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Abstract. The Dirichlet problem for both parabolic and elliptic equations is considered. A
solution of the corresponding characteristic system of stochastic differential equations is approximated
in the weak sense by a Markov chain. If a state of the chain comes close to the boundary of the domain
in which the problem is considered, then in the next step the chain either stops on the boundary or
goes inside the domain with some probability due to an interpolation law. An approximate solution
of the Dirichlet problem has the form of expectation of a functional of the chain trajectory. This
makes it possible to use the Monte Carlo technique. The proposed methods are the simplest ones
because they are based on the weak Euler approximation and linear interpolation. Convergence
theorems, which give accuracy orders of the methods, are proved. Results of some numerical tests
are presented.
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1. Introduction. Let G be a bounded domain in Rd and Q = G × [T0, T ) be
a cylinder in Rd+1, Γ = Q\Q be the part of the cylinder boundary consisting of
the upper base and lateral surface. Consider the Dirichlet problem for the parabolic
equation
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u |Γ = ϕ(t, x).(1.2)

The form of (1.1) is convenient for a probabilistic approach: the “initial” condition
is prescribed at the final time moment t = T and the equation is considered for t < T .

We assume that the coefficients aij = aji satisfy the strict ellipticity condition
inQ and that conditions hold which guarantee existence of the classical solution u(t, x)
of the problem (1.1)–(1.2) having continuous in Q derivatives
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It is sufficient for the above to require [1] that the functions aij(t, x), bi(t, x), c(t, x),
g(t, x), together with their first partial derivatives in t, xk and second partial deriva-
tives in xk, be continuous in Q; the domain G have a twice continuously differentiable
boundary ∂G; the function ϕ(t, x), (t, x) ∈ Γ, be at least of the same smoothness as
the solution u(t, x); and, finally, that the function ϕ(t, x) satisfy (1.1) on the boundary
of the upper base of the cylinder Q.

The solution of problem (1.1)–(1.2) has the following probabilistic representation:

u(t, x) = E
[
ϕ
(
τ,Xt,x(τ)

)
Yt,x,1(τ) + Zt,x,1,0(τ)

]
,(1.3)

where Xt,x(s), Yt,x,y(s), Zt,x,y,z(s), s � t, is the solution of the Cauchy problem for
the system of stochastic differential equations (SDEs)

dX =
(
b(s,X)− σ(s,X)µ(s,X)

)
ds+ σ(s,X) dw(s), X(t) = x,(1.4)

dY = c(s,X)Y ds+ µT(s,X)Y dw(s), Y (t) = y,(1.5)

dZ = g(s,X)Y ds+ FT(s,X)Y dw(s), Z(t) = z,(1.6)

(t, x) ∈ Q, and τ = τt,x is the first exit time of the trajectory (s,Xt,x(s)) to the
boundary Γ. In (1.4)–(1.6), w(s) = (w1(s), . . . , wd(s))ᵀ is a standard Wiener process,
b(s, x) is a d-dimensional column-vector composed of the coefficients bi(s, x), the d×d
matrix σ(s, x) is obtained from the formula

σ(s, x)σT(s, x) = a(s, x), a(s, x) = {aij(s, x)}, i, j = 1, . . . , d,

µ(s, x) and F (s, x) are arbitrary d-dimensional column-vectors sufficiently smooth
in Q, Y , and Z are scalars.

For µ(s, x) = 0 and F (s, x) = 0, formula (1.3) gives the standard probabilistic
representation (see [2] and [3]). For µ(s, x) �= 0 and F (s, x) = 0, (1.3) follows from
Girsanov’s theorem. It is also clear that the term F (s, x) �= 0 does not affect the
validity of this formula. Thus, the mean of the random variable appearing under the
symbol of expectation in (1.3) does not depend on µ and F . At the same time, other
properties of this random variable can essentially depend on µ and F . In particular,
choosing µ (for F = 0), it is possible to reach zero variance of this random variable [4].
The same result can be achieved by choosing F (for µ = 0) [5]. This property is of
great importance since we use the Monte Carlo technique for solving linear boundary
value problems by probabilistic methods. This is a reason for us to construct random
walks taking into account dependence on µ and F .

Difficulties arising in realizing the probabilistic representation (1.3) were discussed
in [6]. For instance, one of the difficulties consists of the following. The difference τ−t
in (1.3) can take arbitrary small values and, consequently, it is impossible to integrate
numerically system (1.4) with a fixed time step. In particular, we cannot use mean-
square Euler approximations. Of course, dealing with realization of the expectation
in (1.3), it is natural to exploit more simple, weak approximations, imposing on them
some restrictions related to nonexit from the domain Q. Such approximations were
constructed in [6]. One of the main ideas consists of controlling the time step of
numerical integration of system (1.4): the step is chosen so that (of course, aside from
reaching a required accuracy) the next state of a Markov chain approximating, in the
weak sense, the solution of (1.4) remains in the domain Q with probability one. This
leads to a decrease of the time step when the chain is close to the boundary Γ of the
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domain Q. The chain is stopped in a narrow zone near the boundary so that values of
the solution u(t, x) in this zone can be approximated quite accurately by the known
values of the function ϕ on the boundary.

In this paper, the step of numerical integration of system (1.4) is constant for
points belonging to a certain time layer t = tk. But when a point is close to the
boundary, we make an intermediate (auxiliary) step of the random walk, which pre-
serves the point in the time layer t = tk. The result of this auxiliary step is such that
the point, which is close to the boundary, is replaced by two points with some proba-
bilities using an interpolation. One of these new points belongs to the boundary, and,
if it is realized, the random walk terminates. The other point is inside the domain so
that starting from it we can make a new step of numerical integration without leaving
the domain Q. The approach developed in [6] is probably more universal. However,
the methods proposed in this paper are of independent interest from both theoretical
and applied points of view due to their simplicity.

The main algorithm of random walk is proposed in the next section. In section 3,
its convergence with weak order of accuracy O(h) is proved. Some similar algorithms
of random walks are given in section 4. One of these algorithms is distinguished by
being the simplest but its order of convergence is O(

√
h). In section 5, the results of

the previous sections are carried over to the Dirichlet problem for elliptic equations.
Finally, some numerical tests of the proposed methods are presented in section 6.

