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Abstract. An analytical expression of the mean velocity for forced thermal ratchets is obtained
under small amplitude of the periodic forcing. It gives quite accurate approximation of the mean
velocity, in particular for fast periodic forcing, and reproduces the current reversal. Diffusion
ratchets and forced ratchets with state-dependent noise are also considered.

1. Introduction

In recent years, one of the most intensively studied noise-induced phenomena is directed
transport in Brownian ratchets (see [1–5] and references therein). The interest in this
phenomenon is caused by its possible biological applications relating to movement of muscles
or the operation of molecular combustion motors. The ratchet mechanism is also particularly
interesting for novel separation techniques for particles of mesoscopic, micro- and nanoscales.

Analytical and numerical studies of the phenomenon have mainly dealt with evaluating the
mean velocity of the noise-induced transport. An analytical expression of the mean velocity
for forced thermal ratchets in the case of a sufficiently long period of the periodic forcing
(adiabatic regime) was given in [1]. For clarity of exposition, we derive the expression in
section 2. In accordance with this formula, given the ratchet potential, the sign of the mean
velocity does not depend on parameters of the system. But this formula does not work for
relatively fast periodic forcing (non-adiabatic regime). In section 3, we derive an analytical
expression of the mean velocity for forced thermal ratchets under small amplitude of periodic
forcing in the general case. Our tests demonstrate that the obtained formula gives quite good
results.

In [6] it is found numerically that the direction of mean current can be reversed in the case
of a short period of the periodic forcing. We obtain a formula which reproduces the current
reversal.

In section 4, we extend the procedure of section 3 to evaluate the mean velocity for forced
ratchets with multiplicative noise (see also [7,8]) and for diffusion ratchets [9].
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2. Preliminaries

For clarity of exposition, we first derive some properties of solutions to the Ito equation (see
also [1,3,7,8])

dX = f (X)dt + σ(X) dw(t) (2.1)

wheref (x) andσ(x) areL-periodic functions andw(t) is a standard Wiener process.
Introduce the process8(t) = X(t) (modL) on a circle of radiusL/2π . It is continuous

on the circle. Due to the periodicity off andσ, we can write (2.1) in the form

dX = f (8) dt + σ(8) dw(t). (2.2)

Under sufficiently wide assumptions (e.g.,σ(x) 6= 0, x ∈ R),8(t) is an ergodic process
(see, e.g., [10]). Its invariant densityp(ϕ),06 ϕ 6 L, isL-periodic and satisfies the stationary
Fokker–Planck equation

1

2

∂2

∂ϕ2
(σ 2p)− ∂

∂ϕ
(fp) = 0

p(0) = p(L)
∫ L

0
p(ϕ) dϕ = 1.

Solving this problem, we get

p(ϕ) = Cr(ϕ)

σ 2(ϕ)

[
r(L)

∫ L

ϕ

r−1(ξ) dξ +
∫ ϕ

0
r−1(ξ) dξ

]
(2.3)

where

r(ϕ) = exp

(
2
∫ ϕ

0

f (ξ)

σ 2(ξ)
dξ

)
(2.4)

andC > 0 is found from the condition∫ L

0
p(ϕ) dϕ = 1.

LetEX(0) <∞. Due to the ergodicity of8(t), we have for the mean velocitȳv ofX(t):

v̄ := lim
t→∞

EX(t)

t
= lim

t→∞
EX(0)

t
+ lim
t→∞

1

t

∫ t

0
Ef (8(s)) ds

=
∫ L

0
f (ϕ)p(ϕ) dϕ = LC

2
[r(L)− 1]. (2.5)

The sign ofv̄ depends on the sign ofr(L)−1 only. Evidently, the necessary and sufficient
condition for zero mean velocity consists of the equality (cf [7,8])∫ L

0

f (ϕ)

σ 2(ϕ)
dϕ = 0. (2.6)

For instance, ifσ ≡ const and the potential

F(x) = −
∫
f (x) dx

is an L-periodic function (e.g., a ratchet potential), we get the well known fact of
thermodynamics [11] that̄v = 0. Clearly, for anL-periodic potentialF(x), one can find
anL-periodic state-dependentσ(x) such that there is a noise-induced transport, i.e.v̄ 6= 0
(see, e.g., [7,8]).
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Remark 1. Let us note that the condition (2.6) remains true if we consider a SDE in the sense
of Stratonovich:

dX = f (X) dt + σ(X) ∗ dw(t).

