(tk, xj+1), xj < x < xj+1,(5.10)

j = 0, 1, 2, . . . ,M − 1, k = N − 1, . . . , 1, 0,

where b̄k,j , σ̄k,j , ḡk,j are the coefficients b(t, x, u), σ(t, x, u), g(t, x, u) calculated at the
point (tk, xj , ū(tk+1, xj)), tk+λ̄k,j

:= tk + hλ̄k,j , tk+μ̄k,j
:= tk + hμ̄k,j , and 0 < λ̄k,j ,

μ̄k,j ≤ 1 are unique roots of the quadratic equations

α = xj + b̄k,j · λ̄k,jh− σ̄k,j ·
√
λ̄k,jh, β = xj + b̄k,j · μ̄k,jh + σ̄k,j ·

√
μ̄k,jh.

It is proved in [16] (see also [18, p. 475]) that if the value of hx is taken equal to
κh with κ being a positive constant, then

|ū(tk, x) − u(tk, x)| ≤ Kh ,(5.11)

where K does not depend on x, h, k.
To construct Z due to (5.6), we need an approximation of ∂u/∂x. To this end,

we propose to use the formulas (cf. (3.1))

∂u

∂x
(tk, x) =

ū(tk, x + γ
√
h) − ū(tk, x− γ

√
h)

2γ
√
h

+ O(h1/2) :=
Δū

Δx
(tk, x) + O(h1/2)

(5.12)

if x± γ
√
h ∈ [α, β],
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∂u

∂x
(tk, x) =

4ū(tk, x + γ
√
h) − 3ū(tk, x) − ū(tk, x + 2γ

√
h)

2γ
√
h

+ O(h1/2)(5.13)

:=
Δū

Δx
(tk, x) + O(h1/2)

if x− γ
√
h < α,

and

∂u

∂x
(tk, x) =

ū(tk, x− 2γ
√
h) − 4ū(tk, x− γ

√
h) + 3ū(tk, x)

2γ
√
h

+ O(h1/2)(5.14)

:=
Δū

Δx
(tk, x) + O(h1/2)

if x + γ
√
h > β.

Most probably, the accuracy in (5.12)–(5.14) is O(h) rather than O(h1/2), but we
have not investigated this issue in detail.

Let us note that if we apply the method of differentiation to the boundary value
problem (5.7)–(5.8), we obtain (3.4) for v = ∂u/∂x in Q and the Neumann boundary
condition. Namely, this boundary condition is of the form

on the upper base of Q: v(T, x) =
∂ϕ

∂x
(T, x)

and, for example, on the vertical interval [t0, T ] × {α}:

b(t, α, ϕ(t, α))v(t, α) +
1

2
σ2(t, α, ϕ(t, α))

∂v

∂x
(t, α) = −∂ϕ

∂t
(t, α) − g(t, α, ϕ(t, α)).

Thus, in the case of FBSDEs with random terminal time the approach of [6] leads to
a complicated system of boundary value problems.

5.2. The elliptic case. The random terminal time in FBSDE (5.1)–(5.2) is
bounded by the time T. Now we consider FBSDEs with unbounded random terminal
time. Let G be a bounded domain in Rd and Q = [0,∞) ×G be a cylinder in Rd+1.

Consider the FBSDE with random terminal time (see e.g., [19, 25]):

dX = a(X,Y )dt + σ(X,Y )dw(t), X(0) = x ∈ G,(5.15)

dY = −g(X,Y )dt− fᵀ(X,Y )Zdt + Zᵀdw(t), Y (τ) = ϕ(X(τ)),(5.16)

where τ = τx is the first exit time of the trajectory Xx(t) from the domain G; i.e., the
point X(τ) belongs to the boundary ∂G of G. A solution to (5.15)–(5.16) is defined
as an {Ft}t≥0-adapted vector (X(t), Y (t), Z(t)) together with the Markov moment τ ,
which satisfy (5.15)–(5.16). This solution is connected with the Dirichlet boundary
value problem for the semilinear elliptic equation

d∑
i=1

ai(x, u)
∂u

∂xi
+

1

2

d∑
i,j=1

aij(x, u)
∂2u

∂xi∂xj
(5.17)

= −g(x, u) −
n∑

k=1

fk(x, u)

d∑
i=1

σik(x, u)
∂u

∂xi
, x ∈ G,

u(x)|∂G = ϕ(x).(5.18)
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Let u(x) be the solution of (5.17)–(5.18), which is supposed to exist, be unique,
and be sufficiently smooth. Consider the following SDE in G:

dX = a(X,u(X))dt + σ(X,u(X))dw(t), X(0) = x,(5.19)

with random terminal time τ which is defined as the first exit time of the trajectory
Xx(t) of (5.19) from the domain G. Introduce

Y (t) = u(Xx(t)), 0 ≤ t ≤ τ ,(5.20)

Zj(t) =

d∑
i=1

σij(Xx(t), Y (t))
∂u

∂xi
(Xx(t)), j = 1, . . . , n, 0 ≤ t ≤ τ .

