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Abstract. Nonlinear dynamics and chaotic and complex systems constitute some of the most fasci-
nating developments of late twentieth century mathematics and physics. The implications
have changed our understanding of important phenomena in almost every field of sci-
ence, including biology and ecology. This article investigates complexity and chaos in the
spatiotemporal dynamics of aquatic ecosystems. The dynamics of these biological com-
munities exhibit an interplay between processes acting on a scale from hundreds of meters
to kilometers, controlled by biology, and processes acting on a scale from dozens to hun-
dreds of kilometers, dominated by the heterogeneity of hydrophysical fields. We focus on
how biological processes affect spatiotemporal pattern formation. Our results show that
modeling by reaction-diffusion equations is an appropriate tool for investigating funda-
mental mechanisms of complex spatiotemporal plankton dynamics, fractal properties of
planktivorous fish school movements, and their interrelationships.
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1. Introduction to Plankton and Fish School Patterns and Scales.

1.1. Patterns in Nonlinear Nonequilibrium Systems. Pattern formation in
nonlinear complex systems is one of the central problems of the natural, social, and
technological sciences (Haken, 1977; Nicolis and Prigogine, 1977; Weidlich and Haag,
1983). The occurrence of multiple steady states and transitions from one to another
after critical fluctuations, the phenomena of excitability, oscillations, and waves, and
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the emergence of macroscopic order from microscopic interactions in various non-
linear nonequilibrium systems in nature and society have been the subject of many
theoretical and experimental studies.

The classical approach to the origin of spatial structures was developed by Turing
(1952) and his followers (for references see Medvinsky et al., 1997). These investiga-
tions found that an initially uniform distribution of reacting components can become
unstable. As the instability develops, a spatially nonuniform distribution (a spatial
structure) of activators and inhibitors appears. Turing pattern formation is based on
the coupling of linear diffusion and nonlinear local kinetics under conditions when the
diffusivity of the activator is less than that of the inhibitor. Fairly recent experimen-
tal work by de Kepper et al. (1991) has demonstrated Turing structures in chemical
reactions.

A major unsolved problem with Turing’s approach is that the identification of ac-
tivators and inhibitors that could be involved in the formation of patterns in chemical,
biological, or social systems is still lacking, and may be unachievable. Nowadays, more
realistic theoretical approaches are being considered. These account for complex spa-
tiotemporal dynamics of open spatially confined systems as a result of the interaction
between intrinsic dynamics of the system and external forcing by the environment. In
ecology, such an interaction can include both physico-chemical and biological factors.
In this work we focus on the biological factors influencing the dynamics of aquatic
communities. We study the roles of predator invasion, planktivorous fish cruising and
feeding, and the interaction of neighboring habitats in the formation of the complex
transient spatiotemporal plankton patterns which occur in the ocean.

1.2. Plankton and Models of Plankton Dynamics: An Overview. Plankton are
floating organisms of many different phyla living in the pelagic of the sea, in fresh-
water lakes, or in larger rivers. They are to a large extent subject to water move-
ments (Sommer, 1994, 1996; Baretta-Bekker, Duursma, and Kuipers, 1998, p. 235).
Their functional classification is based on trophic level, size, and distribution. Au-
totrophs, i.e., primary producers, constitute phytoplankton, whereas heterotrophs,
i.e., consumers, include bacterioplankton and zooplankton. A differentiation in size
classes is related to the retention by different mesh sizes of plankton nets and filters.
There are picoplankton (less than 2µm), nanoplankton (2–20µm), microplankton
(20–200µm), mesoplankton (0.2–2mm), macroplankton (2–20mm), and megaplank-
ton (greater than 20mm) (Raymont, 1980; Baretta-Bekker, Duursma, and Kuipers,
1998, p. 235).

In the 17th century, the Dutch pioneer microscopist Anton van Leeuwenhoek
was probably the first human being to see minute creatures, which he called animal-
cules, in pond water (Hallegraeff, 1988). The German Victor Hensen, who organized
Germany’s first big oceanographic expedition in 1889 (Hensen, 1892; Porep, 1970),
introduced the term plankton (from the Greek planktos = wandering).

Phytoplankton are microscopic plants that drive all marine ecological communi-
ties and the life within them. Photosynthesis by the world’s phytoplankton generates
half of the oxygen that mankind needs for maintaining life and absorbs half of the car-
bon dioxide that may be contributing to global warming. Besides oxygen and carbon
dioxide, other substances are also recycled by phytoplankton, including phosphorus,
nitrogen, and sulphur (Bain, 1968; Ritschard, 1992; Duinker and Wefer, 1994; Ma-
lin, 1997). Hence, phytoplankton are one of the main factors controlling the further
development of the world’s climate, and there is a vast literature on this subject; cf.
Charlson et al. (1987), Williamson and Gribbin (1991).
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Zooplankton are the animals in plankton. In marine zooplankton both herbivores
and predators occur; herbivores graze on phytoplankton and are eaten by zooplank-
ton predators. Together, phyto- and zooplankton form the basis for all food chains
and webs in the sea. In turn, the abundance of the plankton species is affected by a
number of environmental factors such as water temperature, salinity, sunlight inten-
sity, and biogen availability (Raymont, 1980; Sommer, 1994). Temporal variability
of the species composition is caused by seasonal changes and, according to theories
originating in papers of Lotka (1925) and Volterra (1926), is also due to trophical
prey-predator interactions between phyto- and zooplankton.

Because of their evident importance, the dynamics of plankton systems have
been under investigation for more than a hundred years. From the beginning, plank-
ton studies have regularly combined field observations, laboratory experiments, and
mathematical modeling. It was in the 19th century that fisheries first stimulated inter-
est in plankton dynamics, because strong positive correlations between zooplankton
and fish abundance were found. The German expedition of 1889 just mentioned was
mainly motivated by fisheries interests. At the same time, fishery science began to
develop. In the beginning of the 20th century, the first mathematical models were de-
veloped for understanding and predicting fish stock dynamics and their correlations
with biological and physical factors and human interventions; cf. Cushing (1975),
Gulland (1977), Steele (1977).

Contemporary mathematical modeling of phytoplankton productivity has its roots
in the work of Fleming (1939), Ivlev (1945), Riley (1946), Odum (1956), and others.
A review has been given by Droop (1983). A collection of the most frequently used
models was presented by Behrenfeld and Falkowski (1997).

The control of phytoplankton blooming by zooplankton grazing was modeled first
by Fleming (1939) using a single ordinary differential equation for the temporal dy-
namics of phytoplankton biomass. Other approaches have been the construction of
data-fitted functions (Riley, 1963) and the application of Lotka–Volterra equations
to describe the prey-predator relation of phytoplankton and zooplankton (Segel and
Jackson, 1972; Dubois, 1975; Levin and Segel, 1976; Vinogradov and Menshutkin,
1977; Mimura and Murray, 1978). More realistic descriptions of zooplankton graz-
ing with functional responses to phytoplankton abundance were introduced by Ivlev
(1945), with a modification by Mayzaud and Poulet (1978). Holling-type response
terms (Holling, 1959), which are also known from Monod or Michaelis–Menten sat-
uration models of enzyme kinetics (Michaelis and Menten, 1913; Monod and Jacob,
1961), are also in use (cf. Steele and Henderson 1981, 1992a,b; Scheffer, 1991a, 1998;
Malchow, 1993; Truscott and Brindley, 1994a,b). Observed temporal patterns include
the well-known stable prey-predator oscillations as well as the oscillatory or mono-
tonic relaxation to one of the possibly multiple steady states. Excitable systems are
of special interest because their slow relaxation to the steady state after a supercriti-
cal external perturbation such as sudden temperature increase and nutrient inflow is
suitable for modeling red or brown tides (Beltrami, 1989, 1996; Truscott and Brindley,
1994a,b).

Concerning temporal variability of plankton species abundance, an issue of par-
ticular interest is the limits of its predictability. At early stages, development of
mathematical models of marine ecosystems was driven by the idea that the more
species were explicitly included in a model, the higher would be its predictive abil-
ity. As a result, a number of many-species models appeared that allowed for detailed
structure of the food web; cf. DeAngelis (1992), Jörgensen (1994), Yodzis (1994).
However, the actual predictive ability of this class of models is not very high, rarely
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exceeding a few weeks. In fact, increasing the number of agents may sometimes make
the accuracy of a model worse rather than better. This apparent paradox can be ex-
plained in terms of dynamical chaos (May, 1974). Although strict evidence of chaotic
behavior of natural populations is still lacking, stronger indications of its existence are
appearing (Scheffer, 1991b, 1998; Godfray and Hassell, 1997; Huisman and Weissing,
1999). Chaotic population dynamics fundamentally changes the very basis of system
predictability (Scheffer, 1991b) and makes what one might call “schematic” models of
as much use as many-species ones. Indeed, few-species models can sometimes be even
more instructive, since they take into account only principal features of community
functioning; cf. Pascual (1993), Petrovskii and Malchow (1999, 2001a), Petrovskii et
al. (2001).

Another interesting problem is the dynamics of externally forced systems. Peri-
odic forcing appears natural due to daily, seasonal, or annual cycles of photosynthet-
ically active radiation, temperature, nutrient availability, etc. (Evans and Parslow,
1985; Truscott, 1995; Popova et al., 1997; Ryabchenko et al., 1997). Natural forcings
are of course perturbed by environmental noise. A number of forced models have been
investigated for parts of the food chain or for all of it, from nutrients, phytoplankton,
and zooplankton to planktivorous fish, and many different routes to chaotic dynamics
have been demonstrated (Kuznetsov, Muratori, and Rinaldi, 1992; Ascioti et al., 1993;
Doveri et al., 1993; Rinaldi and Muratori, 1993; Scheffer et al., 1997; Scheffer, 1998;
Steffen and Malchow, 1996a,b; Steffen, Malchow, and Medvinsky, 1997; Petrovskii
and Malchow, 2001b; Malchow, Petrovskii, and Medvinsky, 2002).

The abundance of plankton species changes not only in time but also in space.
Spatial heterogeneity of plankton distributions, known as “patchiness,” is seen in
many field observations (Fasham, 1978; Steele, 1978; Mackas and Boyd, 1979; Greene
et al., 1992; Abbott, 1993). This phenomenon takes place on all scales, from cen-
timeters to thousands of kilometers. A number of explanations have been suggested,
in particular, relating the spatial structure of a plankton system to marine turbu-
lence (Platt, 1972) or to the inhomogeneity of the temperature field in the ocean
(Denman, 1976). A well-studied stripy plankton pattern is due to the trapping of
populations of sinking microorganisms in Langmuir circulation cells (Stommel, 1948;
Leibovich, 1993). Other physically determined plankton distributions have been re-
ported too, such as steep density gradients due to local temperature differences, nutri-
ent upwelling, turbulent mixing, or internal waves (Yoder et al., 1994; Franks, 1997;
Abraham, 1998).

On a small scale of some tens of centimeters, and under relative physical unifor-
mity, differences in “diffusive” mobility of individuals and the capability of locomotion
might also create finer spatial structures, due, for example, to bioconvection and gy-
rotaxis (Platt, 1961; Winet and Jahn, 1972; Pedley and Kessler, 1992; Timm and
Okubo, 1994). For certain bacteria, though not yet for plankton, the mechanism of
diffusion-limited aggregation (Witten and Sander, 1981) has been proposed and ex-
perimentally verified for the spatial fingering of colonies (Matsushita and Fujikawa,
1990; Ben-Jacob et al., 1992).

Thus, mathematical models of plankton population dynamics have to account not
only for growth and interactions but also for spatial processes like random or directed
and joint or relative motion of species as well as the variability of the environment.
According to a widely accepted point of view, it is the interplay of phytoplankton
and zooplankton growth, interactions, and transport that yields the whole variety of
spatiotemporal population structures, and in particular the phenomenon of patchiness
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(cf. Fasham, 1978; Okubo, 1980). Mathematical modeling of these effects requires the
use of reaction-diffusion and perhaps advection equations. A good introduction to
the latter field has been provided by Holmes et al. (1994).

Since the classic paper by Turing, dissipative mechanisms of spontaneous spatial
and spatiotemporal pattern formation in a homogeneous environment have been of
interest in biology and ecology. Turing showed that the nonlinear interaction of two
or more agents with widely different diffusion coefficients can give rise to spatial
structure. Segel and Jackson (1972) were the first to apply Turing’s ideas to a problem
in population dynamics: the dissipative instability in the prey-predator interaction
of phytoplankton and herbivorous copepods with higher herbivore motility. Levin
and Segel (1976) suggested this scenario of spatial pattern formation as a possible
origin of planktonic patchiness. Recently, local bistability, predator-prey limit-cycle
oscillations, plankton front propagation, and the generation and drift of planktonic
Turing patches were found in a minimal phytoplankton-zooplankton interaction model
(Malchow, 1993, 1994) that was originally formulated by Scheffer (1991a), accounting
for the effects of nutrients and planktivorous fish on alternative local equilibria of the
plankton community.

Skellam (1951) and Kierstead and Slobodkin (1953) were perhaps the first to
consider the critical size problem for plankton patches, presenting a model, now called
KISS (Kierstead–Slobodkin–Skellam), that couples exponential growth and diffusion
of a single population. Their patches are unstable, because this coupling leads to an
explosive spatial spread of the initial patch of species with, surprisingly, the same
diffusive front speed as the asymptotic speed of a logistically growing population
(Luther, 1906; Fisher, 1937; Kolmogorov, Petrovskii, and Piskunov, 1937).