2. The algorithm of random walk. We apply the weak explicit Euler approx-
imation with the simplest simulation of noise to system (1.4)–(1.6):

Xt,x(t+ h) ≈ X = x+ h
(
b(t, x)− σ(t, x)µ(t, x)

)
+ h1/2σ(t, x) ξ,(2.1)

Yt,x,y(t+ h) ≈ Y = y + hc(t, x) y + h1/2µT(t, x) yξ,(2.2)

Zt,x,y,z(t+ h) ≈ Z = z + hg(t, x) y + h1/2FT(t, x) yξ,(2.3)

where h > 0 is a step of integration (a sufficiently small number), and ξ = (ξ1, . . . , ξd)ᵀ,
ξi, i = 1, . . . , d, are mutually independent random variables taking the values ±1 with
probability 1

2 . Clearly, the random vector X takes 2d different values.

Introduce the set of boundary points (a boundary zone) St,h ⊂ G on the layer t:
we say that x ∈ St,h if at least one of the 2d values of the vector X is outside G. It is
not difficult to see that due to compactness of Q there is a constant λ > 0 such that
if the distance from x to the boundary ∂G is equal to or greater than λ

√
h, then x

is not a boundary point and, therefore, for such x all the realizations of the random
variable X belong to G.

Since restrictions connected with nonexit from the domain G should be imposed
on an approximation of system (1.4), formulas (2.1)–(2.3) can be used only for the
points x ∈ G\St,h on the layer t, and a special construction is required for boundary
points.

Let x ∈ St,h. Denote by xπ ∈ ∂G the projection of the point x on the boundary of
the domain G (the projection is unique since h is sufficiently small and ∂G is smooth)
and by n(xπ) the unit vector of internal normal to ∂G at xπ. Introduce the random
vector Xπ

x,h taking two values xπ and x+ h1/2λn(xπ) with probabilities p = px,h and
q = qx,h = 1− px,h, respectively, where

px,h =
h1/2λ

|x+ h1/2λn(xπ)− xπ| .
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If v(x) is a twice continuously differentiable function with the domain of definition G,
then an approximation of v(x) by the expectation Ev(Xπ

x,h) corresponds to linear
interpolation and

v(x) = Ev(Xπ
x,h) +O(h) = pv(xπ) + qv

(
x+ h1/2λn(xπ)

)
+O(h).(2.4)

We emphasize that the second value x+h1/2λn(xπ) is not a boundary point. We
also note that p is always greater than 1

2 (since the distance from x to ∂G is less

than h1/2λ) and that if x ∈ ∂G, then p = 1 (since in this case xπ = x).
Let a point (t0, x0) ∈ Q. We would like to find the value u(t0, x0). Introduce a

discretization of the interval [t0, T ], for definiteness the equidistant one: t0 < t1 <
· · · < tN = T , h := (T − t0)/N .

In order to approximate the solution of system (1.4), we construct a Markov
chain (tm/2, Xm/2) which stops when it reaches the boundary Γ at a random step κ.
The number m takes nonnegative integer values not greater than 2N and then the
index m/2 takes integer and half-integer values. We put by definition that for odd
m = 2k + 1 the time tm/2 = tk+1/2 is equal to tk, i.e., Xk and Xk+1/2 belong to the
same layer t = tk. For brevity, we will often denote this chain as Xm/2.

We take X0 = x0. Let κ > k, k � N−1, andXk ∈ G be known. We defineXk+1/2

as follows: If the state Xk /∈ Stk,h, then Xk+1/2 = Xk (i.e., the point does not move),
and if Xk ∈ Stk,h, then Xk+1/2 is the random variable taking two values: either

Xk+1/2 = Xπ
k ∈ ∂G with probability pXk,h or Xk+1/2 = Xk + h1/2λn(Xπ

k ) /∈ Stk,h

with probability qXk,h. IfXk+1/2 = Xπ
k (i.e., (tk, Xk+1/2) ∈ Γ), then we put κ = k+ 1

2 ,

Xκ = Xπ
k , and the random walk is finished. If κ > k + 1

2 , then Xk+1 is evaluated
due to (2.1) for t = tk, x = Xk+1/2, ξ = ξk (we suppose that all ξk are mutually

independent and distributed as ξ). For k = N − 1 and κ > N − 1
2 (i.e., on the last

layer) κ = N since (tN , XN ) = (T,XN ) ∈ Γ. Thus the chain (tm/2, Xm/2) has been
constructed.

It is not difficult to see that (tm/2, Xm/2) remains in the domain Q with proba-

bility 1, and κ either takes half-integer values from 1
2 to N − 1

2 or it is equal to N .
We also introduce an extended chain (tm/2, Xm/2, Ym/2, Zm/2). We put Y0 = 1

and Z0 = 0. Let κ � k + 1
2 , k � N − 1, and Yk, Zk be known. Then, we put

Yk+1/2 = Yk, Zk+1/2 = Zk. For κ > k + 1
2 , Yk+1 and Zk+1 are evaluated in

accordance with system (2.1)–(2.3) for t = tk, x = Xk+1/2, y = Yk+1/2 = Yk, z =
Zk+1/2 = Zk, ξ = ξk. Below we write the constructed algorithm formally.

Algorithm 1.
Step 0. X0 = x0, Y0 = 1, Z0 = 0, k = 0.
Step 1. Yk+1/2 = Yk, Zk+1/2 = Zk.

If Xk /∈ Stk,h, then Xk+1/2 = Xk and go to Step 3.
If Xk ∈ Stk,h, then either Xk+1/2 = Xπ

k with probability pXk,h, or Xk+1/2 =

Xk + h1/2λn(Xπ
k ) with probability qXk,h.

Step 2. If Xk+1/2 = Xπ
k , then stop and æ = k+ 1

2 , Xæ = Xπ
k , Yæ = Yk+1/2 = Yk,

Zæ = Zk+1/2 = Zk.
Step 3. Simulate ξk and find Xk+1, Yk+1, Zk+1 according to (2.1)–(2.3) for t = tk,

x = Xk+1/2, y = Yk+1/2, z = Zk+1/2, ξ = ξk.
Step 4. If k+1 = N , stop and æ = N , Xæ = XN , Yæ = YN , Zæ = ZN , otherwise

k = k + 1 and return to Step 1.
It may happen that it is more rational to choose both h and λ depending on chain’s

state: hk and λk. Then, in Theorem 1 (see below) one should put h = max0�k<N hk.