Clearly, the four-tuple (Xx(t), Y (t), Z(t), τ) is a solution of (5.15)–(5.16). Note that
in the one-dimensional case the problem (5.17)–(5.18) is the boundary value problem
just for a second-order ordinary differential equation whose numerical solution does
not cause any problem. To solve (5.17)–(5.18) for d > 1, one can use finite-difference
methods or apply a multidimensional layer method analogous to (5.9)–(5.10) (see
[16, 18]) using ideas of the relaxation method.

6. Numerical integration of FBSDEs with random terminal time. Tra-
jectories (t,X(t)) of the SDE (5.1) belong to the space-time bounded domain Q̄, and
a corresponding approximation (ϑk, Xk) should possess the same property. It is ob-
vious that, e.g., the standard Euler scheme (4.2) does not satisfy this requirement
and specific methods are needed. Such approximations were proposed in [15] (see also
[18]). In the one-dimensional case they take a simpler form, which is presented below.
We note that here the notation differs partly from that used in [15, 18].

Consider the one-dimensional SDE

dX = χτt,x>sb(s,X)ds + χτt,x>sσ(s,X)dw(s), X(t) = Xt,x(t) = x,(6.1)

in a space-time bounded domain Q = [t0, T )× (α, β); the Markov moment τ t,x is the
first-passage time of the process (s,Xt,x(s)), s ≥ t, to Γ = Q�Q.

Let Ir := [−r, r], r > 0, Π := [0, l) × I1 for some l > 0, and Πh := [0, lh) × I√h.
Take a point (s, y) ∈ Q and introduce another interval I(s, y;h) := [x + hb(s, y) −
σ(s, y)

√
h, x + hb(s, y) + σ(s, y)

√
h] and also the space-time rectangle Π(s, y;h) =

[s, s + lh) × I(s, y;h). Let Γδ be an intersection of a δ-neighborhood of the set Γ
with the domain Q. Below we take δ equal to λh(1−ε)/2 with 0 < ε ≤ 1 and λ =
2 max
(s,y)∈Q

|σ(s, y)|. Now we construct a random walk over small space-time rectangles.

Algorithm 6.1 (random walk over small space-time rectangles). Choose a time
step h > 0 and numbers 0 < ε ≤ 1 and L > 0.
Step 0. X0 = x, ϑ0 = t, (t, x) ∈ Q, k = 0.
Step 1. If (ϑk, Xk) ∈ Γλh(1−ε)/2 or k ≥ L/h, then Stop and

(i) put ν = k, (ϑν , Xν) = (ϑk, Xk);
(ii) if ϑν ≥ T − λh(1−ε)/2, then τ̄ t,x = T and ξt,x = Xν ∈ (α, β); otherwise
τ̄ t,x = ϑν and ξt,x is the end of the interval [α, β] nearest to Xν .

Step 2. Put k := k + 1. Simulate the first exit point (θk, w(ϑk−1 + θk) − w(ϑk−1))
of the process (s− ϑk−1, w(s) − w(ϑk−1)), s > ϑk−1, from the rectangle Πh.
Put

ϑk = ϑk−1 + θk,(6.2)

Xk = Xk−1 + b(ϑk−1, Xk−1)θk + σ(ϑk−1, Xk−1)(w(ϑk) − w(ϑk−1)).(6.3)

Go to Step 1.
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The sequence (ϑk, Xk) obtained by Algorithm 6.1 is a Markov chain stopping at
the Markov moment ν in the neighborhood Γλh(1−ε)/2 of the boundary Γ. At each
step (ϑk, Xk) ∈ ∂Π(ϑk−1, Xk−1;h) and Π(ϑk−1, Xk−1;h) ⊂ Q; i.e., the chain belongs
to the space-time bounded domain Q with probability one. The simulated points
(ϑk, Xk) are close in the mean-square sense to (ϑk, X(ϑk)), and the point (τ̄ t,x, ξt,x)
is close to (τ t,x, X(τ t,x)). It is proved in [15, 18] that(

