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Quantification of the Spatial Aspect of Chaotic Dynamics
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The need to study spatio-temporal chaos in a spatially extended dynamical system
which exhibits not only irregular, initial-value sensitive temporal behavior but
also the formation of irregular spatial patterns, has increasingly been recognized
in biological science. While the temporal aspect of chaotic dynamics is usually
characterized by the dominant Lyapunov exponent, the spatial aspect can be
quantified by the correlation length. In this paper, using the diffusion-reaction
model of population dynamics and considering the conditions of the system
stability with respect to small heterogeneous perturbations, we derive an analytical
formula for an ‘intrinsic length’ which appears to be in a very good agreement
with the value of the correlation length of the system. Using this formula
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and numerical simulations, we analyze the dependence of the correlation length
on the system parameters. We show that our findings may lead to a new
understanding of some well-known experimental and field data as well as affect
the choice of an adequate model of chaotic dynamics in biological and chemical
systems.

c© 2003 Society for Mathematical Biology. Published by Elsevier Science Ltd. All
rights reserved.

1. INTRODUCTION

Chaos in physical, chemical, biological and ecological systems has been a focus
of attention of the scientific community for more than three decades (Lorenz, 1964;
May, 1976; Kuramoto, 1984; Epstein and Showalter, 1996; Rai and Schaffer, 2001).
While early studies were more concerned with the temporal aspects of the dynam-
ics of spatially homogeneous ‘well-mixed’ systems, recent results have clearly
shown that the impact of space is often crucial and can hardly be neglected
(de Rooset al., 1991; Bascompte and Sol´e, 1994; Rand and Wilson, 1995; Durrett
and Levin, 2000). For nonlinear dynamical systems, the interplay between space
and time is far from trivial and the existence of spatial dimension(s) can change the
properties of the system essentially. Particularly, in the case of spatial uniformity
and continuous time, deterministic chaos is only possible if the system consists of
not less than three nonlinearly interacting species. For a spatially extended system,
however, the existence of chaos was reported for a two-species chemical autocat-
alytic system (Merkin et al., 1996; Rasmussenet al., 1996; Davidson, 1998) and
for a two-species predator–prey system (Pascual, 1993; Sherrattet al., 1995, 1997;
Petrovskii and Malchow, 1999, 2001a). In both cases, chaos is obviously impos-
sible under the condition of spatial homogeneity. The dynamics of the system
becomes chaotic as a result of spontaneous homogeneity breaking and formation
of distinct spatial patterns. These and other results led to the contemporary concept
of spatio-temporal chaos (Kuramoto, 1984; Kaneko, 1989; Hassellet al., 1991;
Bascompte and Sol´e, 1994; Sol´e and Bascompte, 1995; Petrovskii and Malchow,
1999, 2001a,b; Petrovskiiet al., 2001; Sherratt, 2001).

In the case of spatio-temporal chaos, the population densities fluctuate or
oscillate with time in an irregular, stochastic manner. Furthermore, these irregular
population oscillations in different sites, i.e., positions in space appear to be
uncorrelated or only slightly correlated in the case that the distance between the
sites is large enough [cf.de Rooset al. (1991)]; as a result, the spatial distribu-
tion of the species also exhibit a distinct irregularity. The spatial aspect of the
community dynamics is usually described in terms of the correlation lengthLcorr

(de Rooset al., 1991; Pascual and Levin, 1999; Durrett and Levin, 2000): popula-
tion fluctuations in pointsr1 andr2 are considered as independent (uncorrelated)
in the case|r1 − r2| > Lcorr. Within the distanceLcorr, the population
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oscillations are correlated due to the coupling between neighboring sites
(e.g., due to migration of individuals). As a result, for a 1D system with a
typical sizeL, the whole domain appears to be ‘split’ toN � L/Lcorr sub-domains
so that the dynamics of each sub-domain is only slightly affected by the dynamics
of the others (de Rooset al., 1991; Petrovskii and Malchow, 2001a). An important
consequence of this type of population dynamics is that the danger of popu-
lation extinction increases when the numberN of sub-domains decreases, i.e.,
either with an increase inLcorr or with a decrease in the lengthL of the domain
(Hassellet al., 1991; Allenet al., 1993; Bascompte and Sol´e, 1994; Jansen, 1995;
Petrovskii and Malchow, 2001b).