This is equivalent to the Ito equation

dX = f (X) dt +
1

2
σ(X)

dσ

dx
(X) + σ(X) dw(t). (2.7)

Analogously to (2.5), we get for the mean velocityv̄str of the solutionX(t) to (2.7):

v̄str = LCstr

2
[rstr (L)− 1]

where

rstr (ϕ) = σ(ϕ)

σ (0)
exp

(
2
∫ ϕ

0

f (ξ)

σ 2(ξ)
dξ

)
.

Due to the periodicity ofσ(ϕ), we arrive at condition (2.6).

As is known [1] (see also [3–6]), forced thermal ratchets exhibit noise-induced transport.
Here we take a periodically forced thermal ratchet of the form

dX = f (X) dt +Aχ(t; T ) dt + σ dw(t) (2.8)

whereF(x) = − ∫ f (x) dx is anL-periodic ratchet potential,F(x) = F(x + L), x ∈ R,
possessing no reflection symmetryF(x) 6= F(−x), x ∈ (0, L/2); A, T , andσ are some
positive constants;

χ(t; T ) =
{

1 06 t < T/2

−1 T/26 t < T
(2.9)

andχ(t; T ) is T -periodical.
The model (2.8) is similar to ones investigated in [1] (see also [3,4,6]).
In connection with (2.8), consider two SDEs

dX+ = f (X+)dt +A dt + σ dw(t)

dX− = f (X−)dt − A dt + σ dw(t).

Let 8+(t) and8−(t) be continuous random processes on the circle with radiusL/2π
obtained by mappingX+(t) andX−(t) on the circle:8±(t) = X±(t) (modL).

Just as (2.5), we find expressions for the mean velocities

v̄± = lim
t→∞EX

±(t)/t.

We have

v̄+ = Lσ 2

2
(1− e−2AL/σ 2

)

[ ∫ L

0
e2[Aϕ−F(ϕ)]/σ 2

dϕ
∫ L

0
e−2[Aϕ−F(ϕ)]/σ 2

dϕ

+(e−2AL/σ 2 − 1)
∫ L

0
e2[Aϕ−F(ϕ)]/σ 2

∫ ϕ

0
e−2[Aξ−F(ξ)]/σ 2

dξ dϕ

]−1

. (2.10)

Putting−A instead ofA in (2.10), we get the expression forv̄−. The asymmetry of the ratchet
potentialF(x) can result in̄v+ 6= −v̄−. Note that ifF(x)were symmetric, i.e.F(x) = F(−x),
thenv̄+ = −v̄−.

Suppose that the periodT of χ(t; T ) is sufficiently large so that stationary regimes of
8+(t) and8−(t) are established in a time essentially less thanT/2. In this case the mean
velocity v̄ of the solutionX(t) to (2.8) can be approximated by

v̄
.= v̄+ + v̄−

2
. (2.11)



5798 G N Milstein and M V Tretyakov

As far as we know, this formula was first obtained in [1]. Due to numerical experiments
(see, e.g., [6]), the mean velocityv̄ is fairly well approximated by the expression (2.11) in the
limit of largeT .

Expandingv̄+ in powers of small amplitudeA, we obtain

v̄+ .= AL2NFMF +
2

σ 2
A2L2NFMFJF (2.12)

where

NF = NF (σ) =
[ ∫ L

0
e−2F(ϕ)/σ 2

dϕ

]−1

MF = MF(σ) =
[ ∫ L

0
e2F(ϕ)/σ 2

dϕ

]−1

JF = JF (σ ) = LNFMF

∫ L

0
e−2F(ϕ)/σ 2

∫ ϕ

0
e2F(ξ)/σ 2

dξ dϕ +MF

∫ L

0
ϕe2F(ϕ)/σ 2

dϕ

−NF
∫ L

0
ϕe−2F(ϕ)/σ 2

dϕ − L
2
.

(2.13)

Analogously

v̄− .= −AL2NFMF +
2

σ 2
A2L2NFMFJF .

Then

v̄
.= 2

σ 2
A2L2NFMFJF . (2.14)

Clearly, if the periodT is not sufficiently large such that stationary regimes of the processes
8−(t) and8+(t) are established in a time less thanT/2, the formula (2.11) does not work.
In section 3 we obtain an approximate expression for the mean velocity in the case of a small
amplitudeA without any assumption on the length of the periodT .