THE SIMPLEST RANDOM WALKS FOR THE DIRICHLET PROBLEM 57

In practice, one can take λk = |σ(tk, Xk)|, possibly with small corrections.

3. Convergence theorem. Denote by νt0,x0 the number of those tk at which
the chain gets into the set Stk,h. The event {νt0,x0 > n} implies an event such that
first n trials in a certain trial scheme are unsuccessful (Γ is not attained). Moreover,
the probability of each failure is less than 1

2 . Therefore, the following estimate takes
place:

P
{
νt0,x0

> n
}

� 2−n.(3.1)

However, these arguments are not completely rigorous since the probability of exit
of the considered chain Xm/2 from Stk,h depends on Xk. Along with the chain Xm/2,
let us consider a chain X ′

m/2 which differs from the original one only in the following

way: when X ′
m/2 gets into the boundary set Stk,h, each time a coin is thrown so that

the new chain hits the boundary at Xπ
k with probability 1

2 and it hits the same state

as the original chain with probability 1
2 , i.e., the state Xk + h1/2λn(Xπ

k ) /∈ Stk,h.
Since the new chain terminates with a smaller probability than the original chain,
we have νt0,x0

� ν′
t0,x0

. Therefore, P{νt0,x0
> n} � P{ν′

t0,x0
> n}. However, the

arguments before (3.1) are rigorous for ν′
t0,x0

, i.e., P{ν′
t0,x0

> n} � 2−n . The last
two inequalities imply (3.1). As a conclusion, we state the following lemma (in what
follows we denote by the same letter C various constants independent of, e.g., t, x,
y, z, m, h).

Lemma 1. Inequality (3.1) holds, together with the inequalities

P
{
νt0,x0

= n
}

� 2−(n−1),(3.2)

Eνt0,x0 � C, Eν2
t0,x0

� C,(3.3)

where C does not depend on t0, x0, h.
We extend the definition of the constructed chain for all m by the rule that

if m/2 > κ, then (tm/2, Xm/2, Ym/2, Zm/2) = (tκ, Xκ, Yκ, Zκ). Now we prove a
lemma on a one-step error. Introduce

dk = u(tk+1/2, Xk+1/2)Yk+1/2 + Zk+1/2 − u(tk, Xk)Yk − Zk,

dk+1/2 = u(tk+1, Xk+1)Yk+1 + Zk+1 − u(tk+1/2, Xk+1/2)Yk+1/2 − Zk+1/2,

k = 0, . . . , N − 1.

Recall that tk+1/2 = tk, Yk+1/2 = Yk, Zk+1/2 = Zk; Xk+1/2 belongs to the layer

t = tk; the variable dk can be nonzero in the case of Xk ∈ Stk,h only; if κ > k + 1
2 ,

then Xk+1/2 /∈ Stk,h and all the 2d realizations of the random variable Xk+1 belong

to G; i.e., the standard (not boundary) step of the algorithm takes place. Clearly, if
κ � k + 1

2 , then dm/2 = 0, m � 2k + 1. We also note that it is not difficult to show
that for sufficiently small h the component Yk is positive.

Lemma 2. For an integer index k the inequality∣∣E(dk | Xk, Yk, Zk)
∣∣ � ChYkIStk

,h(Xk)χæ�k+1/2(3.4)

holds. For a half-integer index k + 1
2 the inequality∣∣E(dk+1/2 | Xk+1/2, Yk+1/2, Zk+1/2)

∣∣ � Ch2Ykχæ>k+1/2(3.5)

holds.
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Proof. Inequality (3.4) follows from the interpolation relation (2.4) and from the
reminder before the lemma. Inequality (3.5) is a consequence of the fact that the
one-step accuracy order of the Euler method (2.1)–(2.3) in the weak sense is O(h2).

Theorem 1. Algorithm 1 has weak order of accuracy O(h), i.e., the inequality∣∣∣E(ϕ(tæ, Xæ

)
Yæ + Zæ

)− u(t0, x0)
∣∣∣ � Ch(3.6)

holds with C independent of t0, x0, and h.
Proof. We have

R := E
(
ϕ(tæ, Xæ)Yæ + Zæ

)− u(t0, x0) = E
(
u(tæ, Xæ)Yæ + Zæ

)− u(t0, x0)

= E

2æ−1∑
m=0

(
u(t(m+1)/2, X(m+1)/2)Y(m+1)/2 + Z(m+1)/2

−u(tm/2, Xm/2)Ym/2 − Zm/2

)

=

2N−1∑
k=0

Edm/2 =

N−1∑
k=0

Edk+1/2 +

N−1∑
k=0

Edk

=

N−1∑
k=0

EE(dk+1/2 | Xk+1/2, Yk+1/2, Zk+1/2) +

N−1∑
k=0

EE(dk | Xk, Yk, Zk).

Due to (3.5), the absolute value of the first sum is estimated by Ch2
∑N−1

k=0 EYk. It
is not difficult to show that EYk � C, k = 0, . . . , N − 1. Thus, the first sum is O(h)
uniformly in t0, x0, h. Using (3.4) and Lemma 1, we estimate the second sum:∣∣∣∣∣

N−1∑
k=0

EE(dk | Xk, Yk, Zk)

∣∣∣∣∣ � ChE

N−1∑
k=0

(
YkIStk,h

(Xk)χæ�k+1/2

)

� ChE

(
max

0�k�N−1
Yk ·

N−1∑
k=0

IStk,h
(Xk)

)
= ChE

(
max

0�k�N−1
Yk · νt0,x0

)

� Ch
(
E max

0�k�N−1
Y 2
k

)1/2(
Eν2

t0,x0

)1/2 � Ch
(
E max

0�k�N−1
Y 2
k

)1/2

.(3.7)

Let c(t, x) � c, (t, x) ∈ Q, where c is a constant. Introduce the sequence

Y ′
0 = 1, Y ′

k = Y ′
k−1

(
1 + hc+ h1/2µ(tk−1, Xk−1/2) ξk−1

)
, k � æ;

Y ′
k = Y ′

æ, k > æ.