Populations with an Allee effect (Allee, 1931; Allee et al., 1949), where the ex-
istence of a minimum viable number of species yields two stable population states,
namely, extinction or survival at the carrying capacity, show a spatial critical size as
well (Schlögl, 1972; Nitzan, Ortoleva, and Ross, 1974; Ebeling and Schimansky-Geier,
1980; Malchow and Schimansky-Geier, 1985; Lewis and Kareiva, 1993; Petrovskii,
1994). Population patches greater than the critical size will survive, while others
go extinct. However, bistability and the emergence of a critical spatial size do not
necessarily require an Allee effect, for logistically growing prey with a parameterized
predator of type II or III functional response can also exhibit two stable steady states
and the related hysteresis loops (cf. Ludwig, Jones, and Holling, 1978; Wissel, 1989).

The consideration of dynamic predation leads to a full spectrum of spatial and spa-
tiotemporal patterns, including regular and irregular oscillations, propagating fronts,
target patterns and spiral waves, pulses, and stationary spatial patterns. Some of
these structures were first observed in oscillating chemical reactions (cf. Field and
Burger, 1985) but have never been observed in natural plankton populations. How-
ever, spirals have been seen in the ocean as rotary motions of plankton patches on a
kilometer scale (Wyatt, 1973). They have also been found in parasitoid-host systems
(Boerlijst, Lamers, and Hogeweg, 1993). For other motile microorganisms, traveling
waves such as targets or spirals have been found in the cellular slime mold Dic-
tyostelium discoideum (Gerisch, 1968, 1971; Keller and Segel, 1970, 1971a,b; Segel
and Stoeckly, 1972; Segel, 1977; Newell, 1983; Alt and Hoffmann, 1990; Ivanitsky,
Medvinsky, and Tsyganov, 1991; Siegert and Weijer, 1991; Steinbock, Hashimoto,
and Müller, 1991; Vasiev, Hogeweg, and Panfilov, 1994; Höfer, Sherratt, and Maini,
1995). These amoebae are chemotactic species, i.e., they move actively up the gradient
of a chemical attractant and aggregate. Chemotaxis is a kind of density-dependent



316 MEDVINSKY, PETROVSKII, TIKHONOVA, MALCHOW, AND LI

cross-diffusion, and it is an interesting open question whether there is preytaxis in
plankton or not. However, there is some evidence of chemotaxis in certain phyto-
plankton species (Ikegami et al., 1995). Bacteria like Escherichia coli or Bacillus
subtilis also show a number of complex colony growth patterns (Adler, 1966; Adler
and Templeton, 1967; Ivanitsky, Medvinsky, and Tsyganov, 1991, 1994; Medvinsky
et al., 1991; 1993a; 1993b; 1994; Shapiro and Hsu, 1989; Shapiro and Trubatch,
1991; Reshetilov et al., 1992), different from the diffusion-limited aggregation pat-
terns already mentioned. Their emergence requires cooperation and active motion
of the species, which has also been modeled as density-dependent diffusion and pre-
dation (Kawasaki, Mochizuki, and Shigesada, 1995; Kawasaki et al., 1995; Mimura,
Sakaguchi, and Matsushita, 2000).

Allowing for spatial dependences in the plankton community opens up new routes
to chaotic dynamics. Diffusion-induced spatiotemporal chaos along a neutral gradient
was found by Pascual (1993). Chaotic oscillations behind propagating diffusive fronts
are found in a prey-predator model (cf. Sherratt, Lewis, and Fowler, 1995; Sherratt,
Eagan, and Lewis, 1997) and a three competitive species model (Petrovskii et al.,
2001); a similar phenomenon is also observed in a model of a chemical reactor (Merkin
et al., 1996; Davidson, 1998). Recently, it has been shown that the appearance of
chaotic spatiotemporal oscillations in a prey-predator system is a somewhat more
general phenomenon and must not be attributed to the species front propagation or
to the inhomogeneity of environmental parameters (Petrovskii and Malchow, 1999,
2001a).

Conditions for the emergence of three-dimensional spatial and spatiotemporal
patterns after differential-flow-induced instabilities (Rovinsky and Menzinger, 1992)
of spatially uniform populations were derived by Malchow (1996, 1998, 2000a,b) and
illustrated by patterns in a minimal phytoplankton-zooplankton model due to Scheffer
(1991a). Instabilities in the uniform distribution can arise if phytoplankton and zoo-
plankton move with different velocities, regardless of which one is faster. This mech-
anism of generating patchiness is more general than the Turing mechanism, which
depends on strong conditions on the diffusion coefficients, and one can expect it to
be widely applicable in population dynamics.

This discussion should make it clear that the dynamics of the plankton commu-
nities and, in particular, processes of plankton pattern formation, have been under
intensive investigation in recent decades. Considerable progress has been made in un-
derstanding the principal features. However, many mechanisms of the spatiotemporal
variability of natural plankton populations are still not known. Pronounced physical
patterns like thermoclines, upwelling, fronts, and eddies often set the framework for
the biological processes; cf. section 4. However, under conditions of relative physi-
cal uniformity, the temporal and spatiotemporal variability can be a consequence of
the coupled nonlinear biological and chemical dynamics (Levin and Segel, 1976; Steele
and Henderson, 1992). Daly and Smith (1993) concluded that “. . . biological processes
may be more important at smaller scales where behavior such as vertical migration
and predation may control the plankton production, whereas physical processes may
be more important at larger scales in structuring biological communities. . . .” O’Brien
and Wroblewski (1973) introduced a dimensionless parameter, containing the charac-
teristic water speed and the maximum specific biological growth rate, to distinguish
parameter regions of biological and physical dominance; see also Wroblewski et al.
(1975, 1976).

Physical and biological processes may differ significantly not only in spatial but
also in temporal scale. In particular, the effect of external hydrodynamic forcing
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on the appearance and stability of nonequilibrium spatiotemporal patterns has been
studied in Scheffer’s model (Malchow and Shigesada, 1994), making use of the sep-
aration of the different time scales of biological and physical processes. A channel
subject to tidal forcing served as a hydrodynamical model system with a relatively
high detention time of matter. Examples were provided on different time scales: the
simple physical transport and deformation of a spatially nonuniform initial plankton
distribution as well as the biologically determined formation of a localized spatial
maximum of phytoplankton biomass.

Plankton pattern formation is dependent on the interplay of various physical
(light, temperature, hydrodynamics) and biological (nutrient supply, predation) fac-
tors (cf. Platt, 1972; Denman, 1976; Fasham, 1978). In nature, it has been observed
that the direction of motion of plankton patches does not always coincide with that of
the water (Wyatt, 1971, 1973), and as the spatial scale increases above approximately
100 meters, phytoplankton behaves successively less like a simple passive quantity dis-
tributed by turbulence (Nakata and Ishikawa, 1975; Powell et al., 1975). Similarly,
the spatial variability of zooplankton abundance differs essentially from the environ-
mental variability on scales of less than a few dozen kilometers (Weber, El-Sayed, and
Hampton, 1986). This indicates that biological factors play an essential role in the
emergence of plankton patchiness (Steele and Henderson, 1981). The question arises:
Can biological factors, such as predator-prey growth and interactions, be a cause of
plankton pattern formation without any hydrodynamic forcing?

In this article, we apply schematic few-species models to demonstrate that preda-
tor-prey interactions can give rise to complex spatiotemporal dynamics of both plank-
ton and plankton–fish communities.

2. Complex Patterns in a Minimal Model of Plankton Dynamics.

2.1. Mathematical Model. In this section, the spatiotemporal dynamics of an
aquatic community is modeled by a two-species prey-predator (i.e., phytoplankton-
zooplankton) system. We show that the formation of a patchy spatial distribution of
species can be described by this relatively simple model. The environment is assumed
to be uniform, i.e., the system parameters do not depend on space or time.

According to a widely accepted approach (Murray, 1989; Levin, Powell, and
Steele, 1993; Malchow, 1993; Holmes et al., 1994; Shigesada and Kawasaki, 1997;
Sherratt, 2001), the functioning of a prey-predator community can be described by a
reaction-diffusion system of the form

ut(r, t) = D∇2u(r, t) + f(u, v),(2.1)

vt(r, t) = D∇2v(r, t) + g(u, v).(2.2)

Here, u(r, t) and v(r, t) are the abundance of prey and predator, respectively, r is
the position vector, t is time, and D is the diffusion coefficient. We assume that the
diffusivities are equal for both species, which is the usual case in natural plankton
communities where the mixing is mainly caused by marine turbulence. The form of
the functions f(u, v) and g(u, v) is determined by local biological processes in the
community and, for biological reasons, must have the following structure: f(u, v) =
P (u)−E(u, v), g(u, v) = κE(u, v)−µv. The function P (u) describes the local growth
and natural mortality of the prey, whereas E(u, v) describes trophical interaction
between the species, i.e., predation. The parameter µ is the mortality rate of the
predator, and κ is the coefficient of food utilization.
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The particular choice of the functions P (u) and E(u, v) in (2.1)–(2.2) may vary
depending on the type of the prey population and on the type of functional response of
the predator. Allowing for the results of field and laboratory observations on plankton
systems (Raymont, 1980; Fasham, 1978), we assume that the local growth of the prey
is logistic and that the predator shows the Holling type II functional response. Then,
having chosen the simplest mathematical expressions for P (u) and E(u, v) (Murray,
1989; Shigesada and Kawasaki, 1997), we arrive at the equations

ut = D∇2u+
α

b
u(b− u)− γ u

u+H
v,(2.3)

vt = D∇2v + κγ
u

u+H
v − µv,(2.4)

where α, b,H, and γ are constants: α is the maximal growth rate of the prey, b is the
carrying capacity for the prey population, and H is the half-saturation abundance of
prey. In a schematic, few-species model such as (2.1)–(2.2), it makes little sense to
look for a more detailed parameterization.

The next step is to introduce dimensionless variables. Considering

ũ = u/b, ṽ = vγ/(αb), t̃ = αt, r̃ = r(α/D)1/2,(2.5)

and new dimensionless parameters h = H/b, m = µ/α, and k = κγ/α, from (2.3)–
(2.4) we arrive at the following equations containing only dimensionless quantities:

ut = ∇2u+ u(1− u)− u

u+ h
v,(2.6)

vt = ∇2v + k
u

u+ h
v −mv.(2.7)

Tildes are omitted here and below. More details about the choice of dimensionless
variables in the system (2.3)–(2.4) as well as possible implications can be found in
Petrovskii and Malchow (2001a).

Before proceeding to the study of spatiotemporal pattern formation, we consider
the local dynamics of the system, i.e., the properties of (2.6)–(2.7) without diffusion
terms. One finds by linear stability analysis that the system

ut = u(1− u)− u

u+ h
v , vt = k

u

u+ h
v −mv(2.8)

possesses three stationary states: (0, 0) (total extinction), (1, 0) (extinction of the
predator), and the nontrivial state (u∗, v∗) (coexistence of prey and predator), where

u∗ =
rh

1− r and v∗ = (1− u∗)(h+ u∗),(2.9)

with r = m/k for convenience. It is readily seen that, for all nonnegative values of
k, m, and h, (0, 0) is a saddle point. The stationary point (1, 0) is a saddle point
if (u∗, v∗) is in the biologically meaningful region u > 0, v > 0, and a stable node
otherwise. The stationary point (u∗, v∗) can be of any type.

Although the parameter space of (2.8) is three-dimensional, the properties of the
local dynamics mainly depend on H and the ratio r = m/k, showing less pronounced
dependence on k separately; cf. Petrovskii and Malchow (1999, 2000, 2001a). In
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particular, the state (u∗, v∗) moves to the biologically meaningful region u, v > 0
when

h <
1− r
r

(2.10)

and becomes unstable for parameter values

h <
1− r
1 + r

.(2.11)

In the latter case, the steady state is surrounded by a stable limit cycle and the kinet-
ics of the system is oscillatory. These results provide helpful information for choosing
parameter values for numerical simulations of the full problem (2.6)–(2.7). In the
case of existence of a stable stationary point (i.e., when (2.10) holds and (2.11) does
not), the dynamics of the system typically reduces to relaxation to the spatially ho-
mogeneous state u(x, t) ≡ u∗, v(x, t) ≡ v∗. The details of the process depend on the
type of the initial conditions. For example, for a finite initial distribution of species
the relaxation usually takes place after propagation of diffusive fronts (Dunbar, 1986;
Murray, 1989; Petrovskii, Vinogradov, and Morozov, 1998; Petrovskii and Malchow,
2000). Since we are more concerned here with the formation of transient spatiotempo-
ral patterns, it is the parameter values satisfying condition (2.11) that are of primary
interest (Kopell and Howard, 1973; Sherratt, Lewis, and Fowler, 1995; Petrovskii and
Malchow, 1999).

2.2. Results ofComputer Simulations: One-DimensionalCase. The spatiotem-
poral dynamics of a diffusion-reaction system depend on the choice of initial condi-
tions. Recently, (2.6)–(2.7) have been considered in a few papers (Sherratt, Lewis,
and Fowler, 1995; Shigesada and Kawasaki, 1997; Petrovskii and Malchow, 2000) in
connection with the problem of biological invasion, where the initial conditions are
naturally described by finite functions and the dynamics of the community mainly
consists of a variety of diffusive populational fronts. In the present article we are in-
terested in another situation that seems to be more general from the biological point
of view. At the beginning of the process, both populations are spread over the whole
area. In a real community, the details of the initial spatial distribution of the species
can be determined by quite specific causes. The simplest form of the initial distribu-
tion would be spatially homogeneous. However, in this case the distribution of the
species remains homogeneous for all time, and no spatial pattern can emerge. To get
nontrivial dynamics, one has to perturb the homogeneous distribution.