E |X(ϑk) −Xk|2
)1/2

≤ K (
√
h + e−chL), k = 1, . . . , ν,(6.4)

E|τ t,x − τ̄ t,x| ≤ K (h(1−ε)/2 + e−chL),(
E
∣∣Xt,x(τ t,x) − ξt,x

∣∣2)1/2

≤ K (h(1−ε)/4 + e−chL/2),

where the constant K is independent of h, k, t, x and ch tends to a positive constant
independent of L as h → 0. We note that the accuracy of the algorithm depends on
the choice of h, ε, and L. Clearly, we reach higher accuracy by decreasing h and/or
ε and increasing L.

Algorithm 6.1 in its turn requires an algorithm, which is considered below, for
simulating the first exit point (θ, w(θ)) of the process (s, w(s)), s > 0, from the
rectangle Πh.

Let W (s) be a one-dimensional standard Wiener process and let τ be the first
exit time of W (s) from the interval I1 = [−1, 1]. Then the following formulas for the
distribution and density of τ take place:

P(t) = 1 − 4

π

∞∑
k=0

(−1)k

2k + 1
· exp

(
−1

8
π2(2k + 1)2t

)
, t > 0,(6.5)

and

P(t) = 2

∞∑
k=0

(−1)kerfc
2k + 1√

2t
, t > 0, erfc x=

2√
π

∫ ∞

x

exp(−y2)dy ;(6.6)

P ′(t) =
π

2

∞∑
k=0

(−1)k(2k + 1) exp

(
−1

8
π2(2k + 1)2t

)
, t > 0,(6.7)

and

P ′(t) =
2√
2πt3

∞∑
k=0

(−1)k(2k + 1) exp

(
− 1

2t
(2k + 1)2

)
, t > 0.(6.8)

The formulas (6.5) and (6.7) are suitable for calculations under big t, and the formulas
(6.6) and (6.8) are suitable for small t. See further computational details in [15, 18].

For the conditional probability

Q(μ; t) := P (W (t) < μ� |W (s)| < 1, 0 < s < t) ,

where −1 < μ ≤ 1, the following equalities hold [15, 18]:

Q(μ; t) =
P (W (t) < μ , τ ≥ t)

P (τ ≥ t)
(6.9)

=
1

1 − P(t)
· 2

π

∞∑
k=0

1

2k + 1

(
(−1)k + sin

π(2k + 1)μ

2

)
exp

(
−1

8
π2(2k + 1)2t

)
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and

Q(μ; t) =
1

1 − P(t)
(6.10)

×
∞∑
k=0

(−1)k

2

(
erfc

2k − 1√
2t

− erfc
2k + μ√

2t
− erfc

2k + 2 − μ√
2t

+ erfc
2k + 3√

2t

)
.

Note that the series (6.9) and (6.10) are of the Leibniz type, the formula (6.9) is
convenient for calculations under big t, and the formula (6.10) is convenient for small
t. We draw attention to the denominator (1−P(t)) in (6.9) which is close to zero for
t 
 1. But it is not difficult to transform (6.9) to a form suitable for calculations. See
further computational details in [15, 18].

Algorithm 6.2 (simulating exit point of (t,W (t)) from space-time rectangle Π
[15, 18]). Let ι, ν, and γ be independent random variables. Let ι be simulated by
the law P (ι = −1) = P(l), P (ι = 1) = 1 − P(l), let ν be simulated by the law
P (ν = ±1) = 1

2 , and let γ be uniformly distributed on [0, 1].
Then a random point (τ , ξ), distributed as the exit point (τ ,W (τ)), is simulated

as follows. If the simulated value of ι is equal to −1, then the point (τ , ξ) belongs to
the lateral sides of Π and

τ = P−1(γP(l)), ξ = ν;

otherwise, when ι = 1, the point (τ , ξ) belongs to the upper base of Π and

τ = l, ξ = Q−1(γ; l).