It is obvious that Yk � Y ′
k. It is not difficult to see that the sequence Vk = (1+hc)−kY ′

k

is a martingale. Hence

E max
1�k�N−1

V 2
k � 4EV 2

N−1 � C

(as before, here C is independent of h), and this together with (3.7) implies (3.6).
Theorem 1 is proved.

We note that despite some steps of Algorithm 1 being very rough (their one-
step errors are O(h)), this algorithm converges, and, moreover, its global order of
convergence is O(h). We have this rate of convergence due to the fact that the
number of rough steps (on average) is bounded from above by a constant which does
not grow as h → 0.
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4. Other simplest random walks.

4.1. Algorithm 2. The next algorithm is obtained by a simplification of Algo-
rithm 1. Indeed, as soon as Xk gets into the boundary domain Stk,h, the random walk
terminates, i.e., κ = k, and Xκ = Xπ

k , Yκ = Yk, Zκ = Zk is taken as the final state
of the Markov chain. In this case we do not need values of the chain with half-integer
indices. Let us write this algorithm formally.

Algorithm 2.
Step 0. X0 = x0, Y0 = 1, Z0 = 0, k = 0.
Step 1. If Xk /∈ Stk,h, then go to Step 2.

If Xk ∈ Stk,h, then stop and æ = k, Xæ = Xπ
k , Yæ = Yk, Zæ = Zk.

Step 2. Simulate ξk and find Xk+1, Yk+1, Zk+1 according to (2.1)–(2.3) for t = tk,
x = Xk, y = Yk, z = Zk, ξ = ξk.

Step 3. If k+1 = N , stop and æ = N , Xæ = XN , Yæ = YN , Zæ = ZN , otherwise
k = k + 1 and return to Step 1.

In this algorithm, one-step errors of all steps except the last one are O(h2). The
error on the last step (i.e., on the step κ) is estimated as O(

√
h). It is easy to

prove the following theorem (we note in passing that the conditions on smoothness of
the solution and parameters mentioned in the introduction can be weakened for this
theorem).

Theorem 2. Algorithm 2 has weak order of accuracy O(
√
h),∣∣∣E(ϕ(tæ, Xæ)Yæ + Zæ

)− u(t0, x0)
∣∣∣ � C

√
h,

where C is independent of t0, x0, and h.
A similar random walk was proposed in [7]. In contrast to Algorithm 2, which

terminates when the chain enters the boundary domain Stk,h ⊂ G, the method from [7]
terminates when the chain exits from G and the projection of the point, having exited
from the domain, on the boundary ∂G is taken as the final state of the chain.

4.2. Algorithm 3. Now we construct a random walk with a more accurate one-
step approximation for x ∈ St,h than in Algorithm 1. Let x ∈ St,h. We denote by
ξ(α) = (ξ(α),1, . . . , ξ(α),d)ᵀ, α = 1, . . . , 2d, the values of the vector ξ from (2.1), and

we assign indices to these values so that ξ(2d−1+α) = −ξ(α), α = 1, . . . , 2d−1. We
denote by X(α) the value of the vector X from (2.1) corresponding to ξ(α). At least
one of the points X(α) /∈ G since x ∈ St,h. We connect the point x with those X(α)

which are outside G by the curves η(α)(θ):

η(α)(θ) =
(
x+ θh

(
b(t, x)− σ(t, x)µ(t, x)

)
+
√
θh σ(t, x) ξ(α)

)
, θ ∈ [0, 1].

There is a value θ = θ(α), 0 < θ(α) < 1, (it is unique since h is sufficiently small and ∂G
is smooth) such that the point η(α) := η(α)(θ(α)) belongs to the boundary ∂G. We
put θ(α) = 1 and η(α) = X(α) for those points X(α) which belong to G.

Introduce the pair

(ϑ(α), η(α)) := (t+ θ(α)h, η(α)).(4.1)

Here α is the random variable taking values {1, . . . , 2d} and distributed by the law

pi = P{α = i} =
γ√

θ(i)
(√

θ(i) +
√
θ(2d−1+i)

) , i = 1, . . . , 2d−1,

pi = P{α = i} =
γ√

θ(i)
(√

θ(i) +
√
θ(i−2d−1)

) , i = 2d−1 + 1, . . . , 2d,
(4.2)
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where γ is uniquely found from the condition
∑2d

i=1 P{α = i} = 1.
Now we construct a Markov chain (ϑk, Xk) which stops reaching the boundary Γ

at a random step κ. The index k takes nonnegative integer values not greater than N ,
and ϑk = tk, at least for k < κ. We put ϑ0 = t0, X0 = x0. Let (ϑk, Xk) ∈ Q, i.e.,
κ > k, k � N − 1, ϑk = tk. Let us define (ϑk+1, Xk+1). If Xk /∈ Stk,h, then
ϑk+1 = tk+1 and Xk+1 is found in accordance with (2.1) for t = tk, x = Xk, ξ = ξk.
If Xk ∈ Stk,h, then

(ϑk+1, Xk+1) = (ϑ
(αk)
k , η

(αk)
k ),

where (ϑ
(αk)
k , η

(αk)
k ) is found as (ϑ(α), η(α)) from (4.1) for t = tk, x = Xk, α = αk

(both ξk and αk are independent of previous history; it is also clear that at each
step we simulate either ξk or αk). In this case, due to the construction of the pair

(ϑ
(αk)
k , X

(αk)
k ), the point Xk+1 either belongs to ∂G with probability p � 2−d and

the random walk terminates (in this case κ = k + 1, (ϑκ, Xκ) = (ϑk+1, Xk+1)) or

Xk+1 /∈ ∂G (this means that the realized αk is such that θ
(αk)
k = 1 and, therefore,

ϑk+1 = tk+1) and for k+1 < N the random walk should be continued. For k+1 = N
the point (ϑk+1, Xk+1) ∈ Γ and the random walk terminates with κ = N , (ϑκ, Xκ) =
(T,XN ). Thus, the chain (ϑk, Xk) has been constructed.