In this subsection, we focus on the one-dimensional dynamics of the system (2.6)–
(2.7) with u = u(x, t), v = v(x, t), and ∇2 = ∂2/∂x2. Several different forms of
perturbed initial conditions will be considered. We begin with the “constant-gradient”
distribution

u(x, 0) = u∗,(2.12)

v(x, 0) = φ1(x) = v∗ + εx + δ,(2.13)

where ε and δ are parameters.
The results of our computer simulations show that the type of the system dy-

namics is determined by the values of ε and δ. If ε is small, the initial conditions
(2.12)–(2.13) evolve to a smooth heterogeneous spatial distribution of species (Petrov-
skii and Malchow, 1999). The spatial distributions vary gradually in time, the local
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Fig. 1 Spatial distribution of populations (solid lines for prey, dashed for predator) for a case where
the regular phase is gradually displaced by the chaotic phase: (a) t = 640, (b) t = 2640.

temporal behavior of the dynamical variables u and v following the limit cycle of
the homogeneous system. This regime is not self-sustained, and the smooth spatial
pattern arising in this case slowly relaxes to the spatially homogeneous distribution
of species (Petrovskii and Malchow, 2001a).

For another set of parameters (e.g., if ε exceeds a critical value εcr depending on
δ ), the features of the spatial distribution become essentially different; cf. Petrovskii
and Malchow (1999). Figure 1 shows the spatial distribution of species at t = 640
and 2640 for k = 2.0, r = 0.4, h = 0.3, ε = 10−6, and δ = −1.5 · 10−3. In this case,
the initial distribution (2.12)–(2.13) leads to the formation of a strongly irregular
“jagged” transient pattern inside a subdomain of the system (Figure 1(a)). The size
of this region grows steadily with time and, eventually, irregular oscillations prevail
over the whole domain (Figure 1(b)). This regime is persistent. Long-time numerical
simulations show that after the irregular spatiotemporal oscillations occupy the whole
domain, the dynamics of the system does not undergo any farther changes.

For these parameters the temporal behavior of the concentrations u and v also
becomes completely different. Figure 2 exhibits the “local” phase plane of the system
obtained in a fixed point x̄ = 480 inside the region invaded by the irregular spa-
tiotemporal oscillations. Instead of following the limit cycle, as happens in the case of
smooth pattern formation, the trajectory now fills nearly the whole domain inside the
limit cycle. Below we will show that this regime of the system dynamics corresponds
to spatiotemporal chaos; see also Petrovskii and Malchow (1999).

A remarkable property of the system dynamics is that, until the irregular pat-
tern spreads over the whole domain, there exist distinct boundaries at each moment
separating the regions with different dynamic regimes, i.e., the jagged and smooth
patterns. Our numerical results show that these interfaces propagate with approxi-
mately constant speed in opposite directions, so that the size of the chaotic region
steadily grows. The phenomenon is essentially spatiotemporal: the chaos prevails as
a result of the displacement of the regular regime by the chaotic one. The dynamics
of the system looks similar to a phase transition between regular and chaotic phases.

Since the spatial distribution of the species abundance is essentially inhomoge-
neous, it seems that more information can be obtained from consideration of values
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ics; parameters are given in the text. The dashed line shows the limit cycle of the spatially
homogeneous system; the broken straight lines show the position of the steady state.
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specially designed to take into account both temporal dynamics and the spatial
dimension of the system. The simplest example of such a value is given by the
spatially averaged concentration of species (another example will be considered be-
low). Figure 3 shows a sketch of the phase plane (〈u〉, 〈v〉) for the parameters
k = 2.0, r = 0.33, h = 0.43. While in the smooth pattern regime the trajectory
(not shown) slowly approaches the limit cycle, for the regime of a jagged pattern the
trajectory remains close to the steady state 〈u〉 = u∗, 〈v〉 = v∗, filling the space inside
a certain domain. The diameter of the domain is notably smaller than the diameter
of the limit cycle. This means that the amplitude of the temporal changes in the
spatially averaged species abundance is much smaller in the case of a jagged pattern
than for a smooth one.

The “two-phase” dynamics of the system (2.6)–(2.7) described above does not
result from a specific choice of the initial conditions (2.12)–(2.13). It remains qual-
itatively similar for other quite different initial distributions. In particular, for the
initial conditions

u(x, 0) = u∗,(2.14)

v(x, 0) = v∗ for x ≤ x0 or x ≥ x0 + S,

v(x, 0) = v∗ +A sin
(
2π(x− x0)

S

)
for x0 ≤ x ≤ x0 + S,(2.15)

the spatially homogeneous limit cycle oscillation survives only for very small values
of the amplitude A and magnitude S of the perturbation; cf. Petrovskii and Malchow
(2001a). For somewhat larger but still small values of A and S, a smooth regular
pattern arises. For larger values of A and S, the initial distribution evolves to a
jagged pattern. The “embryo” of the chaotic phase first appears in the vicinity of
the initial finite perturbation of the homogeneous steady state. The moving interface
now separates the domain occupied by irregular oscillations from the homogeneous
region. In this case, the speed of the interface can be found analytically (Petrovskii
and Malchow, 2001a); for a discussion of similar issues see also Petrovskii et al. (2001).

If started with somewhat more complex, e.g., nonmonotonic, initial conditions,
the dynamics of the system can be even more complicated, showing a phenomenon
which may be called intermittency: the domains occupied by regular and chaotic
phases alternate in space (Figure 4). As an example, consider the initial conditions

u(x, 0) = u∗ + ε(x− x1)(x− x2),(2.16)

v(x, 0) = v∗.(2.17)

In this case, slightly perturbed initial conditions evolve to a complex spatial structure
where two domains occupied by jagged patterns are separated by regions with smooth
ones; see Figure 4, which shows a snapshot of the distribution at t = 600 for ε = 10−8,
x1 = 1200, and x2 = 2800, with other parameters as in Figure 1. As in the previous
case, the chaotic domains grow steadily, eventually displacing the regular phase and
occupying the whole region.

The results of our numerical experiments for different initial conditions and dif-
ferent parameter values indicate that the formation of a jagged pattern typically takes
place first in the vicinity of a point xcr, where u(xcr, 0) = u∗, v(xcr, 0) = v∗. If the
initial conditions do not contain such a critical point, the factors determining the
position of the “embryos” are not clear.
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Fig. 4 An intermittent spatial structure appearing from nonmonotonic initial conditions (2.16)–
(2.17); parameters are given in the text. Solid line for prey, dashed for predator.

The scenario of pattern formation described above appears to be essentially differ-
ent from those already known for two-component diffusion-reaction systems (Turing,
1952; Segel and Jackson, 1972; Rovinski and Menzinger, 1992; Pascual, 1993; Mal-
chow and Shigesada, 1994; Malchow, 1995; Sherratt, Lewis, and Fowler, 1995). The
model (2.6)–(2.7) describing formation of the jagged spatial structure is in a certain
sense “minimal,” because it does not contain the usual assumptions and restrictions,
e.g., about different mobility of interacting species or environmental heterogeneity. In
the rest of this section, we consider further this new mechanism of pattern formation.
First, we produce evidence of the chaotic nature of the irregular spatiotemporal oscil-
lations just described. Second, to estimate the applicability of this mechanism to the
dynamics of ecological communities, we extend the results to two space dimensions.

2.3. Spatiotemporal Chaos. In this subsection we show that the formation of
a jagged transient patchy structure in the distribution of the species corresponds to
spatiotemporal chaos. The term “chaos” has a specific meaning, and a visible irreg-
ularity of the system behavior, however complex it may be, does not necessary mean
chaotic dynamics. According to its rigorous definition, chaos means sensitivity to
initial conditions, with small variations of the initial distribution of species leading to
exponentially growing discrepancies between species distributions later. This feature
has been proved to be equivalent to some other properties of the system dynamics,
e.g., to a specific “flat” form of the power spectra for the dynamical variables of the
system and to exponential decrease of the autocorrelation functions; cf. Nayfeh and
Balachandran (1995). Thus, to identify chaos in the dynamics of the system, a variety
of methods can be used. We note that the concept of chaos appeared originally in con-
nection with the temporal dynamics of a spatially homogeneous system. Meanwhile,
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Fig. 5 Spatial distribution of prey abundance at (a) t = 550 and (b) t = 750 for perturbed (dashed)
and unperturbed (solid) initial conditions.

accounting for the spatial dimensions of the system can make its dynamics much more
complex and provide a possibility for chaos to arise in those cases where it would be
impossible otherwise. In particular, the appearance of chaos in the two-species system
is a crucial consequence of the formation of spatial patterns. The phenomenon is es-
sentially spatiotemporal and thus, to distinguish it from the purely temporal chaotic
dynamics of a homogeneous system, the term “spatiotemporal chaos” seems to be
more appropriate.

To show that the formation of jagged transient patterns is chaotic, we test the
sensitivity of the species distribution to variations in the initial condition. Figures 5–8
present results of this kind. First, (2.6)–(2.7) are solved for parameter values corre-
sponding to oscillatory local kinetics of the system (cf. (2.11)) to provide the forma-
tion of jagged patterns. The initial conditions are taken in the form (2.12)–(2.13).
Then (2.6)–(2.7) are solved with slightly perturbed initial conditions u(x, 0) = u∗,
v(x, 0) = φ1(x) + ∆v, the perturbation ∆v being chosen in the form

∆v = εpert sin
(
2π(x− x0)
Lpert

)
(2.18)

for x0 ≤ x ≤ x0 + Lpert, otherwise ∆v = 0.

Then the spatial distributions of species calculated in the two cases are compared.
Figure 5 shows the prey abundance (a comparison for the predator leads to a similar
result) obtained at t = 600 and 800 for perturbed (with x0 = 150, Lpert = 5, and
εpert = 0.01) and unperturbed initial conditions (2.12)–(2.13) for parameter values
k = 2.0, r = 0.3, h = 0.4, ε = 2 · 10−4, δ = −3 · 10−2. Up to t ≈ 600 there is little
difference between the solutions. For t > 600, the difference begins growing rapidly,
and at t = 800 it is of the same order as the solutions themselves. Qualitatively similar
behavior is observed for other values of Lpert and εpert and for other parameter values
corresponding to the formation of irregular structures.

Figure 6 quantifies the growth of perturbations by showing the absolute value b(t)
of the local difference between the prey concentrations at the fixed point x̄ = 150 for
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Fig. 6 Local difference b(t) between perturbed and unperturbed solutions calculated at a fixed point
x̄ = 150.

the two cases,

b(t) = |upert(x̄, t)− uunpt(x̄, t)|.(2.19)

These pointwise results would be conclusive in their own right if obtained for
a system without a spatial structure. This is not so in our case. To address the
appearance of prominent spatial patterns we also calculate a distance d(t) between
the perturbed and unperturbed solutions that allows for the spatial variation of the
system,

d(t) = max |upert(x, t)− uunpt(x, t)|, 0 ≤ x ≤ L,(2.20)

where L is the length of the domain. Values of d at different times are shown in
Figure 7 (parameters are the same as above). The behavior of d(t) also confirms
sensitivity of the species spatial distribution to small variation of the initial conditions.

Another way to take into account the spatial dimension of the system is to consider
the difference between spatially averaged solutions. In general, this approach is not
equivalent to that based on (2.20). Indeed, one can imagine a situation where two
spatial distributions differ significantly in a few points but appear quite close in terms
of averaged values. We define the “distance-on-average” by

n(t) = |〈upert〉(t)− 〈uunpt〉(t)|.(2.21)

The results of the calculation of n(t) shown in Figure 8 (parameters are the same as
in Figures 5–7) are in a good agreement with those obtained by the other approaches.

The results of Figures 5–8 indicate that small variations of the initial conditions
lead, after a certain time T , to the formation of completely different spatial distribu-
tion of species. This conclusion is robust with respect to the method of quantifying
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the difference between the perturbed and unperturbed solutions. The estimates of the
characteristic time T obtained from different approaches (cf. (2.19)–(2.21)) are also
consistent. The dominant Lyapunov exponent is obviously positive, its value being
estimated to lie between 0.003 and 0.01.

Another way to demonstrate the chaotic nature of the irregular spatiotemporal
oscillations of the species abundance is to calculate autocorrelation functions. The
state of a prey-predator community is described by the two dynamical variables u
and v, the densities of prey and predator. Thus, for the general case, one has to con-
sider two autocorrelation functions as well as the cross-correlations. Here we restrict
ourselves to the results obtained for the prey abundance; the autocorrelation function
for the predator shows a similar behavior.

An immediate application of the standard definition leads to certain problems.
According to the usual approach, if a dynamical variable ψ is a function of a variable τ ,
which may be time or position or anything else, the autocorrelation function is defined
by

F (s) = lim
Z→∞

1
Z

∫ Z

0
ψ(τ + s)ψ(τ)dτ.(2.22)

In the problem under consideration, the prey density depends on two variables: posi-
tion and time. If we apply (2.22) to characterize the spatial structure of the system,
we arrive at

F̃ (s, t) = lim
Z→∞

1
Z

∫ Z

0
u(x+ s, t)u(x, t)dx.(2.23)

This equation has a few drawbacks. First, F̃ depends not only on s but also on t.
The situation when the properties of F̃ are explicitly time-dependent appears rather
exotic and makes the interpretation of the results difficult. On the other hand, since
the problem is essentially transient, it seems reasonable that a proper definition of the
autocorrelation function should take into account both spatial and temporal behavior.
Another problem is that, in order to obtain reliable results in computer simulations,
the value of Z must be chosen sufficiently large. The numerical grid should contain
hundreds of thousands of nodes, which is hardly practical.