3. The mean velocity for thermal ratchets in the limit of small amplitude of the periodic
forcing

In this section we consider systems with small-amplitude periodic forcing of the form

dX = f (X) dt +Aβ(t; T ) dt + σ dw(t) (3.1)

where the potentialF(x) = − ∫ f (x) dx is anL-periodic function, the forceβ(t; T ) is a
T -periodic function,A > 0 is a sufficiently small number andL, T , σ are some positive
constants.

At first we demonstrate the procedure of evaluating the mean velocityv̄ =
lim t→∞ EX(t)/t in the case ofβ(t; T ) = sin 2πt/T . Because we can expand a periodic
function in the Fourier series, we are able to generalize the procedure for an arbitrary force
β(t; T ). As an example, we evaluate the mean velocityv̄ in the case ofβ(t; T ) = χ(t; T )
defined in (2.9) (see remark 4 below).

One can associate an autonomous system with the system (3.1) in a standard way. In the
case ofβ(t; T ) = sin 2πt/T , we have

dX = f (X) dt +A sin

(
2π

T
S

)
dt + σ dw(t)

dS = dt.
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Consider the random process(8(t),2(t)): 8(t) = X(t) (modL),2(t) = S(t) (modT )
on a torus traced by a circle with radiusL/2π whose centre runs along a circle of radiusT/2π .
Due to the periodicity of the coefficients, we get

dX = f (8) dt +A sin

(
2π

T
2

)
dt + σ dw(t). (3.2)

Because ofσ 6= 0, the process(8,2) is ergodic. Its stationary densityp(ϕ, ϑ),
0 6 ϕ 6 L, 0 6 ϑ 6 T , is L-periodic inϕ andT -periodic inϑ . The densityp(ϕ, ϑ)
satisfies the stationary Fokker–Planck equation

σ 2

2

∂2p

∂ϕ2
− ∂p

∂ϑ
− ∂

∂ϕ

[(
−F ′(ϕ) +A sin

2π

T
ϑ

)
p

]
= 0. (3.3)

One can see that

p(ϑ) :=
∫ L

0
p(ϕ, ϑ)dϕ = 1

T
06 ϑ 6 T (3.4)

i.e.,p(ϑ) is the uniform distribution on the interval [0, T ].
Due to ergodicity of the process(8,2), the mean velocitȳv := lim t→∞ EX(t)/t is equal

to

v̄ = −
∫ T

0

∫ L

0
F ′(ϕ)p(ϕ, ϑ)dϕ dϑ +

∫ T

0

∫ L

0
A sin

(
2π

T
ϑ

)
p(ϕ, ϑ)dϕ dϑ

= −
∫ T

0

∫ L

0
F ′(ϕ)p(ϕ, ϑ)dϕ dϑ

where the last equality follows from (3.4).
Expand the densityp(ϕ, ϑ) in powers ofA:

p(ϕ, ϑ) = 1

T
p0(ϕ) +Ap1(ϕ, ϑ) +

A2

2
p2(ϕ, ϑ) + · · · . (3.5)

Therefore,

v̄ = −
∫ L

0
F ′(ϕ)p0(ϕ) dϕ − A

∫ T

0

∫ L

0
F ′(ϕ)p1(ϕ, ϑ)dϕ dϑ

−A
2

2

∫ T

0

∫ L

0
F ′(ϕ)p2(ϕ, ϑ)dϕ dϑ − · · · . (3.6)

By substituting (3.5) in (3.3) and collecting terms with the same factorsAk, k =
0, 1, 2, . . . , we get a system of equations forp0, p1, p2, etc.

The functionp0(ϕ) satisfies the problem

σ 2

2

∂2

∂ϕ2
p0 +

∂

∂ϕ
(F ′(ϕ)p0) = 0

p0(0) = p0(L)

∫ L

0
p0(ϕ) dϕ = 1

whence

p0(ϕ) = NF · e−2F(ϕ)/σ 2
(3.7)

whereNF is defined in (2.13).
Due to (3.7) and the periodicity ofF(x), the first term in (3.6) is equal to zero.
In accordance with (3.4), we obtain∫ L

0
pk(ϕ, ϑ)dϕ = 0 k = 1, 2, . . . . (3.8)
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The functionp1(ϕ, ϑ) satisfies the equation

σ 2

2

∂2p1

∂ϕ2
− ∂p1

∂ϑ
+
∂

∂ϕ
(F ′(ϕ)p1)− 1

T
sin

(
2π

T
ϑ

)
p′0(ϕ) = 0.