Note that (ϑk, Xk) remains in the domain Q with probability 1; κ takes nonneg-
ative integer values not greater than N .

Now we introduce an extended Markov chain (ϑk, Xk, Yk, Zk). We put Y0 = 1,
Z0 = 0. Let κ > k and Yk, Zk be known. If Xk /∈ Stk,h, then Yk+1, Zk+1 are
evaluated in accordance with (2.1)–(2.3) for t = tk, x = Xk, y = Yk, z = Zk, ξ = ξk.
If Xk ∈ Stk,h, then

Yk+1 = Yk + θ
(αk)
k hc(ϑk, Xk)Yk +

√
θ
(αk)
k hµT(ϑk, Xk)Yk ξ(αk),

Zk+1 = Zk + θ
(αk)
k hg(ϑk, Xk)Yk +

√
θ
(αk)
k hFT(ϑk, Xk)Yk ξ(αk),

where θ
(α)
k , α = 1, . . . , 2d, and αk are the same as in the evaluation of (ϑk+1, Xk+1).

Not writing the constructed algorithm formally, we shall call it Algorithm 3. We
prove the following lemma on a one-step error of Algorithm 3.

Lemma 3. The following inequality is valid:∣∣∣E(u(ϑk+1, Xk+1)Yk+1 + Zk+1 − u(ϑk, Xk)Yk − Zk | Xk, Yk, Zk

)∣∣∣
� Ch2YkIG\Stk,h

(Xk)χæ>k + Ch3/2YkIStk,h
(Xk)χæ>k.(4.3)

Proof. For Xk ∈ G\Stk,h, inequality (4.3) is a consequence of the fact that the
one-step accuracy order of the Euler method (2.1)–(2.3) in the weak sense is O(h2).

Let Xk ∈ Stk,h. Then we have

ρ := E
(
u(ϑk+1, Xk+1)Yk+1 + Zk+1 − u(ϑk, Xk)Yk − Zk | Xk, Yk, Zk

)

=
2d∑

α=1

pα

(
u(ϑ

(α)
k+1, X

(α)
k+1)Y

(α)
k+1 + Z

(α)
k+1

)
− u(ϑk, Xk)Yk − Zk,(4.4)

where pα is from (4.2).
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Substituting the expressions for ϑ
(α)
k+1, X

(α)
k+1, Y

(α)
k+1, Z

(α)
k+1 in (4.4) and expanding

u(ϑ
(α)
k+1, X

(α)
k+1) in a series in powers of h around the point (ϑk, Xk), we obtain

ρ =
2d∑

α=1

pαYk

{[
u(ϑk, Xk) +

∂u

∂t
θ
(α)
k h

+

d∑
j=1

∂u

∂xj

(
θ
(α)
k h(bj − (σµ)j)+√θ

(α)
k h (σξ(α))j

)

+
1

2

d∑
j,l=1

∂2u

∂xj∂xl
θ
(α)
k h(σξ(α))j(σξ(α))l +O(h3/2)

]

×
(
1 + θ

(α)
k hc+

√
θ
(α)
k hµTξ(α)

)
+
(
θ
(α)
k hg +

√
θ
(α)
k hFTξ(α)

)}

+
2d∑

α=1

pαZk − u(ϑk, Xk)Yk − Zk,(4.5)

where the derivatives of u and the coefficients b, σ, µ, c, g, F are evaluated at the
point (ϑk, Xk).

Rearranging the terms in (4.5), we get

ρ = Ykh

2d∑
α=1

pαθ
(α)
k

[
∂u

∂t
+

1

2

d∑
j,l=1

∂2u

∂xj∂xl

d∑
m=1

σjmσlm +

d∑
j=1

∂u

∂xj
bj + cu+ g

]

+Yk

√
h

2d∑
α=1

pα

√
θ
(α)
k

[
d∑

j=1

∂u

∂xj

(
σξ(α)

)j
+ uµTξ(α) + FTξ(α)

]

−Ykh

d∑
j=1

∂u

∂xj
(σµ)j

2d∑
α=1

pαθ
(α)
k + Ykh

d∑
j=1

∂u

∂xj

2d∑
α=1

pαθ
(α)
k µTξ(α)

(
σξ(α)

)j

+
1

2
Ykh

d∑
j,l=1

∂2u

∂xj∂xl

d∑
n,m=1,n �=m

2d∑
α=1

pαθ
(α)
k σjnξ

(α),n σlmξ(α),m +O(h3/2).(4.6)

The first sum in (4.6) is equal to zero since u(t, x) satisfies (1.1). We have

from (4.2) that pα

√
θ
(α)
k = p2d−1+α

√
θ
(2d−1+α)
k , α = 1, . . . , 2d−1, and, therefore, for

any r = 1, . . . , d we obtain

2d∑
α=1

pα

√
θ
(α)
k ξ(α),r =

2d−1∑
α=1

ξ(α),r

(
pα

√
θ
(α)
k − p(2d−1+α)

√
θ
(2d−1+α)
k

)
= 0,

whence the second sum in (4.6) is equal to zero. It follows from (4.2) that pαθ
(α)
k +

p2d−1+αθ
(2d−1+α)
k = γ. Then it is not difficult to check that for n �= m

2d∑
α=1

pαθ
(α)
k ξ(α),n ξ(α),m = γ

2d−1∑
α=1

ξ(α),nξ(α),m =
γ

2

2d∑
α=1

ξ(α),nξ(α),m = 0.
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This implies that the last sum in (4.6) is equal to zero and the sum before the

last one is equal to Ykh
∑d

j=1
∂u
∂xj (σµ)

j
∑2d

α=1 pαθ
(α)
k . Thus, ρ = O(h3/2). Lemma 3

is proved.
The proof of the next theorem is similar to the proof of Theorem 1.
Theorem 3. Algorithm 3 has weak order of accuracy O(h),∣∣∣E(ϕ(ϑæ, Xæ)Yæ + Zæ

)− u(t0, x0)
∣∣∣ � Ch,

where C is independent of t0, x0, h.
We note that the chain (ϑk, Xk, Yk, Zk) is more expensive from a computational

point of view, but due to smaller errors in the boundary domain, it allows us to obtain
more accurate results than the chain (tm/2, Xm/2, Ym/2, Zm/2) from section 2.