In the light of the above description, it is clear that the correlation length is a
quantity of significant ecological meaning. In order to calculateLcorr, a variety
of approaches can be used (Pascual and Levin, 1999; Durrett and Levin, 2000),
for a discussion of related issues also seeRand and Wilson (1995). Perhaps
the most common way is to derive the value ofLcorr from the properties of the
spatial correlation function of the population fluctuations. Under this approach,
Lcorr is defined as the distance where the promptly (exponentially) decay-
ing correlation function either reaches its first local minimum or has its first
zero (Nayfeh and Balachandran, 1995; Abarbanel, 1996). In turn, the spatial
correlation function can be calculated either based on spatio-temporal data of
field observations [e.g.,Rantaet al. (1997)] or from a corresponding model
of the population dynamics. However, sufficiently detailed data are rarely
available and obtainingLcorr from a model usually takes a lot of computer
simulations for each parameter set. Moreover, numerical data alone usually
provide only rather limited information about the dependence ofLcorr on the
parameters.

In this paper, we consider an alternative way to estimate the value of the
correlation length. Using a rather general model of population dynamics and
considering the conditions of stability of the population functioning at equilibrium,
we obtain a simple analytical formula for an ‘intrinsic length’ which yields a very
good estimate forLcorr. This formula is then used along with numerical simulations
to quantify the spatial aspect of the system dynamics.

The paper is organized as follows. InSection 2, we consider conditions of
stability of a homogeneous equilibrium state of a diffusion-reaction system of
rather general type with respect to inhomogeneous perturbations and derive the
formula for the ‘intrinsic length’. InSections 3and4, we consider a few particular
cases of spatio-temporal chaos in biological and chemical systems and show that,
in a wide parameter range, the value of the intrinsic length coincides within the
order of unity with the correlation length of a given system. In the last section,
we discuss the ecological relevance of our results. We also show that our results
may cast certain doubts upon the capability of some widely used models (e.g.,
λ–ω systems) to provide an appropriate description of spatio-temporal chaos in
chemical and biological systems.
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2. MAIN EQUATIONS

According to a widely accepted approach, the spatio-temporal dynamics of a
system ofn interacting biological (Hofbauer and Sigmund, 1988; Murray, 1989)
or chemical (Kuramoto, 1984; Gray and Scott, 1990) species can be described by
the following equations:

∂ui (r, t)

∂t
= Di∇2ui (r, t) + fi(u1, u2, . . . , un), i = 1, . . . , n, (1)

whereui is the density of thei th species,r = (X, Y, Z) is the position in space,t
is the time and the nonlinear functionsfi describe the local kinetics of the system.
Evidently, each functionfi depends on a number of parameters (e.g., the growth
rates and the mortality rates in the case of biological species), so that all possible
values of the parameters form the parameter space
. In caseequation (1)is
applied to a biological or ecological system, the ‘diffusion’ coefficientsDi describe
the intensity of spatial mixing of the species either as a result of the motion
of the individuals (Skellam, 1951; Okubo, 1986) or due to the properties of the
environment, e.g., turbulence for plankton communities (Okubo, 1980).

We assume that the form of the functionsfi provides the existence of at least
one nontrivial ‘coexistence’ steady state(ū1, ū2, . . . , ūn) inside a certain parameter
range, so that

f1(ū1, ū2, . . . , ūn) = f2(ū1, ū2, . . . , ūn) = · · · = fn(ū1, ū2, . . . , ūn) = 0, (2)

whereūi > 0, i = 1, . . . , n. In order to induce a nontrivial local dynamics of the
system, we assume below thatn ≥ 2. It is evident that each steady state defined by
equation (2)corresponds to the homogeneous stationary state of system(1).

A coexistence state can be of different types, either stable or unstable. We begin
with the purely temporal stability of the spatially homogeneous system, i.e., the
stability of the kinetic system. Let us consider the case when a given steady
state can change its stability depending on the value of parameters. Applying the
standard linear stability analysis to system(1) without diffusion term, i.e., to

dui (t)

dt
= fi(u1, u2, . . . , un), i = 1, . . . , n, (3)

the stability of the given steady state means that all the eigenvalues of system(3)
linearized in the vicinity of(ū1, ū2, . . . , ūn) have negative real parts. Literally,
denotingui (t) − ūi = εi(t), we obtain from system(3):

dεi(t)

dt
= ai1ε1 + ai2ε2 + · · · + ainεn, i = 1, . . . , n, (4)

whereai j = ∂ fi(ū1, ū2, . . . , ūn)/∂u j are the elements of the Jacobian of the kinetic
system at the steady state. Then, the eigenvaluesλi(i = 1, . . . , n) are given by the
following equation:

det(A − λE) = 0, (5)
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where A = (ai j ) and E is the identity matrix. Since the coefficientsai j

evidently depend on a number of parameters, cf. the comments after system(1),
the eigenvalues also depend on the parameter values. Loss of stability means that
the real parts of some eigenvalues become positive when a point in parameter
space
 crosses a certain critical hypersurface. A particular important example
of such a situation is given by the Hopf bifurcation. Thus, if we denote the
maximum real part of the eigenvalues asλ̄, the system becomes (linearly) unstable
when λ̄ becomes positive. Note that, in terms of system(1), stability of system
(3) means that we consider small spatially homogeneous perturbations of the
stationary homogeneous stateui (x, t) = ūi , i = 1, . . . , n.