Corollary 6.3. Let θ be the first-passage time of the process (s, w(s)), s > 0,
to the boundary ∂Πh. Then the point

(θ, w) = (hτ,
√
h ξ),

where (τ , ξ) is simulated by Algorithm 6.2, has the same distribution as (θ, w(θ)).
Algorithm 6.1 together with Algorithm 6.2 and Corollary 6.3 gives the construc-

tive procedure for modeling the Markov chain (ϑk, Xk) which approximates trajecto-
ries (t,X(t)) of the SDE (6.1) in the space-time bounded domain Q.

Remark 6.4. In the one-dimensional case one can construct a random walk which
terminates on the boundary Γ rather than in a boundary layer. Indeed, fix a suf-
ficiently small h > 0 and define the function ρ(t, x;h), (t, x) ∈ Q, in the following
way. If Π(t, x;h) ∈ Q, set ρ ≡ ρ(t, x;h) = h. Otherwise, find ρ(t, x;h) < h such that
Π(t, x; ρ) touches the boundary Γ; i.e., either t + ρ = T or one of the ends of the
interval I(t, x; ρ) coincides with α or β. At each iteration of the algorithm we find
hk = ρ(ϑk−1, Xk−1;h) and simulate the first exit point (θk, w(ϑk−1 + θk) −w(ϑk−1))
of the process (s − ϑk−1, w(s) − w(ϑk−1)), s > ϑk−1, from the rectangle Πhk

. Then
we evaluate (ϑk, Xk) due to (6.2)–(6.3). We stop the algorithm when (ϑk, Xk) ∈ Γ
and put ν = k, (ϑν , Xν) = (ϑk, Xk), τ̄ t,x = ϑν , ξt,x = Xν . In comparison with
Algorithm 6.1, the algorithm of this remark allows us to simulate a one-dimensional
space-time Brownian motion (s, w(s)) exactly. We note that this algorithm cannot
be generalized even to the two-dimensional case, while Algorithm 6.1 is available for
any dimension [15, 18].

Now we are in position to propose a numerical algorithm for solving the FBSDE
with random terminal time (5.1)–(5.2). Let ū(tk, x) be defined by Algorithm 5.1 and
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Δū
Δx (tk, x) by (5.12)–(5.14). Further, we define ū(t, x) by linear interpolation as

ū(t, x) =
tk − t

h
ū(tk−1, x) +

t− tk−1

h
ū(tk, x), tk−1 ≤ x ≤ tk,(6.11)

and analogously we define Δū
Δx (t, x). It is clear (see (5.11) and (5.12)–(5.14)) that

|u(t, x) − ū(t, x)| ≤ Kh(6.12)

and ∣∣∣∣∂u∂x (t, x) − Δū

Δx
(t, x)

∣∣∣∣ ≤ K
√
h .(6.13)

We approximate X(t) from (5.1)–(5.2) by Algorithm 6.1 in which (6.3) is replaced
by

Xk = Xk−1 + b(ϑk−1, Xk−1, ū(ϑk−1, Xk−1))θk(6.14)

+σ(ϑk−1, Xk−1, ū(ϑk−1, Xk−1))(w(ϑk) − w(ϑk−1)).

The algorithm also gives us the approximation (τ̄ t,x, ξt,x) for the first exit point
(τ t,x, Xt,x(τ t,x)) of the trajectory (s,Xt,x(s)) from Q. Further, we compute the com-
ponents Y and Z as

Yk = ū(ϑk, Xk), Zk = σ(ϑk, Xk, Yk)
Δū

Δx
(tk, Xk), k = 1, . . . , ν,(6.15)

Ȳν = ū(τ̄ t,x, ξt,x), Z̄ν = σ(τ̄ t,x, ξt,x, Ȳν)
Δū

Δx
(τ̄ t,x, ξt,x) .

It is possible to prove (cf. (6.4) and (6.12)–(6.13)) that

[
E
[
(X(ϑk) −Xk)

2
+ (Y (ϑk) − Yk)

2
+ (Z(ϑk) − Zk)

2
]]1/2

≤ K (
√
h + e−chL),

(6.16)

k = 1, . . . , ν,[
E
[(
Xt,x(τ t,x) − ξt,x

)2
+
(
Y (τ t,x) − Ȳν

)2
+
(
Z(τ t,x) − Z̄ν

)2]]1/2

≤ K (h(1−ε)/4 + e−chL/2),

E|τ t,x − τ̄ t,x| ≤ K (h(1−ε)/2 + e−chL).

Using Algorithm 6.1, we can also simulate the FBSDE with unbounded termi-
nal time (5.15)–(5.16) analogously to the approximation of the FBSDE (5.1)–(5.2)
considered in this section.