To overcome these difficulties, we consider a modified definition of the autocorre-
lation function where averaging over space is changed to averaging over time:

K(s) = lim
T→∞

1
T

∫ T

0
u(x0 + s, t)u(x0, t)dt.(2.24)

This equation includes the usual definition as a special case if the system exhibits
ergodic behavior. Although the value of K formally depends on the parameter x0,
our numerical simulations show no significant dependence on x0.

The function K(s) is shown in Figure 9 (for k = 2.0, r = 0.2, H = 0.3, x0 = 100,
with averaging done over the time interval t ∈ [4000, 12000]). Note the great difference
between the solid line, corresponding to irregular dynamics (jagged patterns), and the
dashed line, corresponding to regular dynamics (smooth). One can see that, in the
case of the regular dynamics, the behavior of the system is highly correlated over the
whole domain. Since the regime of smooth patterns is a process of slow relaxation to
the homogeneous spatial distribution, the autocorrelation function gradually changes
with time so that the correlations of the temporal behavior between different points
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Fig. 9 Autocorrelation function K(s) for the regimes of jagged (solid) and smooth (dashed) patterns.

increases. In the limit t → ∞, temporal oscillations throughout the system become
synchronized and K(s) ≡ 1.

In contrast, the behavior of the autocorrelation function for the case of jagged
patterns shown in Figure 9 is typical for chaotic dynamics; cf. Nayfeh and Balachan-
dran (1995). The irregular oscillations of small amplitude in K(s) are a consequence
of the finiteness of the averaging interval T ; our numerical simulations show that their
amplitude decreases to zero as T increases. Since the modified definition (2.24) of the
autocorrelation function takes into account both spatial and temporal dependence, the
dynamical regime corresponding to the formation of jagged patterns can be classified
as spatiotemporal chaos; this is consistent with the comments made at the beginning
of the subsection. This conclusion is also in agreement with recent results of Petro-
vskii and Malchow (1999), where spatiotemporal chaos in a prey-predator system was
described in terms of the temporal behavior of spatially averaged densities.

2.4. Pattern Formation in the Two-Dimensional Case. Now we consider the
extension of these results to two space dimensions. In this case, (2.6)–(2.7) take the
form

∂u(x, y, t)
∂t

=
∂2u

∂2x
+
∂2u

∂2y
+ u(1− u)− u

u+ h
v,(2.25)

∂v(x, y, t)
∂t

=
∂2v

∂2x
+
∂2v

∂2x
+ k

u

u+ h
v −mv,(2.26)

with 0 < x < Lx, 0 < y < Ly. Equations (2.25)–(2.26) describe the dynamics of an
aquatic community in a horizontal layer, the vertical distribution of species inside the
layer being assumed homogeneous. The equations are solved numerically. The choice
of length Lx and width Ly of the domain may be different in different computer ex-
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periments; in the results shown below, Lx = 900, Ly = 300. At the domain boundary,
zero-flux conditions are imposed. As above, the type of the system dynamics depends
on the choice of the initial conditions. For a purely homogeneous initial distribution
of species, the system stays homogeneous forever and no spatial pattern emerges. For
a very weakly perturbed initial distribution (the shape of the perturbation can be
different, following, e.g., (2.12)–(2.13) or (2.14)–(2.15)), a smooth pattern arises that
is not persistent and gradually evolves to the homogeneous distribution. For some-
what stronger initial perturbations, however, the system evolves to the formation of
a jagged spatial pattern that is persistent in time.

Here we present the results of two computer experiments differing in the form of
the initial conditions. In the first case, the initial distribution of species provides a
two-dimensional generalization of (2.16)–(2.17). Specifically,

u(x, y, 0) = u∗ − ε1(x− 0.1y − 225)(x− 0.1y − 675),(2.27)

v(x, y, 0) = v∗ − ε2(x− 450)− ε3(y − 150),(2.28)

where ε1 = 2 · 10−7, ε2 = 3 · 10−5, and ε3 = 1.2 · 10−4. (The initial conditions are
deliberately chosen to be unsymmetric in order to make any influence of the corners
of the domain more visible.) The values of parameters in (2.25)–(2.26) are chosen
as k = 2.0, r = 0.3, h = 0.4. Snapshots of the spatial distribution arising from
(2.27)–(2.28) are shown in Figure 10 for t = 0, 150, 200, 300, 400, 1000. Since both
species exhibit qualitatively similar behavior, except in the early stages of the process
when the influence of the initial condition is dominant, only the prey (phytoplankton)
abundance is shown.

Figure 10 shows that for the two-dimensional system (2.25)–(2.26), the formation
of the irregular patchy structure can be preceded by the evolution of a regular spiral
spatial pattern. Note that the appearance of the spirals is not induced by the initial
conditions. The center of each spiral is situated in a critical point (xcr, ycr), where
u(xcr, ycr) = u∗, v(xcr, ycr) = v∗ (cf. the results obtained in the one-dimensional
case). The distribution (2.27)–(2.28) contains two such points; for other initial con-
ditions, the number of spirals may be different. After the spirals form (Figure 10(b)),
they grow slightly for a certain time, their spatial structure becoming more distinct
(Figures 10(b) and 10(c)). The destruction of the spirals begins in their centers (Fig-
ure 10(d)). Once appearing, the “embryos” of the patchy structure steadily grow (Fig-
ures 10(d) and 10(e)), and finally the irregular pattern prevails over the whole domain.

In the second case, the initial conditions describe a phytoplankton (prey) patch
placed into a domain with a constant-gradient zooplankton (predator) distribution:

u(x, y, 0) = u∗ − ε1(x− 180)(x− 720)− ε2(y − 90)(y − 210),(2.29)

v(x, y, 0) = v∗ − ε3(x− 450)− ε4(y − 135),(2.30)

with ε1 = 2 · 10−7, ε2 = 6 · 10−7, ε3 = 3 · 10−5, ε4 = 6 · 10−5. Figure 11 shows snap-
shots of the phytoplankton distribution at t = 0, 120, 160, 300, 400, 1200 for parameter
values k = 2.0, r = 0.3, h = 0.4. Although the dynamics of the system preceding the
formation of patchy spatial structure is somewhat less regular than in the previous
case, it follows a similar scenario. Again the spirals appear, with their centers located
in the vicinity of critical points (Figures 11(b) and 11(c)); the form of the spirals is
not as perfect as it was in the previous case. The destruction of the spirals, which
also begins near the critical points, leads to the formation of two growing embryos of
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Fig. 10 Spatial distribution of prey (phytoplankton) for (a) t = 0, (b) t = 150, (c) t = 200. Pa-
rameters are given in the text. The irregular patchy structure (see Figure 10 (continued)
on following page) arises as a result of the destruction of the spirals.

the patchy spatial pattern (Figures 11(d) and 11(e)), and finally to the appearance of
irregularity in the whole domain.

The formation of a spiral structure in the spatial distribution of plankton may
shed new light on some old problems. The existence of dipole-like structures in the
plankton distribution in the ocean is widely known. Usually this is associated with a
so-called mushroom-like structure of the field of advective currents; cf. Fedorov and
Ginzburg (1989). Here, we have shown that a structure of this type may appear due
to trophical prey-predator interactions in the aquatic community and need not be
associated with the ocean hydrodynamics.

We have seen that, although at intermediate times the dynamics of the system
can be quite regular, for larger times an irregular patchy spatial pattern appears.
This pattern is in qualitative agreement with field observations; cf. Denman (1976),
Weber, El-Sayed, and Hampton (1986), Greene et al. (1992), Levin, Powell, and
Steele (1993). To determine how genuine the agreement may be, one must consider
the scales of the spatial structures in question. An analysis of the results shown in
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Fig. 10 (cont.) Spatial distribution of prey (phytoplankton) for (d) t = 300, (e) t = 400, (f) t = 1000.
Parameters are given in the text. The irregular patchy structure arises as a result of the
destruction of the spirals.

Figures 10(f) and 11(f), as well as the behavior of the autocorrelation function K(s)
(Figure 9), indicates that there is a characteristic length of the patterns with a value
between 10 and 25 in dimensionless units. In view of (2.5), the magnitude of this
value in dimensional units is determined by the maximal phytoplankton growth rate
α and the turbulent diffusivity D. The value of α depends on the time of the year;
for the period of blooming it can be estimated to be from 4 · 10−5 to 10−5 sec−1,
corresponding to the time of phytoplankton biomass doubling of between 6 and 48
hours. The situation with D is somewhat more complicated. For open-sea regions
the intensity of turbulent mixing usually shows a clear dependence on the scale of the
phenomenon (Ozmidov, 1968; Okubo, 1971, 1980). In particular, for the diffusion of a
single plankton patch, the diffusivity may grow with time (Petrovskii, 1999). However,
this property of the turbulent mixing is manifested much less in coastal regions, e.g.,
in bights and harbors. In this case of so-called small-scale turbulence, the value of the
turbulent diffusivity can be estimated as D = 103cm2sec−1 (Ozmidov, 1968, 1998).
Inserting these estimates for D and α in (2.5), we find that the dimensionless unit
length corresponds to approximately 50 to 100 meters in original dimensional units.
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Fig. 11 Spatial distribution of prey (phytoplankton) for (a) t = 0, (b) t = 120, (c) t = 160. Param-
eters are given in the text.

This gives the value of the characteristic length of the spatial patterns of the order
of 1 km, which is consistent with the scale of plankton patterns obtained in field
observations (Fasham, 1978; Steele, 1978; Abbott, 1993).

3. Spatiotemporal Plankton Pattern Formation and Fish School Cruising. In
the previous section, the effectiveness of a “classical” two-species continuous model in
describing pattern formation in a plankton community was demonstrated. However,
the continuous approach based on ordinary or partial differential equations does not
account for the individual intentional behavior of species in their environment or
for their mutual adaptation. The elaboration of the concept of complex adaptive
systems from Holland (1975) up to the present, together with the development of
individual-based modeling strategies, have partly overcome this problem. Usually,
several so-called agents behave according to a small number of well-defined rules
which control growth, mutual interactions, and motion as well as interactions with
the environment. This set of rules for processes on the microscale can create temporal,
spatial, spatiotemporal, or functional structures on the macroscale.
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Fig. 11 (cont.) Spatial distribution of prey (phytoplankton) for (d) t = 300, (e) t = 400, (f) t = 1200.
Parameters are given in the text.

Here we apply this concept to study the dynamics of a coupled fish-plankton
system. The fish will be taken to be localized in a school or superindividual (Scheffer
et al., 1995), cruising and feeding according to well-defined rules. In such an approach,
the spatiotemporal continuous dynamics of two interacting and dispersing populations
(phytoplankton and zooplankton) and the rule-based behavior of a discrete agent (fish
school) control each other in a hybrid model. A similar hybrid modeling technique was
previously used by Savill and Hogeweg (1997) to describe morphogenetic processes in
cell tissues.

The process of aggregation of individual fish and the persistence of schools under
environmental or social constraints was previously studied by many other authors
(Radakov, 1973; Cushing, 1975; Steele, 1977; Blake, 1983; Okubo, 1986; Grünbaum
and Okubo, 1994; Huth and Wissel, 1994; Reuter and Breckling, 1994; Gueron, Levin,
and Rubenstein, 1996, Niwa, 1996; Romey, 1996; Flierl et al., 1999, Stöcker, 1999)
and will not be considered here.

We note that prey-predator interactions are the basic dynamics of any food chain.
However, Goodwin (1967) also applied these ideas to model the class struggle, where
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the employment rate serves as the prey while the wage bill share acts as the preda-
tor (cf. Lorenz, 1993). Similar interactions have also been identified in couplings of
economic and ecological systems like models of fisheries (Ruth and Hannon, 1997).

3.1. A Model of a Nutrient–Plankton–Fish Coupled System.

3.1.1. Continuous Plankton Dynamics. We consider a four-component nutri-
ent-phytoplankton-zooplankton-fish model where at any location (X,Y ) and time τ ,
the phytoplankton P (X,Y, τ) and herbivorous zooplankton H(X,Y, τ) populations
satisfy the reaction-diffusion equations

∂P

∂τ
= RP

(
1− P

K

)
− AC1P

C2 + P
H +DP∇2P,(3.1)

∂H

∂τ
=

C1P

C2 + P
H −MH − F H2

C2
3 +H2 +DH∇2H.(3.2)

The parameters R, K, M , and 1/A denote the intrinsic growth rate and carrying
capacity of phytoplankton and the death rate and yield coefficient of phytoplankton to
zooplankton, respectively. The constants C1, C2, and C3 parameterize the saturating
functional response. F is the fish predation rate on zooplankton, and DP and DH
are the diffusion coefficients of phytoplankton and zooplankton, respectively. ∆ is the
two-dimensional Laplace operator. The dependence of the zooplankton grazing rate
on phytoplankton is of type II, whereas the zooplankton predation by fish follows a
sigmoidal functional response of type III as is assumed in the Scheffer model (Scheffer,
1991a,b).