However, the situation becomes somewhat more complicated when we consider
spatially inhomogeneous perturbations. Now,ui(x, t) = ūi + εi(x, t) and,
substituting it into(1), we obtain:

∂εi(r, t)

dt
= Di∇2εi(r, t) + ai1ε1 + ai2ε2 + · · · + ainεn, i = 1, . . . , n. (6)

Considering a perturbation with a certain wavenumber|q|, i.e., εi = Cieνtcosqr,
i = 1, . . . , n, from (6) we arrive at the following system:

(a11 − ν − D1q2)C1 + a12C2 + · · · + a1nCn = 0,

a21C1 + (a22 − ν − D2q2)C2 + · · · + a2nCn = 0,
...

an1C1 + an2C2 + · · · + (ann − ν − Dnq2)Cn = 0.

A nontrivial solution exists if and only if

det[A − (νE + q2B)] = 0 (7)

whereB = (bi j ), bi j = Diδi j andδi j is the Kronecker symbol. If we assume that
D1 = · · · = Dn = D (the case of unequal diffusivities will be treated inSection 4),
it is readily seen thatequation (7)coincides with(5) provided thatλ = ν + Dq2.
This means that the maximum real parts of the eigenvalues of the homogeneous
and inhomogeneous problems are coupled by the following equation:

ν̄ = λ̄ − Dq2 (8)

whereν̄ = max(i) Reνi andνi (i = 1, . . . , n) are the solutions of(7). Apparently,
a stationary homogeneous distribution is linearly stable with respect to the inho-
mogeneous perturbation with given wavelengthl = 2π/|q| if the corresponding
value ofν is less than or equal to zero and unstable otherwise.

Relation (8) has a clear meaning. When the steady state(ū1, ū2, . . . , ūn)

becomes locally unstable due to changing parameter values, i.e.,λ̄ becomes posi-
tive, it still remains stable in the distributed system with respect to inhomogeneous
short-wave perturbations, i.e., for

|q| > q0 = (λ̄/D)1/2. (9)
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Fromequation (9)we arrive at the following formula for the critical wavelength:

l0 = 2π(D/λ̄)1/2. (10)

The value ofl0 may be regarded as an ‘intrinsic length’ of system(1). Note
that, in order to obtainequation (10), we did not make any specific assumptions
about the local kinetics of the system, e.g., about the type of the inter-specific
interactions. It should also be noted that, although we referred to a specific
perturbation of the homogeneous steady state to arrive atequation (10), cf. the
lines aboveequation (6), the meaning of the ‘intrinsic length’ is not limited to that
case. The ‘intrinsic length’l0 gives the upper limit of the system stability with
respect to small spatially inhomogeneous perturbations, i.e., the perturbations with
a wavelength less thanl0 are damped by diffusion. In a more general case of
a perturbation containing partial waves with length less as well as greater than
l0, one can expect as an immediate consequence of relations(9) and (10) that
the homogeneous steady state will be less stable against smooth ‘small-gradient’
than against sharp ‘large-gradient’ perturbations. This prediction is in very good
agreement with other recent findings (Petrovskii and Malchow, 2001a).

If the perturbation exceeds the stability limits, the system can generate chaotic
spatio-temporal patterns. Although the general dynamics of system(1) remains
to be investigated, the existence of such patterns was reported for a few particular
biological and chemical systems (Pascual, 1993; Sherrattet al., 1995; Davidson,
1998; Petrovskii and Malchow, 1999, 2001a,b; Medvinskyet al., 2001; Petrovskii
et al., 2001; Sherratt, 2001). In this case, the temporal variation of both the local
and spatially averaged values of the species densities become remarkably irregular.