7. Numerical tests.

7.1. Description of the test problems. Consider the FBSDE

dX =
X

(
1 + X2

)
(2 + X2)

3 dt +
1 + X2

2 + X2

√√√√√ 1 + 2Y 2

1 + Y 2 + exp

(
− 2X2

t + 1

) dw(t),(7.1)

X(0) = x,

dY = −g(t,X, Y )dt− f(t,X, Y )Zdt + Z dw(t),(7.2)

Y (T ) = exp

(
−X2(T )

T + 1

)
,
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where

g(t, x, u) =
1

t + 1
exp

(
− x2

t + 1

)
(7.3)

×
[

4x2
(
1 + x2

)
(2 + x2)

3 +

(
1 + x2

2 + x2

)2 (
1 − 2x2

t + 1

)
− x2

t + 1

]
,

f(t, x, u) =
x

(2 + x2)
2

√√√√√1 + u2 + exp

(
− 2x2

t + 1

)
1 + 2u2

.

Note that Assumption 2.1 is satisfied.
The corresponding Cauchy problem (see (2.3)–(2.4)) has the form

∂u

∂t
+

1

2

(
1 + x2

2 + x2

)2
1 + 2u2

1 + u2 + exp

(
− 2x2

t + 1

) ∂2u

∂x2
+

2x
(
1 + x2

)
(2 + x2)

3

∂u

∂x
(7.4)

=
1

t + 1
exp

(
− x2

t + 1

)[
x2

t + 1
−

4x2
(
1 + x2

)
(2 + x2)

3 −
(

1 + x2

2 + x2

)2 (
1 − 2x2

t + 1

)]
,

t < T, x ∈ R,

u(T, x) = exp

(
− x2

T + 1

)
.(7.5)

We use the problem (7.1)–(7.2) to test the numerical algorithms proposed in
section 4. To this end, we need to know the exact solution of this problem. First, it
can easily be verified that the solution of the problem (7.4)–(7.5) is the function

u(t, x) = exp

(
− x2

t + 1

)
.(7.6)

Now we find the solution of (7.1)–(7.2). Substituting

Y (t) = u(t,X(t)) = exp

(
−X(t)2

t + 1

)

in (7.1), we get

dX =
X

(
1 + X2

)
(2 + X2)

3 dt +
1 + X2

2 + X2
dw(t), X(0) = x,(7.7)

whose solution can be expressed by the formula

X(t) = Λ(x + arctanx + w(t)),(7.8)

where the function Λ(z) is defined by the equation

Λ + arctan Λ = z .(7.9)

Indeed, X(0) = Λ(x + arctanx) = x. Further, due to the Ito formula, we have

dX = Λ′(x + arctanx + w(t)) dw +
1

2
Λ′′(x + arctanx + w(t)) dt
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and by (7.9) we get

Λ′ =
1 + Λ2

2 + Λ2
, Λ′′ =

2Λ(1 + Λ2)

(2 + Λ2)3
,

whence it follows that (7.8) satisfies (7.7).
Thus, the solution of (7.1)–(7.2) is

X(t) = Λ(x + arctanx + w(t)), Y (t) = exp

(
−X(t)2

t + 1

)
,(7.10)

Z(t) = −
2X(t)

(
1 + X2(t)

)
(t + 1) (2 + X2(t))

exp

(
−X(t)2

t + 1

)
,

where Λ(z) is defined by (7.9).
Now consider the test problem for numerical algorithms for FBSDEs with random

terminal time (cf. (7.1)–(7.2)):

dX =
X

(
1 + X2

)
(2 + X2)

3 dt +
1 + X2

2 + X2

√√√√√ 1 + 2Y 2

1 + Y 2 + exp

(
− 2X2

t + 1

) dw(t),(7.11)

X(t0) = x ∈ (0, β),

dY = −g(t,X, Y )dt− f(t,X, Y )Zdt + Z dw(t),(7.12)

Y (τx) = exp

(
−X2(τ t0,x)

τ t0,x + 1

)
,

where g(t, x, y) and f(t, x, y) are from (7.3) and τ t0,x is the first exit time of the
trajectory (t,Xt0,x(t)), t > t0 > −1, from the space-time rectangle [t0, T ) × (0, β);
i.e., either τ t0,x = T or X(τ t0,x) is equal to 0 or β. The corresponding Dirichlet
problem (see (5.3)–(5.4) and also (7.4)–(7.5)) has the form