The local kinetics of the model, i.e., the case DP = DH = 0, have been inves-
tigated in detail (Steele and Henderson, 1981; Scheffer, 1991a,b). In the absence of
zooplankton, phytoplankton would reach its carrying capacity K. Considering zoo-
plankton at first as a nondynamic predator, i.e., neglecting (3.2), the possibility of
two stable phytoplankton levels arises for intermediate values of zooplankton densi-
ties, whereas high zooplankton densities lead to a single stable low phytoplankton
level and vice versa. Dynamic zooplankton can induce the typical prey-predator limit
cycle oscillations, and the addition of planktivorous fish by the last kinetic term in
(3.2) restores the possibility of bistability. Without external or internal noise, the
initial conditions determine which of the two stable states will be reached. Fluctua-
tions, which might be due to natural noise or also to any extreme event, could induce
transitions between stable states.

The behavior of the local model under seasonal forcing has been studied also
(Scheffer et al., 1997; Scheffer, 1998; Steffen, Malchow, and Medvinsky, 1997). These
seasonal forcings are due to the natural variability of temperature, light, and nutrient
supply. The local prey-predator cycles can be driven to quasiperiodic and chaotic
oscillations. Locally stable steady states simply oscillate with the frequency of the
external forcing.

Accounting for diffusion, diffusion-induced stationary patchy plankton distribu-
tions have been found which appear to be stable even under weak seasonal forcings
(Malchow, 1993). However, such structures require differing diffusion coefficients (Tur-
ing, 1952; Segel and Jackson, 1972). Moving patchy distributions for equal diffusivities
can be found if the interplay of growth, interactions, diffusion, and advection causes
an instability of the uniform plankton distribution (Malchow, 1996) or if certain pa-
rameters, such as the nutrient distribution, possess a spatial gradient. In the latter
case, diffusion-induced chaos may even appear (Pascual, 1993).
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Hydrodynamic forces and their spatiotemporal flow patterns often govern the
structures of drifting and swimming matter. Hydrodynamic processes are usually
much faster than the plankton biology, a fact which makes it possible to use a special
mathematical separation technique that is beyond the scope of this article (Malchow
and Shigesada, 1994). A physically relatively uniform period and area are considered
here.

For later convenience, the model (3.1)–(3.2) is simplified by introducing dimen-
sionless variables. Following Pascual (1993), dimensionless densities p = P/K and
h = AH/K are defined. Space is scaled by a characteristic length L/k, which is the
total length L of the area considered divided by an integer scale factor k that models
the scale of the expected patchy patterns. Time is scaled by a characteristic value
of the phytoplankton growth rate R0. Thus, x = kX/L, y = kY/L, and t = R0τ .
Equations (3.1)–(3.2) now become

∂p

∂t
= rp(1− p)− ap

1 + bp
h+ dp∇2p,(3.3)

∂h

∂t
=

ap

1 + bp
h−mh− f gh2

1 + g2h2 + dh∇2h,(3.4)

where the new parameters are r = R/R0, a = C1K/(C2R0), b = K/C2, m = M/R0,
f = F/(C3R0), g = K/(C3A), dp = k2DP /(L2R0), dh = k2DH/(L2R0).

For the numerical integration of (3.1)–(3.2), we used a simple explicit difference
scheme. The two-dimensional space was divided into a rectangular grid of 64 × 64
quadratic finite elements with unit mesh size. The time step was set equal to 0.01.
Repetition of the integration with smaller step sizes showed that the numerical results
did not change, confirming the accuracy of the chosen time step. Periodic boundary
conditions were used in both directions.

3.1.2. Discrete Fish School Dynamics. The predation rate of fish is usually
taken to be a constant parameter of the plankton-fish interaction model (Scheffer,
1991a,b; Scheffer et al., 1997). This implies that fish are homogeneously distributed
in space. But it is well known that fish can form mobile schools. For such schools,
occupying spatially confined regions, f is not a constant but is a function of zooplank-
ton density h, time t, and space (x, y), i.e., f = f(h, t, x, y) in (3.2). The function
f describes plankton-density-dependent motion of the fish school towards favorable
habitats. This motion can be simulated in different ways (Bocharov, 1990; Radakov,
1973).

In this article we take the behavior of fish schools to obey the rules introduced
by Ebenhöh (1980). These are as follows:

• A localized feeding fish school moves to the neighboring region with the high-
est food concentration only if the local zooplankton density is grazed down
to or below a certain threshold value hth, resulting in a zooplankton density
gradient higher than a defined threshold value δhth.

• This move takes place only after some residence time τth.
The Ebenhöh rules correspond to observations of fish school movements in natural

waters (Radakov, 1973; Ebenhöh, 1980; Fernö et al., 1998; Misund et al., 1998). How-
ever, in order to keep the rules as simple as possible, the fish schools act independently
of other fish and do not change their specific characteristics such as size, speed, and
residence time. The model (3.1)–(3.2) with the function f describing the fish school
movement following the Ebenhöh rules combines features of a cellular automaton and
of a model based on partial differential equations.
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Fig. 12 Phytoplankton and zooplankton spatial distributions obtained in model (3.3)–(3.4) for f = 2.
The density scale is given in the lower part of the figure.

Our calculation of fish movement was carried out according to the Ebenhöh rules.
The fish predation rate f (n)

ij is equal to a constant f0 if at time step nδt the fish school
is present at position (i, j), and zero otherwise. The zooplankton gradients (4ξ4∇h) were
calculated numerically by the formula

(4ξ4∇h)(n)
ij = |ξx|h(n)

i+sign(ξx),j + |ξy|h
(n)
i,j+sign(ξy) − h

(n)
ij ,(3.5)

where sign denotes the signum function.

3.2. Plankton Pattern Formation Resulting from Fish School Motion. The re-
sults presented here are based on numerical simulations for a set of parameters that
guarantees limit cycle oscillations at each location in the absence of diffusion and fish
(r = 2, a = 5, b = 5, m = 0.6, g = 2.5). In natural waters, turbulent diffusion often
dominates plankton diffusion rates. Taking this into account, we consider both phy-
toplankton and zooplankton as passive drifters with the turbulent water motion. This
implies dp = dh = d. Using the relationship between turbulent diffusivity and the
scale of the phenomenon in the sea (Okubo, 1980), one can show that with the char-
acteristic growth rate R0 = 10−5s−1 or one division per day, typical of phytoplankton
growth, and the characteristic length L/k = 1km, typical of plankton patterns, d is
about 0.05.

Figure 12 demonstrates phytoplankton and zooplankton patterns that emerge as
a result of the fish school–plankton interplay. It is apparent that the phytoplankton
density is lower in the regions where zooplankton density is higher, and vice versa.
Many previous observers have reported such an inverse relationship (Fasham, 1978).
Obviously, this is due to consumption of phytoplankton by zooplankton. As a result,
the penetration of phytoplankton into the regions occupied by zooplankton patches
is blocked.
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Fig. 13 Plankton vortex formation as a result of fish school–plankton patch interaction for f = 2.
The location of the fish school is indicated by the star.

One can see spiral waves formed by phytoplankton and zooplankton (Figure 12).
Two- and three-dimensional spiral waves emerge in active physical, chemical, and bio-
logical media (Murray, 1977; Winfree, 1980, 1987; Krinsky, Medvinsky, and Panfilov,
1986; Grusa, 1988). For example, they play an essential role in disturbances of the
heart rhythm and in biological morphogenesis. In the ocean, they may be present as
rotary motions of plankton patches on a kilometer scale (Wyatt, 1973). The formation
of a plankton spiral wave is shown in Figure 13.

It can be seen that the fish school is a trigger of this process. First, the fish school
reaches the zooplankton patch (t = 450). The track made by the school oscillates with
a phase shift compared to the surrounding zooplankton density. Once the fish school
has escaped from the zooplankton patch (t = 460), its track expands and forms a
U-like structure (t = 490). The edges of this structure bend in opposite directions
and form a pair of spiral waves (t = 500 and t = 540). The period of plankton pattern
oscillations is equal to that of the homogeneous plankton distributions in the absence
of fish. The temporal oscillations of the plankton patterns are similar to the changes in
the concentration distributions initiated by rotating vortices in nonoscillating active
media, e.g., chemical ones (Murray, 1977). In the course of time the number of spiral
waves increases, and complex spatial structures form like those of Figure 12. It has
been verified that these spirals are stable for numerical runs of 106 iterations, which
are equivalent to more than 50 years. However, such spirals are quite sensitive to
physical disturbances like shear flows (Biktashev et al., 1998) or resource gradients
(Malchow et al., 2000).



338 MEDVINSKY, PETROVSKII, TIKHONOVA, MALCHOW, AND LI

Fig. 14 Plankton waves emitted by point source for f = 1. The density scale is given in the lower
part of the figure.

It is interesting that at small fish predation rates f , the fish school motility falls
drastically, and spiral waves do not appear for a long time. Point wave sources occur
in this case (Figure 14).

The formation of both spiral waves (Figure 12) and point sources (Figure 14)
is followed by a dramatic decrease of the oscillations of the space-averaged plankton
densities

〈p〉 = 1
S

∫
(S)

p(x, y, t)dxdy, 〈h〉 = 1
S

∫
(S)

h(x, y, t)dxdy,(3.6)

where S = k2, k = 64. It emerges that in contrast to phytoplankton oscillations at
f = 2, the oscillations at f = 1 are characterized by aperiodic bursts that occur at
the moments of sudden changes in the fish school location (Figure 15).

Thus we see that the plankton dynamics depends strongly on the fish school
movement. The analysis of this movement is accordingly of particular interest in
investigating plankton-fish interactions.

3.3. Fish School RandomWalks Resulting from Fish-Plankton Interplay.

3.3.1. Regularity of Irregular Walks. The motion of fish schools is controlled
by various biotic and abiotic environmental factors such as light, temperature, salin-
ity, and nutrient (e.g., plankton) supply (Radakov, 1973; Bocharov, 1990; Wu et al.,
2000). On the other hand, fish school walks that are shown to be essentially con-
trolled by plankton-fish interactions (Radakov, 1973; Ebenhöh, 1980; Misund et al.,
1998; Medvinsky et al., 2000) have a strong feedback on the spatiotemporal plank-
ton dynamics (Medvinsky et al., 2000). In view of this interplay of fish and their
environment, it is not surprising that fish school movements can be chaotic.

The behavior of chaotic systems exhibits highly erratic features and is described
by means of irregular functions. The irregular functions can display both (i) self-affine
and (ii) multiaffine properties. If such a function (F ) represents a stochastic process,
it can be stated in the following way (Mandelbrot, 1977, 1982; Feder, 1988; Schroeder,
1990; Li, 2000):
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Fig. 15 (a) x and y projections of fish school movement and averaged phytoplankton density 〈p〉
oscillations for f = 1. (b) x and y projections of fish school movement and averaged
phytoplankton density 〈p〉 oscillations for f = 2. The averaged zooplankton density 〈h〉
oscillations (not shown) are phase-shifted and qualitatively similar to the phytoplankton
oscillations.

〈| F (x+ l)− F (x) |〉 ∼ lH(3.7)

(where 〈. . .〉 means averaging) in case (i) and

| F (x+ l)− F (x) | ∼ lh(x)(3.8)
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in case (ii). The number H in (3.7) is called the Hurst exponent. If H < 1, then F is
nondifferentiable, and the smaller the exponent H, the more singular F is. Thus, the
Hurst exponent indicates how globally irregular F is. The function h(x) in (3.8) is
called the Hölder exponent. It measures how irregular F is at the point x. Self-affine
functions are called fractal functions, whereas multiaffine functions are called multi-
fractal (Feder, 1988; Schroeder, 1990; Peitgen, Jürgens, and Saupe, 1992). Multifrac-
tal functions can be characterized by the multifractal spectrum D(h) that describes
the distribution of the Hölder exponents and is the Hausdorff dimension of the subset
where the Hölder exponent is equal to h,

D(h) = dimH [x | h(x) = h],(3.9)

where h can take positive as well as negative real values (Feder, 1988; Peitgen, Jürgens,
and Saupe, 1992; Bacry, Muzy, and Arneódo, 1993).

Multifractal processes can be also characterized by the f(α) singularity spectrum,
which associates the Hausdorff dimension f(α) with the subset of the support of the
measure µ, where the singularity strength is α,

f(α) = dimH [x | µ(Bx(ε))],(3.10)

where Bx(ε) is an ε-box centered at x and

µ(Bx(ε)) ∼ εα(x).(3.11)

Homogeneous measures are characterized by a singularity spectrum supported at a
single point (α0, f(α0)). In other words, only one kind of singularity is present in
the measure. Multifractal measures involve singularities of different strengths. In a
general context, the approach based on the f(α) spectrum for singular measures has a
similar status to that based on the D(h) spectrum of Hölder exponents (Bacry, Muzy,
and Arneódo, 1993).

The questions arise of whether or not the complex movement of the fish school
can be described by the simple (3.7) or (3.8), and, if they can, which of the equations
describes the movement best?

3.3.2. Fish School Trajectories. According to the Ebenhöh rules, the fish school
moves to the regions with the highest zooplankton density. Since the plankton dis-
tribution changes in time, fish school walks appear to be rather chaotic. Figure 16
demonstrates typical fish school trajectories: both high-persistence (at f0 = 1) and
low-persistence (at f0 = 15). In both the cases, hth = 0.35, δhth = 0.01, and
τth = 0.08.

One can see that the transition from low to high fish predation rates is followed
by a decrease of the persistence of the fish school movement; indeed, at f0 = 1 the
fish school retains the direction of its movement for a very long time in comparison
with the movement at f0 = 15. The sophisticated treatment of the fish school walks
reveals characteristic features of both types of fish school behavior.