Its solution has the form

p1(ϕ, ϑ) = b1(ϕ) cos
2π

T
ϑ + c1(ϕ) sin

2π

T
ϑ (3.9)

whereb1(ϕ) andc1(ϕ) satisfy the boundary value problem

σ 2

2
b′′1 +

d

dϕ
(F ′(ϕ)b1)− 2π

T
c1 = 0

σ 2

2
c′′1 +

d

dϕ
(F ′(ϕ)c1) +

2π

T
b1− 1

T
p′0(ϕ) = 0

b1(0) = b1(L) b′1(0) = b′1(L) c1(0) = c1(L) c′1(0) = c′1(L).

(3.10)

Apparently, there exists a unique solution to the problem (3.10) for any periodic potential
F(ϕ). We have proved this for a sufficiently smallT and for a sufficiently bigT , but we have
not succeeded in giving a general proof. At the same time it is not difficult to detect this fact
numerically for any concreteF(ϕ).

In accordance with (3.8) (this is also clear from (3.10))∫ L

0
b1(ϕ) dϕ = 0

∫ L

0
c1(ϕ) dϕ = 0. (3.11)

Substituting (3.9) in (3.6), we obtain that the second term of (3.6) is equal to zero.
Now consider the functionp2(ϕ, ϑ). It satisfies the equation

σ 2

4

∂2p2

∂ϕ2
− 1

2

∂p2

∂ϑ
+

1

2

∂

∂ϕ
(F ′(ϕ)p2)− sin

(
2π

T
ϑ

)
∂p1

∂ϕ
= 0. (3.12)

Its solution has the form (the form is distinguished from (3.9) becausep1 depends onϕ andϑ)

p2(ϕ, ϑ) = a2(ϕ) + b2(ϕ) cos
4π

T
ϑ + c2(ϕ) sin

4π

T
ϑ

where the functionsa2(ϕ), b2(ϕ), andc2(ϕ) are found by solving the corresponding boundary
value problem for three linear ordinary differential equations of the second order with periodic
coefficients. A nonzero contribution ofp2 to v̄ (see (3.6)) is given by the term witha2(ϕ)

only. That is why we need not considerb2(ϕ) andc2(ϕ) but are interested ina2(ϕ) only, which
satisfies the equation

σ 2

2
a′′2 +

d

dϕ
(F ′(ϕ)a2)− c′1 = 0

a2(0) = a2(L) a′2(0) = a′2(L).
(3.13)

The function

a2(ϕ) = C1e−2F(ϕ)/σ 2
+

2

σ 2
e−2F(ϕ)/σ 2

∫ ϕ

0
(c1(ξ) +C0)e

2F(ξ)/σ 2
dξ (3.14)

with (MF is defined in (2.13))

C0 = −MF

∫ L

0
c1(ξ)e

2F(ξ)/σ 2
dξ

is the solution to the problem (3.13) under anyC1. But due to (3.8)∫ L

0
a2(ϕ) dϕ = 0
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whence the constantC1 can be found uniquely.
Substituting (3.14) in (3.6) and using the periodicity ofF(ϕ), the second equality of (3.11),

and the expression forC0, we come to the formula

v̄
.= −A

2T

2

∫ L

0

[
F ′(ϕ)

2

σ 2
e−2F(ϕ)/σ 2

∫ ϕ

0
(c1(ξ) +C0)e

2F(ξ)/σ 2
dξ

]
dϕ

= −A
2T L

2
C0 = 1

2
A2T LMF

∫ L

0
c1(ξ)e

2F(ξ)/σ 2
dξ (3.15)

wherec1(ϕ) is from (3.10). Note thatc1(ϕ) depends on the parametersT andσ (see (3.10)).
Continuing the procedure and findingp3, p4, etc, it is possible to get other terms of

the expansion (3.6). For instance, it is not difficult to see that the next nonzero term in the
expansion (3.6) is a term with factorA4.

Let us state the obtained result.

Theorem 1. For small amplitudeA of the periodic forcing the mean velocityv̄ is evaluated
by the formula

v̄ = 1
2A

2T LMF

∫ L

0
c1(ξ)e

2F(ξ)/σ 2
dξ + O(A4) (3.16)

wherec1(ϕ) is from (3.10) andMF is defined in (2.13).