∂u

∂t
+

1

2

(
1 + x2

2 + x2

)2
1 + 2u2

1 + u2 + exp

(
− 2x2

t + 1

) ∂2u

∂x2
+

2x
(
1 + x2

)
(2 + x2)

3

∂u

∂x
(7.13)

=
1

t + 1
exp

(
− x2

t + 1

)[
x2

t + 1
−

4x2
(
1 + x2

)
(2 + x2)

3 −
(

1 + x2

2 + x2

)2 (
1 − 2x2

t + 1

)]
,

t < T, x ∈ (0, β) ,

u(t, 0) = 1, u(t, β) = exp

(
− β2

T + 1

)
,(7.14)

u(T, x) = exp

(
− x2

T + 1

)
.(7.15)

Obviously, the solution of this problem is given by (7.6) again. The exact solution of
(7.11)–(7.12) can be simulated using formulas (7.10).

7.2. Numerical experiments. We simulate (7.1)–(7.2) using the Euler scheme
(4.2) and (4.4), where the solution u of (7.4)–(7.5) is approximated by Algorithm 2.2.
Of course, practical realization of such algorithms always requires a truncation of
the infinite space domain using the knowledge of behavior of solutions at infinity. In
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Fig. 1. Simulation of the FBSDE (7.1)–(7.2) using the layer method from Algorithm 2.2 and the
Euler scheme (4.2) and (4.4) (solid lines) with h = 0.2, κ = 1, and x = 1. The corresponding exact
trajectory (dashed lines) is found due to (7.10). The upper left figure gives the sample trajectories
for X(t), the upper right figure for Y (t), and the lower figure for Z(t).

this example we restrict simulation to the space interval [−20, 20]. To check that this
truncation does not affect accuracy, we performed control simulation for the interval
[−30, 30].

Figure 1 presents a comparison of the exact sample trajectories X(t), Y (t), Z(t)
found due to (7.10) and the approximate trajectories obtained by the Euler scheme
(4.2) and (4.4). Table 1 gives errors in simulation of the test problem (7.1)–(7.2) by
the Euler scheme (4.2) and (4.4). The “±” reflects the Monte Carlo error only; it
does not reflect the error of the method. More precisely, the averages presented in
the table are computed in the following way:

E (X(T ) −XN )
2 .

=
1

M

M∑
m=1

(
X(m)(T ) −X

(m)
N

)2

± 2

√
D̄M

M
,

where

D̄M =
1

M

M∑
m=1

(
X(m)(T ) −X

(m)
N

)4

−
[

1

M

M∑
m=1

(
X(m)(T ) −X

(m)
N

)2
]2

and X(m)(T ) and X
(m)
N are independent realizations of X(T ) and XN , respectively.

The numerical results are in good agreement with the theoretical ones proved for the
Euler method: Convergence of XN , YN , ZN is of mean-square order 1/2. We also see
that ū has the first-order convergence.
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Table 1

Errors in simulation of the FBSDE (7.1)–(7.2) by the Euler scheme (4.2) and (4.4) with κ = 1
and various time steps h. The corresponding exact solution is found due to (7.10). Here T = 20
and x = 1. The expectations are computed by the Monte Carlo technique simulating M = 1000
independent realizations of X(T ) and XN . The “±”reflects the Monte Carlo error only; it does not
reflect the error of the method.

h max
k,j

|u(tk, xj) − ū(tk, xj)|
[
E (X(T ) −XN )2

]1/2 [
E (Y (T ) − YN )2

]1/2 [
E (Z(T ) − ZN )2

]1/2
0.5 0.15 × 100 0.249 ± 0.014 0.0330 ± 0.0021 0.0127 ± 0.0008

0.2 0.58 × 10−1 0.162 ± 0.010 0.0220 ± 0.0014 0.0080 ± 0.0005

0.05 0.14 × 10−1 0.080 ± 0.005 0.0109 ± 0.0007 0.0041 ± 0.0003

0.02 0.53 × 10−2 0.051 ± 0.003 0.0069 ± 0.0004 0.0024 ± 0.0002

0.005 0.12 × 10−2 0.025 ± 0.002 0.0034 ± 0.0002 0.0012 ± 0.0001

The algorithms from section 6 were tested on the FBSDE with random terminal
time (7.11)–(7.12). The tests supported the obtained theoretical results.
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