3.3.3. Multifractal Analysis of Fish School Walks. Recently, we have shown
that a fish school walk can be considered as fractal Brownian motion with a Hurst
exponent H depending on both the phytoplankton growth rate and the fish predation
rate (Medvinsky et al., 2000; Tikhonova et al., 2000). But some care is required when
using the Hurst exponent to analyze Brownian signals, since such an approach may
lead to conflicting estimates of H when the fractal function under consideration is not
homogeneous (Arnéodo et al., 1996).



SPATIOTEMPORAL COMPLEXITY OF PLANKTON AND FISH DYNAMICS 341

–4000 –2000 0 2000

6500

7000

7500

8000

8500

9000

9500

10000

10500

X

Y

f
0
 = 1

–3000 –2000 –1000 0

–1500

–1000

–500

0

500

X
Y

f
0
 = 15

Fig. 16 Fish school walks at different values of f0 with the spatial distributions of Figure 12 taken as
initial condition. As time passes these distributions do not undergo any qualitative changes.
For details see Medvinsky et al. (2000).

In the present paper (see also Tikhonova et al., 2000), we do not assume that a
fish school trajectory is necessarily represented by a homogeneous fractal function;
we carry out a multifractal analysis of fish school walks. We use a strategy (Bacry,
Muzy, and Arnéodo, 1993; Muzy, Bacry, and Arnéodo, 1993; Arnéodo, Bacry, and
Muzy, 1995) that provides a practical way to determine the singularity spectra D(h)
(3.9) and f(α) (3.10) directly from an experimental signal. This approach is based
on the use of the wavelet transform (Meyer, 1990; David, 1991; Kahane and Lemarié-
Rieusset, 1995; Li and Loehle, 1995). It is a space-scale analysis that consists of
expanding signals in terms of wavelets that are constructed from a single function,
the analysing wavelet ψ, by means of translations and dilations. The continuous
wavelet transform of a real-valued function F is defined by

Wψ[F ](b, a) =
1
a

∫ +∞

−∞
F (x)ψ

(
x− b
a

)
dx,(3.12)

where b and a are the space and scale parameters, respectively. The analyzing wavelet
ψ is generally chosen to be well localized in both space and frequency. The main
advantage of using the wavelet transform for analyzing the regularity of a function
F is its ability to be blind to polynomial behavior by an appropriate choice of ψ.
Throughout this article, we use the analyzing wavelet called the “Mexican hat” (Li
and Loehle, 1995).

The fastest way to estimate D(h) and f(α) suggests the analysis of the scaling
behavior of the partition function Z(q, a) from the maxima of the modulus of the
wavelet transform (Muzy, Bacry, and Arneodo, 1993),

Z =
N(a)∑
i=1

wi(a)
q
,(3.13)

where i = 1, . . . , N(a), N(a) is the number of the local maxima of Wψ[F ](b, a) at
each scale a considered as a function of x, and the function wi(a) can be defined in
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terms of the wavelet coefficients (Muzy, Bacry, and Arnéodo, 1993; Bacry, Muzy, and
Arnéodo, 1993) by

wi(a) = max
(x , a′) ∈ �i
a′ ≤ a

|Wψ[F ](x, a′) |(3.14)

with <i ∈ L(a), where L(a) is a set of connected wavelet maxima lines <i, which reach
or cross the a-scale.

In the limit a→ 0+, the partition function Z(q, a) follows a power law:

Z(q, a) ∼ aτ(q).(3.15)

The spectrum f(α) of (3.10) can be found by Legendre transforming τ(q), i.e.,

f(α) = min
q

(qα− τ(q)).(3.16)

Since τ(q) is typically differentiable with τ ′′(q) ≤ 0, we find that

α(q) =
dτ(q)
dq

,(3.17)

f(q) = q α(q) − τ(q).(3.18)

Unfortunately, computing the Legendre transform has several disadvantages (for
example, resulting from local violation of the inequality τ ′′(q) ≤ 0). This may lead to
various errors (Chhabra et al., 1987). Therefore, another approach was developed to
define singularity spectra in the spirit of the so-called canonical method (Chhabra et
al., 1987). This consists of using the functions

h(a, q) =
1

Z(a, q)
∂Z(a, q)
∂q

,(3.19)

where

∂Z

∂q
=
N(a)∑
i=1

wi(a)q lnwi(a),(3.20)

and, in analogy to (3.18),

D(a, q) = q h(a, q)− lnZ(a, q).(3.21)

The spectra D(q) and h(q) are defined by (Arnéodo, Bacry, and Muzy, 1995)

D(q) = lim
a→ 0

D(a, q)
ln a

,(3.22)

h(q) = lim
a→ 0

h(a, q)
ln a

.(3.23)

From (3.22) and (3.23), one computes the D(h) singularity spectrum. In contrast
to using the Legendre transform (3.17)–(3.18), such an approach makes it possible
to avoid instabilities related to numerical differentiation. On the other hand, the
canonical method allows us to define and to evaluate the errors in calculating D(q)
and h(q) as the variances in slope of the linear approximations (3.22) and (3.23).
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Fig. 17 Multifractal analysis of realizations of fractional Brownian processes (a) B0.6(x) and (b)
B0.9(x) indexed by H = 0.6 and 0.9. Each of the dependences log2 Z(a, q) vs. log2 a, h(a, q)
vs. log2 a, and D(a, q) vs. log2 a for each of the processes was obtained from 32 realizations,
each of length 212. Values of q are given at each of the graphs. (c) The difference between
τ(q) numerically obtained from (3.15) and its theoretical value τ(q) = qH−1 (Muzy, Bacry,
and Arnéodo, 1993). (d) Spectra f(α) (dashed) and D(h) (solid).

Figure 17 demonstrates how both approaches work in application to model real-
ization of fractional Brownian motion. One can see that all the functions log2 Z vs.
log2 a, h vs. log2 a, and D vs. log2 a are essentially linear, in agreement with (3.15),
(3.23), and (3.22), respectively. Note (see Figure 17(c)) that the difference between
the numerical and theoretical values of τ(q) is virtually independent of H and re-
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mains close to zero in a rather wide region of q. This region widens as the length of
a realization increases. The error grows as |q| increases. Since the difference between
numerical and theoretical values of τ remains nonzero for any finite realization, both
the D(h) and f(α) fractal spectra are not just points but bell-like functions, the half-
width of which are rather small in comparison with the half-width of any multifractal
process.

The similar narrow fractal-like spectra are typical of fish school displacements
under a fish predation rate f0 = 15 (see Figures 18(c), 19(c)). It is evident that
h ≈ 0.6 corresponds to the maximum of D. Hence, these fish school displacements
can be considered as fractional Brownian motion with a Hurst exponent H ≈ 0.6,
which agrees with the results of Medvinsky et al. (2000). The singularity spectra
change drastically as f0 decreases.

Figure 18(b) demonstrates singularity spectra for small- and medium-scale fish
school displacements for f0 = 4. These spectra are wider and have a shape similar to
that typical of multifractal spectra (Bacry, Muzy, and Arnéodo, 1993; Muzy, Bacry,
and Arnéodo, 1993; Arnéodo, Bacry, and Muzy, 1995; Arnéodo et al., 1996).

Figure 18(a) demonstrates some results of the multifractal analysis of small- and
medium-scale fish school displacements for f0 = 1. One can see that small-scale
displacements are characterized by essentially nonlinear h(log2 a) dependencies. As a
result, the singularity spectrum cannot be obtained. Such a spectrum for medium-
scale fish school displacements is shown here. It is multifractal.

Finally, Figure 19 demonstrates results of the multifractal analysis of large-scale
fish school displacements. One can see that the function τ(q) for the fractal movement
is virtually linear (Figure 19(c)), whereas the transition to multifractal D(h) and
f(α) spectra is accompanied by a growing nonlinearity of the τ(q) function. Such a
nonlinearity is typical of multifractal patterns (Feder, 1988).

4. Inhomogeneity of the Marine Environment. In the previous sections, the
dynamics of a plankton system have been considered mainly under the hypothesis
that the properties of the environment do not depend on time or position. This is
not true in the ocean. Most of the hydrophysical factors controlling the functioning
of the biological community, such as temperature, salinity, or intensity of turbulent
mixing, are functions of t and r. This leads to the possibility of a spatial structure
in an aquatic community induced by the heterogeneity of the underlying hydrophys-
ical and hydrochemical fields. In order to better understand the dynamics of an
aquatic community in a real marine environment, it is important to distinguish be-
tween “intrinsic” patterns, i.e., patterns arising due to trophical interactions like those
considered above, and “forced” patterns induced by the inhomogeneity of the envi-
ronment. The physical nature of the environmental heterogeneity, and thus the value
of the dispersion of varying quantities and typical times and lengths, can be essen-
tially different in different cases. We now give a brief description of the main types of
spatial inhomogeneities appearing in the ocean. This rather schematic account is an
introduction to the subject, not a full review. For those interested in details, there is
a vast specialized literature on this and similar issues arising in the marine sciences.

Before proceeding to the consideration of particular cases of hydrophysical het-
erogeneities, it is convenient to outline the processes that could be of primary interest.
First of all, the ocean is a highly stratified system, and there is a distinct asymme-
try between the vertical and horizontal directions. Since we are mainly interested
in phenomena appearing as a result of the interplay between physical and biological
processes, the results reviewed in this section will relate to the dynamics of the upper
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Fig. 18 Multifractal analysis of small-scale (©) and medium-scale (�) fish school displacements
for fish predation rates (a) f0 = 1, (b) f0 = 4, (c) f0 = 15. Small-scale and medium-scale
displacements were obtained by splitting the fish school trajectories (like those of Figure 16)
into steps of length 23 and 25, respectively. Both the functions h(a, q) vs. log2 a (q values
are shown at each of the graphs) and the spectra D(h) are shown for each value of f .

“productive” ocean layer. The thickness of this layer, which depends on a number of
factors such as geographical position and season, ranges from a few dozen to a few
hundred meters. Since the biological spatial patterns considered in previous sections
typically arise on a scale from hundreds of meters to a few kilometers, they seem to
correspond more to the horizontal dynamics of an aquatic community. Therefore, we
focus our interest on the horizontal structure of the marine environment.
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Fig. 19 Multifractal analysis of large-scale fish school displacements for fish predation rates (a)
f0 = 1, (b) f0 = 4, and (c) f0 = 15. Large-scale displacements were obtained by splitting
the fish school trajectories (like those shown in Figure 16) of length 219 (for f0 = 4 and
f0 = 15) and 220 (for f0 = 1) into steps of length 29. The functions h(a, q) vs. log2 a
(q values are given at each of the graphs), τ(q), and the spectra f(α) (dashed) and D(h)
(solid) are shown for each value of f .

The next point is that a typical time of the evolution of inhomogeneities should
not be too short. The ocean is a multiscale system, and the applicability of an
assumption of its steadiness or homogeneity depends on the scale of the processes
under consideration. A typical time for a plankton system is usually defined as the
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period it takes the community to double its abundance. This value varies between
a few hours and a few days for phytoplankton species and between a few days and
a few weeks for zooplankton species. Thus, one can expect that a distinct “forced”
spatial structure in a marine plankton system can only be induced by environmental
inhomogeneities with a typical lifetime of a month or more.

According to one definition, plankton are species which exhibit low capability of
self-motion. Thus, the first apparent reason for the formation of spatial structures in
a plankton system is water motion. There is an extensive literature concerned with
the velocity field in the ocean; cf. Phillips (1977), Pond and Pickard (1978), Pedlosky
(1987), and the references therein; in a wider sense, this is the principal issue of all
of physical oceanography. The nature of the velocity field heterogeneity depends on
the scale of the process. For instance, on a scale from a few centimeters to a few
dozen meters, this heterogeneity is mainly caused by turbulence and has the form of
stochastic turbulent fluctuations. On a scale of a hundred kilometers or more, the
heterogeneity has the form of ocean currents and is induced by the processes acting
on a planetary scale, e.g., the interplay of different climatic zones and the rotation
of the earth (Pedlosky, 1996). On an intermediate scale from kilometers to dozens of
kilometers, the inhomogeneity of the velocity field is usually caused by the interplay of
different factors, one of the most important being wind. Heterogeneity of the field of
(horizontal) advective currents apparently leads to the formation of spatial structures
in plankton communities (Vozjinskaya, 1964; Raymont, 1980; Abbott and Zion, 1985;
Walsh et al., 1989; Capella et al., 1992; Sur et al., 1996). Detailed consideration of
results related to this problem, however, lies beyond the scope of this paper, since
here we are mainly interested in patterns formed by biological interactions.

The impact of ocean turbulence on the functioning of an aquatic community
via its influence on feeding and growth rates has been investigated in a number of
papers (MacKenzie et al., 1994; Jenkinson and Biddanda, 1995; Marrase, Saiz, and
Redondo, 1997). On the other hand, the inhomogeneity of the turbulent mixing in
the ocean (“intermittency,” “turbulent patches,” “rips,” etc.) is a widely observed
phenomenon (Nihoul, 1980; Monin and Ozmidov, 1981). Naturally, one could expect
that it should also contribute to the formation of spatial and spatiotemporal patterns.
This is, however, not as obvious as it may seem. The reason is that the intensity of
turbulent mixing in the ocean is not only spatially intermittent but also transient. In
particular, there are theoretical results indicating that a single turbulent patch tends
to decay with time (Barenblatt, Galerkina, and Luneva, 1987; Barenblatt, 1996), the
estimated time of decay usually being much less than the characteristic times of an
aquatic community. Thus, the intermittency of ocean turbulence affects the dynamics
of the community in terms of spatially homogeneous time-averaged values (Ozmidov,
1986) more than it leads to the formation of a “forced” spatial structure.