We perform some numerical experiments. We take the following ratchet potentialF(x):

F(x) = − L

2π

(
sin

2πx

L
+

1

4
sin

4πx

L

)
L > 0 (3.17)

that is used for some tests, e.g. in [6]. Recall that the current reversal for just this potential was
announced in [6]. For sufficiently big periodsT , the mean velocitȳv is always positive for
this potential. But for smallT , the value ofv̄ can become negative, i.e. current reversal may
occur.

In figure 1 we present a comparison of approximate values given by formula (3.15) and
the mean velocityv̄ evaluated by direct Monte Carlo simulations of the SDE (3.1) with
β(t; T ) = sin 2πt/T . We apply a third-order weak scheme [12] to this SDE. To obtain
a sample trajectory, we numerically integrate the SDE during 1000 periods of the periodic
forcing β(t; T ) with the time step 0.02–0.01. In our tests we simulate 200 000–1000 000
sample trajectories. The Monte Carlo errors of the given points are no greater than 3× 10−5.
Other errors are less than or comparable to the Monte Carlo ones.

According to figure 1, the mean velocitȳv of the noise-induced transport can be
approximated quite accurately by (3.16) for a small amplitude of the periodic forcing. Let
us underline that the expression (3.16) works, in particular, for smallT (i.e., in the fast-forcing
regime) and reproduces the current reversal. In passing, we note that the standard deviation
(E(X(t) − EX(t))2)1/2 is essentially greater than the mean valueEX(t) when the current
reversal is observed.

Remark 2. Expanding the expression (3.16) in powers of1/T , we get in the case of largeT :

v̄ = 1

σ 2
A2L2NFMFJF + O

(
A2

T 2

)
+ O(A4)

whereNF ,MF , andJF are from (2.13).

Remark 3. Expanding the expression (3.16) in powers of smallT , we obtain

v̄ = 1

16π4
A2T 4LNFMF

∫ L

0
(F ′′′(ξ))2F ′(ξ) dξ + O(A2T 6) + O(A4T 4). (3.18)
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Figure 1. Solid curves are obtained by formula (3.15) and dashed curves by direct Monte Carlo
simulations of the SDE (3.1) withβ(t; T ) = sin 2πt/T , the potentialF(x) of (3.17),L = 1 and
σ = 0.4.

Substituting the ratchet potentialF(ϕ) of the form (3.17) in (3.18), we get

v̄
.= − 9

8L2
A2T 4NFMF

which approves the possibility of the current reversal.

Remark 4. As has already been mentioned, we are able to obtain an approximation like (3.15)
for other systems with the directed noise-induced transport in the same way as above. For
instance, we evaluate the mean velocityv̄ in the case of the system (2.8) withβ(t; T ) = χ(t; T )
defined in (2.9). To this end we expandχ(t; T ) in the Fourier series and apply the procedure
given above. As a result, we obtain

v̄ = 2

π
A2T LMF

∫ L

0
e2F(ξ)/σ 2

∞∑
k=1

ck1(ξ)

2k − 1
dξ + O(A4) (3.19)

whereck1(ϕ) satisfies the system

σ 2

2

d2bk1

dϕ2
+

d

dϕ
(F ′bk1)−

2π(2k − 1)

T
ck1 = 0

σ 2

2

d2ck1

dϕ2
+

d

dϕ
(F ′ck1) +

2π(2k − 1)

T
bk1 −

4

π

1

2k − 1

1

T
p′0 = 0

bk1(0) = bk1(L)
d

dϕ
bk1(0) =

d

dϕ
bk1(L) ck1(0) = ck1(L)

d

dϕ
ck1(0) =

d

dϕ
ck1(L)

k = 1, 2, . . . .

Herep0(ϕ) is the same as in (3.7).
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Expanding the expression (3.19) in powers of1/T , we get for largeT :

v̄ = 2

σ 2
A2L2NFMFJF + O

(
A2

T 2

)
+ O(A4)

which coincides with (2.14).

4. Some extensions

4.1. Forced ratchets with state-dependent noise

The procedure proposed above can be applied in the case of multiplicative (state-dependent)
noise

dX = f (X) dt +Aβ(t; T ) dt + σ(X) dw(t) (4.1)

wheref (x) andσ(x) areL-periodic functions, the forceβ(t; T ) is a T -periodic function,
A > 0 is a sufficiently small number,L andT are some positive constants.