Remark 1. The one-step approximation of Algorithm 3 is used in [8] to construct a
layer (deterministic) method for solving the Dirichlet problem for semilinear parabolic
equations.

5. The Dirichlet problem for an elliptic equation. Consider the Dirichlet
problem for an elliptic equation

1

2

d∑
i,j=1

aij(x)
∂2u

∂xi∂xj
+

d∑
i=1

bi(x)
∂u

∂xi
+ c(x)u+ g(x) = 0, x ∈ G,(5.1)

u |∂G= ϕ(x).(5.2)

We assume that the coefficients aij = aji satisfy the strict ellipticity condition
in G and also that conditions hold which guarantee existence of the unique solu-
tion u(x) of problem (5.1)–(5.2) from the class C4(G). We recall [9] that it is suf-
ficient for the above to require that the functions aij(x), bi(x), c(x), g(x) are from
the class C2(G), G is an open domain with a twice continuously differentiable bound-
ary ∂G, ϕ(x) ∈ C4(G), and c(x) � 0, x ∈ G.

The solution of problem (5.1)–(5.2) has the probabilistic representation:

u(x) = E
[
ϕ
(
Xx(τ)

)
Yx,1(τ) + Zx,1,0(τ)

]
,(5.3)

where Xx(s), Yx,y(s), Zx,y,z(s), s � 0, is the solution of the Cauchy problem for the
system of SDEs:

dX = b(X) ds+ σ(X) dw(s), X(0) = x,(5.4)

dY = c(X)Y ds, Y (0) = y,(5.5)

dZ = g(X)Y ds+ FT(X)Y dw(s), Z(0) = z,(5.6)

x ∈ G, and τ = τx is the first exit time of the trajectory Xx(s) to the boundary ∂G.
The notation here and in what follows is similar to the notation in sections 1

and 2. In this section we restrict ourselves to the case µ ≡ 0.
First we construct an algorithm of random walk for problem (5.1)–(5.2), which

is similar to Algorithm 1. We apply the weak explicit Euler approximation with the
simplest simulation of noise to system (5.4)–(5.6):

Xt,x(t+ h) ≈ X = x+ hb(x) + h1/2σ(x) ξ,(5.7)

Yt,x,y(t+ h) ≈ Y = y + hc(x) y,(5.8)

Zt,x,y,z(t+ h) ≈ Z = z + hg(x) y + h1/2FT(x) yξ.(5.9)
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Introduce the set of boundary points Sh ⊂ G : x ∈ Sh if at least one of the 2d values
of the vector X is outside G. Let a constant λ > 0 be such that if the distance from x
to the boundary ∂G is equal to or greater than λ

√
h, then x is not a boundary point

and, therefore, for such x all the realizations of the random variable X belong to G.

Let x ∈ Sh. Introduce the random vector Xπ
x,h taking two values xπ and x +

h1/2λn(xπ) with probabilities p = px,h and q = qx,h = 1− px,h, respectively, where

px,h = h1/2 λ

|x+ h1/2λn(xπ)− xπ| ,

xπ ∈ ∂G is the projection of the point x on the boundary ∂G, and n(xπ) is the unit
vector of internal normal to ∂G at xπ.

To approximate the solution of system (5.4), we construct a Markov chain Xm/2

which stops when it reaches the boundary ∂G at a random step κ. The number m
takes nonnegative integer values and then the index m/2 takes integer and half-integer
values.

We take X0 = x0. Let κ > k and Xk ∈ G be known. We define Xk+1/2 as
follows. If the state Xk /∈ Sh, then Xk+1/2 = Xk (the point does not move) and we

continue the random walk, i.e., κ > k+ 1
2 . If Xk ∈ Sh, then we put Xk+1/2 = Xπ

Xk,h
.

In this case Xk+1/2 can take two values: either Xπ
k ∈ ∂G with probability pXk,h or

Xk + h1/2λn(Xπ
k ) /∈ Sh with probability qXk,h. If Xk+1/2 = Xπ

k (i.e., Xk+1/2 ∈ ∂G),

then we put κ = k + 1
2 , Xκ = Xπ

k , and the random walk terminates. If Xk+1/2 =

Xk +h1/2λn(Xπ
k ), then the random walk is continued, i.e., κ > k+ 1

2 . For κ > k+ 1
2

the value of Xk+1 is found according to (5.7) with x = Xk+1/2, ξ = ξk. Thus, the
chain Xm/2 has been constructed.

It is not difficult to see that Xm/2 remains in the domain G with probability 1
and κ takes half-integer values.

We also introduce an extended chain (Xm/2, Ym/2, Zm/2). We put Y0 = 1 and

Z0 = 0. Let κ � k + 1
2 and Yk, Zk be known. Then, we put Yk+1/2 = Yk,

Zk+1/2 = Zk. For κ > k + 1
2 , the values Yk+1, Zk+1 are evaluated in accordance

with system (5.7)–(5.9) for x = Xk+1/2, y = Yk+1/2 = Yk, z = Zk+1/2 = Zk, ξ = ξk.

We shall call the constructed algorithm Algorithm 1′ since it is similar to Algo-
rithm 1 for a parabolic equation. We emphasize that here κ can take arbitrary large
values in contrast to Algorithm 1.

Denote by νx0 the number of those k at which the chain enters the set Sh.

Lemma 4. The following inequalities hold:

P{νx0
= n} � 2−(n−1), Eνx0 � C,(5.10)

Eæ � C

h
,(5.11)

where C does not depend on t0 and h.