Our main interest is the possibility of formation of spatial structures not directly
induced by water motion. There are a variety of factors affecting the dynamics of an
aquatic community via their impact on the growth rates, mortality, feeding rates, etc.
In this brief review most of the attention will be paid to the field of temperature. One
reason is that temperature is one of the main quantities controlling the abundance
of aquatic species (Raymont, 1980; Laurs, Fiedler, and Montgomery, 1984; Hofmann
et al., 1992). In particular, strong correlation between the sea surface temperature
and the chlorophyll concentration has been reported in many papers (Denman, 1976;
Hood et al., 1990; Barnard, Stegmann, and Yoder, 1997). Another reason is that, due
to recent progress in remote sensing technology, the properties of the temperature
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spatial field in the ocean are known better than those of other fields (Njoku et al.,
1985).

The inhomogeneity of the spatial temperature distribution in the ocean arises
from many underlying processes. As mentioned above, the characteristic time of dif-
ferent anomalies in the temperature field depends on the spatial scale of the processes
involved. Processes acting on a global scale may have characteristic times of dozens or
hundreds of years. In particular, differences between climatic zones lead to a steady
average horizontal temperature gradient on the order of 0.01◦C/km (Rodionov and
Kostianoy, 1998). This provides a natural scale for measuring the intensity of tem-
perature anomalies.

The smallest spatial scale of the temperature field is determined by turbulence.
As usual, the horizontal and vertical directions provide essentially different examples
because of gravitation and stratification. While in the vertical direction the spa-
tial inhomogeneities related to turbulent pulsations are estimated not to exceed the
“Ozmidov length” LOz (Ozmidov, 1966, 1968), with value ranging from a few dozen
centimeters to a few meters, lateral turbulent exchange generally has a more compli-
cated nature and can depend on the scale of the particular phenomenon (Ozmidov,
1968; Okubo, 1971; Monin and Ozmidov, 1981). However, the spatial inhomogeneity
of the temperature field induced by turbulent fluctuations can hardly produce any
stable spatial structures in an aquatic community, because the amplitude of the tem-
perature fluctuations is too small, on the order of 0.1◦C (Monin, Kamenkovich, and
Kort, 1974). Also the periods of fluctuations usually do not exceed a few minutes
(Monin, Kamenkovich, and Kort, 1974), which is much less than the times typical for
community functioning.

Another mechanism for the formation of an inhomogeneous temperature field is
vertical convection. Although in some cases the processes underlying this phenomenon
are unclear (Monin and Krasitskii, 1985), a widely accepted hypothesis is that free
vertical convection appears as a result of hydrodynamical instability when the water
density in the upper ocean layer becomes higher than that of the water in the sub-
surface layer, due, for example, to evaporation or cooling. The development of this
instability can lead (Foster, 1974; Joseph, 1976) to the formation of a cell structure
on the sea surface with alternating cold and warm patches, each patch correspond-
ing to a column of either descending or ascending water. The typical size of these
patches is on the order of 10 to 100 meters, and the characteristic time of the pattern
evolution is from a few dozen minutes to a few hours, with the difference between
cold and warm patches rarely exceeding 1◦C (Fedorov and Ginzburg, 1988). Vertical
convection strongly affects the dynamics of the pelagic community, being responsible
for seasonal thermocline breaking and bringing up deep waters with high biogen con-
centration. However, due to its relatively small scale and nonstationary nature, free
vertical convection cannot be expected to lead to the formation of a distinct long-lived
horizontal spatial structure.

An example of a stable long-lived spatial structure in the temperature field is
provided by ocean fronts. The term “ocean front” is normally used for an ocean region
where the magnitude of the gradient of a certain parameter, such as temperature,
salinity, or density, is notably larger than a typical value for that part of the World
Ocean (Fedorov, 1983). In the case of temperature, such a typical value is given by the
average climatic gradient. In practice, the temperature field is usually considered to
contain a front when |∇T | ≥ 0.5−1.0◦C/km. The marine science literature (Fedorov,
1983; Rodionov and Kostianoy, 1998) gives a great variety of examples of ocean fronts
differing in their features, behavior, and underlying physics. Briefly summarizing the
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properties that can be important for the purposes of this article, the value of the
temperature difference across the front ranges from less than 1◦C to 5–6◦C. The
width of the front (i.e., its typical size along the temperature gradient) usually lies
between a few hundred meters and a few kilometers, while its length varies from a
few dozen to a few hundred kilometers. In inner spatial structure, ocean fronts are
typically either step-like (in some cases, multistep), when the front separates regions
with “cold” and “warm” water, or intermittent, when the regions with cold and warm
water alternate. Cases of more complicated geometry are also possible.

A remarkable property of ocean fronts is that they usually last for a long time,
from a few months (seasonal fronts) to many years (e.g., fronts created by large-scale
ocean currents), much longer than the time typical for the functioning of a plankton
system. Also, the typical temperature difference of a few ◦C across the front is often
sufficient to change significantly the growth rate of phytoplankton species (Raymont,
1980). Another point is that the waters on different sides of the front typically have
different origin and can differ significantly in the biogen concentration, e.g., in the case
of upwelling fronts. The combination of these two factors can lead to the formation
of a “forced” spatial structure (Fiedler and Bernard, 1987; Mackas, Washburn, and
Smith, 1991). Indeed, both the phytoplankton growth rate and the species abundance
may be different on the two sides of the front (Hood et al., 1990; Mackas, Washburn,
and Smith, 1991).

Ocean fronts give a common example of long-lived inhomogeneities in the ocean
temperature field, but not the only example. Other widely observed phenomena pro-
viding a relatively stable spatial structure are mesoscale/synoptic eddies and “rings”
(Robinson, 1983; Kamenkovich, Koshlyakov, and Monin, 1987). The eddies typically
have a horizontal size from dozens to 250–350 km and thickness from a few hundred
meters to somewhat more than 1 km, with lifetime varying from a few weeks to a
few months. Mechanisms by which the eddies are formed can be different in different
hydrographic regions (Sverdrup, 1938; The Ring Group, 1981; The Coastal Transition
Zone Group, 1988; Barth, 1989). They can be either “warm,” when the temperature
of the water inside the ring is higher than the temperature outside, or “cold,” and the
temperature difference can be as high as 10–12◦C. Besides the temperature, values
of other factors like salinity and nutrient concentration can also differ significantly
across a ring.

Regardless of their origin and the details of the hydrophysical structure, practi-
cally all rings exhibit anomalous biological activity (Angel and Fasham, 1983), i.e.,
higher abundance of plankton species and higher phytoplankton growth rates. Be-
sides this, the plankton community inside the ring can be spatially structured (Haury
et al., 1986; Hayward and Mantyla, 1990; Bucklin, 1991). Some authors also report
higher abundance of certain fish species associated with the eddies (Bowman et al.,
1983). Another biological consequence arises due to the high mobility typical for the
rings. While ocean fronts are usually localized inside a certain region, synoptic rings
can travel many hundreds of miles. In some cases this can lead to a large-scale bio-
logical invasion when large masses of water containing one pelagic community taken
at the place of the ring formation are brought to another place with quite a different
community (Wiebe et al., 1976).

There also exists also a kind of synoptic eddy known as rotating lens-like eddies,
also known as “meddies” in the Northeastern Atlantic (Armi and Zenk, 1984; Armi
et al., 1988; Kostianoy and Belkin, 1989). Unlike the usual synoptic ring, with the
volume of rotating water adjacent to the ocean surface, a lens is localized in depth.
Typically, a lens makes no trace on the ocean surface, and this makes it a difficult
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object to investigate. Accordingly, the information available about biological phe-
nomena related to rotating lenses is rather poor. Nevertheless, since the lenses exist
like isolated parcels of water with properties different from those of the surrounding
water, they provide an example of long-lived inhomogeneities in the ocean hydrophys-
ical and hydrochemical fields. One can expect that further research will bring more
results concerning biological anomalies associated with this phenomenon; cf. Cooper
(1961).

Our brief examination of heterogeneous ocean fields, particularly water temper-
ature, has shown the presence of stable spatial structures (fronts and eddies) with
lifetimes much greater than those typical for plankton system dynamics. There is
considerable evidence of the impact of these structures on marine ecosystems, which
serves as a motivation for constructing models that take them into account. We now
consider a model of this type.

5. Chaotic and Regular Plankton Dynamics in Spatially Structured Plankton-
Fish Communities. Our brief inspection of the main structures in the ocean environ-
ment, in the previous section, showed that the spatiotemporal dynamics of aquatic
communities is strongly affected by the existence of stable mesoscale physical struc-
tures (Nisbet et al., 1993; Ranta, Kaitala, and Lundberg, 1997). In this section, we
focus on the dynamics of plankton populations in a patchy environment. A minimal
one-dimensional reaction-diffusion model of the dynamics inside a patch is considered,
assuming that some plankton habitats have high fish abundances while in others fish
are absent. We study the temporal behavior of spatially averaged zooplankton and
phytoplankton densities depending on such ecologically significant parameters as the
fish predation rate and patch-to-patch distance. We show that the diffusive inter-
action between different habitats in a patchy marine environment can give rise to
plankton spatial patterns. We also show that the spatially averaged plankton dynam-
ics depends on both the fish predation rate and the distance between fish-populated
habitats and can exhibit chaotic and regular behavior. Chaotic dynamics appears in
a wide parameter range.

5.1. Model Equations. We consider the four-component basic marine food chain
model described, in dimensionless variables, by (3.3)–(3.4)

For numerical integration of (2.3)–(2.4) a simple explicit difference scheme is used.
The one-dimensional space is divided into a grid of 64 finite-difference cells of length
one. The boundary between habitats divides the space into two patches. The time
step is set equal to 10−2. Repetition of the integration with a smaller step size showed
that the numerical results did not change, confirming the accuracy of the chosen time
step. The dynamics is investigated with no-flux boundary conditions. The initial
distributions for h and p are uniform and the same for each of the habitats.

The diffusion terms in (2.1)–(2.2) often describe the spatial mixing of the species
due to the self-motion of the organisms (cf. Skellam, 1951; Okubo, 1986). However, in
natural waters it is turbulent diffusion that is thought to dominate plankton mixing
(Wroblewski and O’Brien, 1976; Okubo, 1980). Taking this into account, we consid-
ered both phytoplankton and zooplankton as passive contaminants of the turbulent
motion. In this case, dp = dh = d. Using the relationship between turbulent diffusiv-
ity and the scale of the phenomenon in the sea (Okubo, 1971, 1980; Ozmidov, 1968),
with the minimum phytoplankton growth rate R0 given by 10−6 sec−1 (Jørgensen,
1994) and the characteristic length L/k of about 2 km, typical of plankton patterns,
one can show that d is about 5× 10−2.
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Fig. 20 Solution diagrams of the model (3.3)–(3.4) for parameters r = 5, a = 5, b = 5, m = 0.6,
g = 0.4. The curves display the steady-state solutions for different values of f . H denotes
a Hopf bifurcation.

5.2. Two-Patch EcosystemDynamics. Figure 20 presents solution diagrams for
the system (2.3)–(2.4), i.e., the dependence of the steady-state solution on the fish
predation rate f . One can see that phytoplankton-dominated stationary states are
typical for high predation rates. As f is lowered, an unstable and another stable steady
state appear, making the system bistable. As f is lowered further, the phytoplankton-
dominated stable steady state and the unstable state disappear in a saddle-node bifur-
cation. For a lower value of f , at a pointH a Hopf bifurcation occurs, destabilizing the
zooplankton-dominated steady state while creating a stable limit cycle, which means
that in the absence of fish (f = 0), the local kinetics of the system is oscillatory (for
all other parameters as in Figure 20). The sophisticated treatment of local properties
of models similar to (2.3)–(2.4) was carried out in (Scheffer, 1991a; Malchow and
Shigesada, 1994; Scheffer, 1989; Steffen, Malchow, and Medvinsky, 1997).

Let us consider the simplest example of a spatially structured ecosystem, consist-
ing of just two patches. The dynamics in both patches obeys (2.3)–(2.4), and in one
patch f = 0, i.e., fish are absent (for example, due to local changes in temperature
or salinity). Figure 21 shows three sets of one-dimensional plankton spatial patterns
that have emerged from initially homogeneous plankton distributions in a patch pop-
ulated by fish (x ≤ 32) with f = 0.05, 0.18, and 0.395 adjacent to a patch where fish
are absent (x > 32, f = 0). The values f = 0.05 and 0.18 correspond to oscillatory
plankton kinetics, while f = 0.395 corresponds to the zooplankton-dominated steady
state. One can see that increase of the fish predation rate is followed by transitions
from regular plankton patterns to irregular ones and then to virtually unstructured
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Fig. 21 Spatiotemporal plankton patterns emerging from initially homogeneous plankton distribu-
tions in the two-habitat system for (a) f = 0.05, (b) f = 0.18, (c) f = 0.395. The darker
regions correspond to lower plankton densities.

plankton distributions in the fish-populated habitat, and from regular to irregular
patterns in the fish-free habitat. Note that the interaction between the patches is
essential to disturbing the initially homogeneous distribution in the fish-free patch;
otherwise, no pattern could occur.