Let f (x) andσ(x) be such that the condition (2.6) takes place. Then ifA = 0, the mean
velocity v̄ = lim t→∞ EX(t)/t is equal to zero (see section 2). In this case we get for smallA

andβ(t; T ) = sin 2πt/T that

v̄ = A2T L

2

∫ L

0
c1(ξ)r

−1(ξ) dξ

[ ∫ L

0
r−1(ξ) dξ

]−1

+ O(A4) (4.2)

wherer(ϕ) is defined in (2.4) andc1(ϕ) satisfies the system

1

2

d2

dϕ2
(σ 2(ϕ)b1)− d

dϕ
(f (ϕ)b1)− 2π

T
c1 = 0

1

2

d2

dϕ2
(σ 2(ϕ)c1)− d

dϕ
(f (ϕ)c1) +

2π

T
b1− 1

T
p′0(ϕ) = 0

b1(0) = b1(L) b′1(0) = b′1(L) c1(0) = c1(L) c′1(0) = c′1(L).
Here

p0(ϕ) = r(ϕ)

σ 2(ϕ)

[ ∫ L

0

r(ξ)

σ 2(ξ)
dξ

]−1

.

The formula (3.16) is a special case of (4.2).

4.2. Diffusion ratchets

Using the procedure of section 2, we can also find the mean velocity of noise-induced transport
in the case of diffusion ratchets with small periodic perturbation of the diffusion coefficient:

dX = f (X) dt + σ · (1 +Aβ(t; T )) dw(t) (4.3)

where the potentialF(x) = − ∫ f (x) dx is anL-periodic function, the forceβ(t; T ) is a
T -periodic function,A > 0 is a sufficiently small number andL, T , σ are some positive
constants. The transport in diffusion ratchets was investigated analytically for small and large
T and numerically for a wide set of parameters in [9] (see also [4]).

For definiteness, let us takeβ(t; T ) = sin 2πt/T . Then the mean velocity is
approximately evaluated under smallA as

v̄ = − 1
2A

2σ 2T LMF

∫ L

0
c′1(ξ)e

2F(ξ)/σ 2
dξ + O(A4) (4.4)
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Figure 2. Solid curves are obtained by formula (4.4) and dashed curves by direct Monte Carlo
simulations of the SDE (4.3) withβ(t; T ) = sin 2πt/T , the potentialF(x) of (3.17),L = 1 and
σ = 0.4.

whereMF is defined in (2.13) andc1(ϕ) satisfies the system

σ 2

2
b′′1 +

d

dϕ
(F ′(ϕ)b1)− 2π

T
c1 = 0

σ 2

2
c′′1 +

d

dϕ
(F ′(ϕ)c1) +

2π

T
b1 +

σ 2

T
p′′0(ϕ) = 0

b1(0) = b1(L) b′1(0) = b′1(L) c1(0) = c1(L) c′1(0) = c′1(L)
with p0(ϕ) from (3.7).

In figure 2 we present a comparison of approximate values given by the formula (4.4) and
the mean velocitȳv evaluated by direct Monte Carlo simulations of the SDE (4.3) with the
potentialF(x) of (3.17) andβ(t; T ) = sin 2πt/T . We apply a third-order weak scheme [12]
to this SDE. To obtain a sample trajectory, we numerically integrate the SDE during 1000
periods ofβ(t; T ) with the time step 0.02–0.01. In these tests we simulate 2× 103–2× 105

sample trajectories. The Monte Carlo errors of the given points are not greater than 5× 10−4.
Other errors are less than or comparable to the Monte Carlo ones. According to figure 2, the
mean velocitȳv of the noise-induced transport in diffusion ratchets can be approximated quite
accurately by (4.4) in the case of a small periodic perturbation of the diffusion coefficient.

Remark 5. Expanding the expression (4.4) in powers of smallT , we get

v̄ = 2

π2
A2T 2LMFNF

∫ L

0
F ′(ξ)(F ′′(ξ))2 dξ + O(A2T 4) + O(A4T 2). (4.5)

An expression for the mean velocityv̄ in the limit of smallT is given in [9]. If we substitute
β(t; T ) = sin 2πt/T in that expression and expand it in powers ofA, we also arrive at (4.5).
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