Proof. Inequalities (5.10) are proved analogously to Lemma 1. We will prove
inequalities (5.11) using the technique of estimating mean number of steps from [10]
and [11]. Denote by µx the number of steps which the chain Xm/2 starting from
x ∈ G\Sh spends in the domain G\Sh before it gets into Sh. In the domain G\Sh

we have Xk+1/2 = Xk. Therefore, the number of steps, which Xk spends in the
domain G\Sh, coincides with µx/2. Note that Xk is a chain up to the moment of
entering Sh inclusively. In connection with the chain Xk we consider the boundary



64 G. N. MILSTEIN AND M. V. TRETYAKOV

value problem

PV − V = −f(x), x ∈ G\Sh,(5.12)

V (x) = 0, x ∈ Sh,(5.13)

where P is the one-step transition operator: PV (x) = EV (X1), X0 = x.
It is known [12, p. 322] that the solution of this problem is the function

V (x) = E

µx−1∑
k=0

f(Xk).(5.14)

If we take f(x) equal to the indicator function f(x) = IG\Sh
(x), then the solu-

tion of problem (5.12)–(5.13) is V (x) = Eµx. Further, if we find the solution V (x)
of (5.12)–(5.13) with a function f(x) which everywhere in G\Sh satisfies the condition

f(x) � IG\Sh
(x),(5.15)

then, due to (5.14),

Eµx � V (x).(5.16)

We take V (x) of the form (see [13, p. 132])

V (x) =

{
A2 − |x+B|2n, x ∈ G\Sh,

0, x ∈ Sh,
(5.17)

where B is a d-dimensional vector such that

min
x∈G

|x+B| � C > 0,(5.18)

n is a sufficiently large natural number (how to choose it is shown below), and A2 =
maxx∈G |x+B|2n. The function V (x) satisfies the boundary condition (5.13).

Let x ∈ G\Sh; then X1 = x + hb(x) + h1/2σ(x) ξ. It is not difficult to obtain
(recall that a = σσᵀ)

PV (x)− V (x) = −hn|x+B|2n−4

×
[
2|x+B|2(x+B, b(x)

)
+ |x+B|2

d∑
i=1

aii

+2(n− 1)

d∑
i,j=1

aij(x)(xi +Bi)(xj +Bj)

]
+O(h2).(5.19)

Since the coefficients aij = aji of (5.1) satisfy the strict ellipticity condition in G,
we have, for all x ∈ G and an arbitrary d-dimensional vector y,

d∑
i,j=1

aij(x) yiyj � λ2
1

d∑
i=1

(yi)2, λ2
1 = min

x∈G
min

1�i�d
λ2
i (x) > 0,(5.20)

where λ2
1(x) � · · · � λ2

d(x) are eigenvalues of the matrix a(x) = {aij(x)}.
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Relations (5.19) and (5.20) imply

PV − V � −hn|x+B|2n−2
[
2
(
x+B, b(x)

)
+ (2n− 2 + d)λ2

1

]
+O(h2).

We select n so that for all x ∈ G,

2
(
x+B, b(x)

)
+ (2n− 2 + d)λ2

1 � C > 0

is always possible. Then, for sufficiently small h we obtain PV − V � −γh, where
γ > 0 is independent of h and x.

Obviously, the function v(x) = V (x)/(γh) is the solution of problem (5.12)–(5.13)
with f(x) � 1. Therefore, (see (5.15)–(5.17)) Eµx � A2/(γh). From here and
inequalities (5.10), it is not difficult to obtain the estimate (5.11). Lemma 4 is proved.

We extend the definition of the constructed chain for all m by the following rule:
If m/2 > κ, then (Xm/2, Ym/2, Zm/2) = (Xκ, Yκ, Zκ). Introduce

dk = u(Xk+1/2)Yk+1/2 + Zk+1/2 − u(tk, Xk)Yk − Zk,

dk+1/2 = u(Xk+1)Yk+1 + Zk+1 − u(Xk+1/2)Yk+1/2 − Zk+1/2, k = 0, 1, . . . .

The lemma on one-step errors is proved analogously to Lemma 2.
Lemma 5. For an integer index k, the inequality∣∣E(dk | Xk, Yk, Zk)

∣∣ � ChYk ISh
(Xk)χæ�k+1/2(5.21)

holds.
For a half-integer index k + 1

2 , the inequality∣∣E(dk+1/2 | Xk+1/2, Yk+1/2, Zk+1/2)
∣∣ � Ch2Yk χæ>k+1/2(5.22)

holds.
Theorem 4. Algorithm 1′ has weak order of accuracy O(h),∣∣E(ϕ(Xæ)Yæ + Zæ)− u(x0)

∣∣ � Ch,(5.23)

where C is independent of x0 and h.
Proof. We have

R := E
(
ϕ(Xæ)Yæ + Zæ

)− u(x0) = E
(
u(Xæ)Yæ + Zæ

)− u(x0)

= E
2æ−1∑
m=0

(
u(X(m+1)/2)Y(m+1)/2 + Z(m+1)/2 − u(Xm/2)Ym/2 − Zm/2

)

=

∞∑
m=0

Edm/2 =

∞∑
k=0

Edk+1/2 +

∞∑
k=0

Edk

=

∞∑
k=0

EE(dk+1/2 | Xk+1/2, Yk+1/2, Zk+1/2) +

∞∑
k=0

EE(dk | Xk, Yk, Zk).

It is obvious that Yk > 0 and (since c(x) � 0) Yk � 1, k = 0, 1, . . . . Using
Lemmas 4 and 5, we obtain

|R| � Ch2
∞∑
k=0

E(Yk χæ>k+1/2) + Ch

∞∑
k=0

E(Yk ISh
(Xk)χæ�k+1/2)

� Ch2Eæ+ ChEνx0
� Ch,
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Table 1
Parabolic problem. The results of approximate solution of problem (6.1)–(6.2) according to

Algorithm 1 (the upper table) and Algorithm 2 (the lower table) for µ ≡ 0, F ≡ 0. The exact
solution u(0.6, 0, 0, 0)

.
= 0.87797, u(15, 0, 0, 0)

.
= 1.21000.

h M u(0.6, 0, 0, 0) ≈ Eæ u(15, 0, 0, 0) ≈ Eæ
0.04 1 · 103 0.7756± 0.0127 7.4 1.0337± 0.0180 7.8
0.01 4 · 104 0.8444± 0.0022 30.6 1.1504± 0.0035 32.7
0.0016 1 · 106 0.8722± 0.0005 194 1.1999± 0.0007 207
0.0001 4 · 106 0.8775± 0.0002 3111 1.2093± 0.0004 3325

h M u(0.6, 0, 0, 0) ≈ Eæ u(15, 0, 0, 0) ≈ Eæ
0.04 1 · 103 0.7127± 0.0115 6.3 0.9560± 0.0167 6.3
0.01 4 · 104 0.7941± 0.0020 27.0 1.0719± 0.0030 27.7
0.0016 1 · 106 0.8440± 0.0004 183 1.1526± 0.0007 193
0.0001 4 · 106 0.8695± 0.0002 3064 1.1955± 0.0004 3262

where C is independent of x0, h. Theorem 4 is proved.
Remark 2. It is possible to construct algorithms of random walks analogous to

Algorithms 2 and 3 for elliptic problem (5.1)–(5.2).