To examine the dependence of these patterns on the fish predation rate in more de-
tail, we construct the pattern bifurcation diagram for the three main types of plankton
patterns shown in Figure 21. Figure 22 shows the plankton abundance as a function of
x at t = 5000 for values of f from 0 to 0.395. One can see that, for the fish-populated
habitat, the structures with a larger inner scale characteristic for the smaller f trans-
form into small-scale irregular patterns as f grows, and then to nearly homogeneous
plankton distributions as the system passes through the Hopf bifurcation (Figure 20).
In contrast, in the fish-free habitat the Hopf bifurcation is not accompanied by essen-
tial changes in plankton structure (Figure 22). It is also seen that the phytoplankton
density is lower in the regions where zooplankton density is higher, and vice versa.
Many authors have reported such an inverse relationship between phytoplankton and
zooplankton as an apparent consequence of phytoplankton grazing by zooplankton;
cf. Fasham (1978).

Although the distinctions between the three main types of the plankton structures
shown in Figure 21 are quite evident, it seems to be desirable to characterize the
difference in a more quantitative way, e.g., to ascribe to each of the patterns a certain
index. It also seems desirable to follow the transformation of one pattern to another
in more detail, i.e., to follow how the properties of the structures change with small
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Fig. 22 Pattern bifurcation diagram for phytoplankton and zooplankton obtained after 5× 105 iter-
ations. The gray scale is the same as in Figure 21.

variations of f . To do this, we render the plankton spatiotemporal patterns (like the
“field” shown in Figure 21) into two-level structures, where the values of plankton
density less than a threshold value are set equal to zero, while those exceeding the
threshold value are set equal to unity. The threshold value is chosen equal to the
minimum peak of the spatially averaged plankton density obtained in the course of
the pattern formation. Note that we do not distinguish between space and time in
order to reveal the features essential for spatiotemporal dynamics of the system.

To characterize the “integral” properties of the two-dimensional spatiotemporal
plankton patterns, we use the fractal dimension (D) of the two-level plankton struc-
tures described above and study the dependence of D on the fish predation rate f .
It should be noted that small changes in both the threshold and the range of t do
not influence essentially the results of the analysis of the plankton patterns; in this
sense this quantity is robust. Figure 23 demonstrates the functions D(f) for zoo-
plankton patterns in the fish-populated and fish-free habitats. Because of the inverse
relationship between phytoplankton and zooplankton density distributions, the phy-
toplankton patterns are characterized by qualitatively similar functions.

The comparison of Figures 22 and 23 demonstrates that each plateau of D(f)
corresponds to more regular plankton distributions. This tendency is more conspicu-
ous for small f in the fish-free habitat and for large f in the fish-populated habitat.
The functions D(f) reveal some new details of the plankton patterns. Specifically,
the smooth changes in D for the fish-populated habitat are seen to be accompanied
by abrupt changes of the fractal dimension in the fish-free habitat (Figures 23(a) and
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Fig. 23 Dependence of the fractal dimension of the zooplankton spatiotemporal patterns on the fish
predation rate for (a) fish-populated and (b) fish-free habitats.

23(b)). Hence, the plankton dynamics seem to be less stable with respect to changes
in the fish predation rate in the fish-free habitat than in the fish-populated habitat.

To study the plankton dynamics, we use phytoplankton and zooplankton densi-
ties, space-averaged over each of the habitats:

〈p〉i =
1
Si

∫
Si

p (x, y, t) dxdy, 〈h〉i =
1
Si

∫
Si

h (x, y, t) dxdy,

where Si is the area of the ith habitat. Here i = 1 corresponds to the fish-populated
habitat and i = 2 to the fish-free one, with S1 = S2 = k2/2, k = 64. It emerges that
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Fig. 24 Three main types of oscillations of space-averaged zooplankton density, depending on f .
(a) x ≤ 32 (fish-populated patch); (b) x > 32 (fish-free).

the temporal dynamics of 〈p〉i and 〈h〉i depend significantly on the fish predation rate
f . As an example, Figure 24 demonstrates the dynamics of the zooplankton space-
averaged density for fish-populated and fish-free patches. There are three main types
of dynamics: (i) regular oscillations (when f is small); (ii) irregular oscillations in both
fish-populated and fish-free patches (as f increases); (iii) virtually constant plankton
density in the fish-populated patch while irregular oscillations appear in the fish-free
habitat (when f undergoes further growth and becomes larger than the critical value
characteristic of the Hopf bifurcation; see Figure 20). The temporal behavior of the
averaged phytoplankton density is qualitatively the same. It should be mentioned
that there is a clear correspondence between the three types of the temporal behavior
(Figure 24) and the spatiotemporal patterns of Figure 21. Specifically, regular and
irregular patterns lead to regular and irregular oscillations of 〈p〉 and 〈h〉, respectively,
while nearly homogeneous patterns lead to virtually constant plankton density.

It is noteworthy that in contrast to the regular regimes, the irregular ones demon-
strate the sensitivity to initial conditions that is characteristic of chaotic dynamics
(Figure 25). In order to investigate how common such a chaotic behavior of the two-
patch plankton system under consideration is, we constructed bifurcation diagrams
for both fish-populated and fish-free patches.

Figure 26 shows these bifurcation diagrams. Successive local maxima of the time-
dependent space-averaged plankton density are plotted for the fish predation rates
covering all the types of dynamics (Figure 24). Regular oscillations produce one or a
small number of points, whereas successive maxima of irregular changes of the plank-
ton density are spread over a range of values. The diagrams were obtained after the
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Fig. 25 Sensitivity to initial conditions. Temporal 〈h〉 oscillations diverge for small initial differ-
ences. Trajectories of 〈h〉 are shown for f = 0.18 and two initial conditions differing by
0.001.

transition processes settled down, when the influence of the initial conditions van-
ished and a particular type of plankton dynamics became evident. Note the different
qualitative regions in the diagrams. For large values of f , the plankton dynamics in
the fish-populated habitat is regular (Figure 26(a)), while in the fish-free patch it is
irregular (see Figure 26(b); an example of irregular dynamics is shown in Figure 24
at f = 0.395). For smaller values of f , the regularity in the fish-populated patch is
lost and the maxima visit a whole segment, except for a narrow gap in the vicinity
of f = 0.2 where the dynamics becomes regular again (Figure 26(a)). The example
shown in Figure 24 at f = 0.18 demonstrates irregular dynamics in both patches.
For f < 0.1, the dynamics in both patches is regular (cf. Figures 26(a) and 26(b);
Figure 24 at f = 0.05 shows an example). To provide a more quantitative insight into
the nature of the temporal dynamics of the averaged densities, we also calculated the
dominant Lyapunov exponent (λ). The results for various values of the fish predation
rate in the fish-populated and fish-free patches (Figures 26(c) and 26(d)) are in good
agreement with the bifurcation diagrams and demonstrate the chaotic nature of the
plankton dynamics. Indeed, comparing Figures 26(a) and 26(c), as well as Figures
26(b) and 26(d), one can see that λ > 0 and chaos always occur at values of f for
which the regularity of the plankton dynamics is lost. A more sophisticated analysis
(Medvinsky et al., 2001) has revealed that chaos underlying the irregular plankton
oscillations (Figure 24) is characterized by positive values of at least four first Lya-
punov exponents. This implies high-dimensional chaos responsible for the complex
plankton dynamics. The sensitivity of the plankton oscillations to initial conditions
typical of chaotic behavior has also been shown to be due to coexistence of a chaotic
attractor and a limit cycle. Interestingly, the entire basin of attraction of the limit
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Fig. 26 Bifurcation diagrams and dominant Lyapunov exponents for various values of the fish pre-
dation rate f . (a) Bifurcation diagram for the fish-populated patch. (b) Bifurcation diagram
for the fish-free patch. (c) Dominant Lyapunov exponent for the fish-populated patch. (d)
Dominant Lyapunov exponent for the fish-free patch. All calculations were carried out on
the time interval 2000 ≤ t ≤ 5000.

cycle appears to be riddled with “holes” leading to the competitive chaotic attractor
(Medvinsky et al., 2001).

5.3. Three-Patch Ecosystem Dynamics. Figure 27 shows an example of the
plankton spatial patterns that emerge from an initially homogeneous distribution in a
three-patch system consisting of two fish-populated habitats separated by a fish-free
gap. The choice of parameters corresponds to either the steady-state local kinetics
(f = 0.395 in Figure 27(a)) or to the limit cycle local kinetics (f = 0.18 in Fig-
ure 27(b)). The following questions arise. How strongly correlated is the plankton
dynamics in the patches separated by a gap? How does the type of plankton dynamics
depend on the width of the gap?

To answer these questions, we calculated the dominant Lyapunov exponent for
different gap widths δ. It appears that regular oscillations (similar to those in Fig-
ure 24 for f = 0.05) are independent of δ. In Figure 28, λ is plotted versus δ for
two other types of plankton dynamics shown in Figure 24. The function λ (δ) is
remarkably nonmonotone in the case of irregular oscillations of the space-averaged
plankton density in both fish-populated patches and the fish-free gap (Figure 28 for
f = 0.18). Note that there is a clear correlation between the gap width variations of
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Fig. 27 Quasi-two-dimensional zooplankton and phytoplankton patterns emerging in the three-patch
system from initially homogeneous plankton distributions, and the corresponding profiles of
plankton density. (a) y ≤ 16 and 48 ≤ y ≤ 64, f = 0.395 or (b) f = 0.18 whereas f = 0
for 16 < y < 48.

the dominant Lyapunov exponent in the fish-populated patches and the fish-free gap.
Such a correlation is absent in the case f = 0.395, as a virtually constant plankton
density appears in the fish-populated patches while irregular oscillations appear in the
fish-free gap. In the fish-populated patches λ is virtually constant and equal to zero,
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Fig. 28 Dependence of the dominant Lyapunov exponents in the fish-populated (solid) and fish-free
(dashed) habitats on the distance between the fish-populated habitats.

while in the fish-free gap it decreases monotonically to zero as δ decreases to about
14 (Figure 28, bottom). These results show that in the natural patchy environment,
plankton dynamics inside a given patch may depend not only on local parameters
(such as the fish predation rate) relative to the patch in consideration but also on
patch-to-patch distances.

6. Summary. In this article we explored the processes underlying the dynamics
of spatially inhomogeneous aquatic communities. We have emphasized that spatial
heterogeneity cannot always be reduced to the heterogeneity of the marine environ-
ment: there are “physical” and “biological” aspects of the problem. We have consid-
ered different mechanisms of the formation of intrinsic biological patterns and shown
that the formation of transient and irregular spatial structure in the plankton distri-
bution may result from the interplay between turbulent mixing and principal matter
fluxes in the plankton community such as phytoplankton-zooplankton interactions.
The formation of the plankton pattern is characterized by an intrinsic length, and the
value of this length that emerges in our mathematical models, on the order of 1 km,
is consistent with field observations.
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The minimal model describing the formation of an irregular patchy plankton
distribution has been shown to be the two-species prey-predator (phytoplankton-
zooplankton) system with parameters independent of position and with no restrictions
on the species diffusivities. We have demonstrated that the dynamical regime cor-
responding to pattern formation can be characterized as spatiotemporal chaos. The
appearance of an irregular spatial distribution follows an unusual scenario and can be
preceded by the formation of a distinct spiral pattern.

Another mechanism of the formation of irregular spatial patterns in a plankton
community has been shown to be the impact of a planktivorous fish school. The inter-
action between mobile fish schools and the plankton system, although modifying the
properties of the spatial structure, does not change the principal points of the system
dynamics: the formation of spiral waves and spatiotemporal chaos. Additionally, it
has been shown that the fish school motion has fractal properties.

By reviewing data from field observations, we have also shown that, in many
cases, the dynamics of an aquatic community is affected by the existence of relatively
stable mesoscale inhomogeneities in the field of ecologically significant factors such
as water temperature, salinity, and biogen concentration. The characteristic size of
these “forced” inhomogeneities provides another, external scale of the system. We de-
veloped the analysis of plankton pattern formation and corresponding spatiotemporal
dynamics of the community in a patchy environment. By using a model allowing for
both the formation of intrinsic biological patterns and forced spatial structure, we
showed that the type of the system dynamics depends essentially both on the size of
the patches and on the interpatch distance.

In the real ocean, there is a continuous competition between the creation of pat-
terns by biological mechanisms and their destruction by turbulent flow. The effects
of this competition can hardly be fully captured in terms of the mean-field equations
(2.1)–(2.2) and (3.1)–(3.2), where the whole impact of marine turbulence is reduced
to turbulent diffusion. Development of models allowing for more details of turbulent
fluid motion remains a big open problem.

In terms of the mean-field approximation, we have shown that the chaotic spa-
tiotemporal dynamics of an aquatic community appears in a class of relatively simple,
schematic models that take into account only the principal interactions in the com-
munity. This may indicate a vital role of chaotic regimes in the spatiotemporal orga-
nization of aquatic ecosystems. Indeed, there is evidence that systems with chaotic
dynamics have a greater potential for adapting to changing environmental conditions
than nonchaotic ones (Wilson, 1992; Allen, Schaffer, and Rosko, 1993; Hastings, 1993;
Pahl-Wostl, 1993; Huisman and Weissing, 1999; Petrovskii and Malchow, 2001b). At
another level, the existence of chaos and related irregularities is often a sign of health
of organisms (Garfinkel et al., 1992; West and Deering, 1995; Marks-Tarlow, 1999).
There has even been the suggestion that the process of aging is characterized by loss
of the plasticity and variability afforded by chaos in the basic physiological system
(Lipsitz and Goldberger, 1992). Developments such as these make the problem of the
relationship between chaotic and regular dynamics one of great interest.

This article has examined new challenges resulting from nonlinear interactions
in aquatic communities. Schematic few-species reaction-diffusion models have been
shown to be effective tools for investigating spatiotemporal pattern formation in
plankton-fish dynamics.
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