6. Numerical experiment. Consider the Dirichlet problem for the parabolic
equation,

∂u

∂t
=

1

2
(1.21− x2

2 − x2
3)

∂2u

∂x2
1

+
1

2

∂2u

∂x2
2

+
1

2

∂2u

∂x2
3

+6 (1− 0.5 e−t)
(
x2

1(1.21− x2
2 − x2

3) + x2
2

)
+0.5 e−t(1.21− x4

1 − x4
2), t ∈ (0, T ], x ∈ U1,(6.1)

u(0, x) =
1

2
(1.21− x4

1 − x4
2), x ∈ U1,

u(t, x) = (1.21− x4
1 − x4

2)(1− 0.5 e−t), t ∈ (0, T ], x ∈ ∂U1,
(6.2)

where U1 ⊂ R3 is a unit ball with center at the origin. This problem has the solution

u(t, x) = (1.21− x4
1 − x4

2)(1− 0.5 e−t).

By changing time t = T − s problem (6.1)–(6.2) is rewritten in the form (1.1)–(1.2)
which is suitable for the probabilistic approach.

The results of simulation of u(0.6, 0, 0, 0) and u(15, 0, 0, 0) by Algorithms 1 and 2
are given in Table 1. The values in Table 1 are approximations of u = E(ϕ(tæ, Xæ)×
Yæ + Zæ), evaluated as

u
.
=

1

M

M∑
m=1

(
ϕ
(
t(m)
æ , X(m)

æ

)
Y (m)

æ + Z(m)
æ

)
± 2

√
DM

M
,(6.3)

where

DM =
1

M

M∑
m=1

[
ϕ
(
t(m)
æ , X(m)

æ

)
Y (m)

æ + Z(m)
æ

]2

−
[
1

M

M∑
m=1

(
ϕ
(
t(m)
æ , X(m)

æ

)
Y (m)

æ + Z(m)
æ

)]2

.
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Table 2
Elliptic problem. The results of approximate solution of problem (6.4)–(6.5) according to Algo-

rithm 1′ for F ≡ 0. The exact solution u(0, 0, 0) = 1.21, u(0.5, 0, 0) = 1.1475.

h M u(0, 0, 0) ≈ Eæ u(0.5, 0, 0) ≈ Eæ
0.04 1 · 103 1.0337± 0.0180 7.8 0.9361± 0.0239 5.9
0.01 4 · 104 1.1504± 0.0035 32.7 1.0810± 0.0042 24.3
0.0016 1 · 106 1.1999± 0.0007 207 1.1359± 0.0009 155
0.0001 4 · 106 1.2093± 0.0004 3325 1.1467± 0.0004 2477

Thus, assuming that the sampling variance is sufficiently close to DM , u belongs
to the interval defined in (6.3) with probability 0.95. The Monte Carlo error for values
in Table 1 is not greater than errors of numerical integration. As follows from this
table, the results of the experiment are in quite good agreement with the theoretical
results. Numerical tests of Algorithm 3 also gave results corresponding with the
theory.

Consider the Dirichlet problem for the elliptic equation:

1

2
(1.21− x2

2 − x2
3)

∂2u

∂x2
1

+
1

2

∂2u

∂x2
2

+
1

2

∂2u

∂x2
3

+6x2
1 (1.21− x2

2 − x2
3) + 6x2

2 = 0, x ∈ U1,(6.4)

u |∂U1
= 1.21− x4

1 − x4
2.(6.5)

The solution of this problem is

u(x) = 1.21− x4
1 − x4

2.

This example was used in [14] to test a method of random walk over touching ellip-
soids.

The results of simulation of u(0, 0, 0) and u(0.5, 0, 0) by Algorithm 1′ are given in
Table 2. The values in Table 2 are approximations of u = E(ϕ(Xκ)Yκ+Zκ) evaluated
by a formula analogous to (6.3). The Monte Carlo error for the values in Table 2 is
not greater than the errors of numerical integration. Analyzing the results presented
in Table 2, we can conclude that the error of numerical integration is proportional
to Ch and the mean number of steps Eκ is proportional to K/h.

We pay attention to the fact that the method of random walk over touching
ellipsoids from [14] is also of the first order of accuracy in h and Eκ = O(1/h).
Comparing the results of tests from [14] with the results in Table 2, we see that the
constant C at h in the error of numerical integration is larger for Algorithm 1′ while
the constant K at 1/h in the estimate of the mean number of steps Eκ is larger for
the method of random walk over touching ellipsoids.

We note (see the introduction) that it is possible to select the function F so that
the variance D of the random variable η̄ = ϕ(Xκ)Yκ + Zκ related to the discrete
system will decrease. Such a selection allows us to reduce the computational costs.
For instance, if we take

FT =
(
4x3

1

√
1.21− x2

2 − x2
3, 4x3

2, 0
)
,

then it is not difficult to show that the variance D of the random variable η =
ϕ(Xx(τ))Yx,1(τ)+Zx,1,0(τ) related to the system of SDEs is equal to zero. Since the
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accuracy order of the method is O(h), the variance D satisfies the inequality D � Ch,
where C is independent of x, h. Therefore, the Monte Carlo error is bounded from
above by C

√
h/M . In numerical experiments, making use of the function F selected

as above leads to a significant decrease of computational costs in comparison with
simulations when F ≡ 0.

Numerical tests of Algorithm 2′ also gave results corresponding with the theory.
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