In the chaotic regime, the spatial properties of system(1) can be character-
ized by the correlation lengthLcorr (de Rooset al., 1991; Durrett and Levin, 2000;
Medvinskyet al., 2001; Petrovskii and Malchow, 2001a,b) which has qualitatively
the same origin as the ‘intrinsic length’l0: it gives the maximum distance between
two positions where the diffusive coupling is still essential. Thus, the effect of
diffusion is quantified byl0 at the early stage of system dynamics and byLcorr at
its later stage after the transients have disappeared. The assumption we are going
to make now is that the information about the short-time dynamics of the system
is still important in the large-time limit. [Note that, although at first sight this
assumption may seem exotic, recent findings byNeubertet al. (2002)give another
example of a link between the early and the large-time dynamics of a diffusion-
reaction system.] If this is the case, one can expect that the value ofl0 is to be
seen also at the chaotic regime of the system dynamics. Since bothl0 andLcorr are
related to the same process, i.e., diffusive coupling, we make a somewhat stronger
conjecture about the existence of a scaling law:

Lcorr

l0
= c∗ (11)

where c∗ is a ‘structural’ coefficient of the order of unity, its numerical value
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depending on the type of the interspecific interactions but not on particular
parameter values once the model is fixed.

In order to test this hypothesis, we consider below a few particular cases of
system(1) where the dependence of the maximum real part of the eigenvalues
λ̄ on the values of system parameters can be followed explicitly and the value of
Lcorr can be obtained from the results of numerical simulations.

3. NUMERICAL RESULTS

In this section, we present the results of numerical simulations for a predator–
prey system, for a system of three competitive species and for a two-species
chemical system. The equations were solved numerically by finite-differences
using the semi-explicit scheme when, for each time-step, the diffusion terms are
approximated on the upper layer of the numerical grid and the values of reaction
terms are taken from the lower layer. The values of the grid steps�x and �t
were chosen sufficiently small in order to avoid any essential numerical artifact.
Furthermore, we tested the capability of the method by comparing numerical
results with some known analytical predictions (Murray, 1989).

Before proceeding to the numerical simulations, the equations must be supple-
mented with boundary and initial conditions. At the boundaries of the numerical
domain, we used the zero-flux conditions. For the initial values, we used the
‘constant-gradient’ species distribution when the density of one of the species is
given by a linear function ofX and the density of other species does not depend
on space. It should be mentioned here that, actually, chaotic spatio-temporal
dynamics appear for a wide class of initial conditions (Sherrattet al., 1995;
Petrovskii and Malchow, 1999, 2001a,b) and the properties of the corresponding
spatial patterns do not show any dependence on the particulars of the initial species
distribution.

3.1. Predator–prey system. The dynamics of a predator–prey system can
be described, after choosing an appropriate parameterization for multiplica-
tion, predation and mortality (Murray, 1989; Pascual, 1993; Holmeset al., 1994;
Sherratt, 2001), by the following equations:

∂U

∂T
= D

∂2U

∂ X2
+ αU

(
1 − U

b

)
− γ

U

U + h
V, (12)

∂V

∂T
= εD

∂2V

∂ X2
+

(
κγ

U

U + h
− µ

)
V, (13)

whereU andV are the densities of prey and predator, respectively, at positionX
and timeT , α stands for the maximumper capita growth rate of the prey,b is its
carrying capacity,h is the half-saturation prey density, coefficientγ describes the
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intensity of predation,κ is the coefficient of food utilization,µ is the mortality rate
of the predator, andε is the ratio of the diffusion coefficients of predator and prey.

By re-scaling of the variables,u = U/b, v = V γ /(αb), t = αT , x =
X (α/D)1/2, we arrive at the system which contains only dimensionless variables
and parameters:

∂u

∂t
= ∂2u

∂x2
+ u(1 − u) − u

u + H
v, (14)

∂v

∂t
= ε

∂2v

∂x2
+ k

(
u

u + H
v − rv

)
, (15)

whereH = h/b, k = κγ /α andr = µ/(κγ ). In this section, we assumeε = 1.
It is readily seen [cf.Petrovskii and Malchow (1999, 2001a)] that the system(14)

and(15) has only one homogeneous steady coexistence state(ū, v̄) where

ū = r H

1 − r
and v̄ = (1 − ū)(H + ū) (16)

which is located in the biologically meaningful domainu, v ≥ 0 under the
restraintsr < 1 and H ≤ (1 − r)/r . For H < Hc(r) = (1 − r)/(1 + r), the
steady state(ū, v̄) becomes unstable; in this case, the only attractor in the phase
plane of the corresponding homogeneous system is the stable limit cycle which
appears via the Hopf bifurcation. The real part of the eigenvalues of the system
linearized in the vicinity of(ū, v̄) is given by the following equation:

λ̄ = tr A

2
where trA = r

1 − r
[(1 − r) − H (1 + r)], (17)

whereA is the matrix of the linearized system. Note that, although the parameter
space
 of the system(14) and(15) is 3-dimensional, the value ofλ̄ [and thus the
stability of the system, seeequation (9)] depends only onH andr . In a sufficiently
small vicinity of the Hopf bifurcation curve,̄λ increases when the point in the
parameter plane(r, H ) of system(14) and(15) moves further away from the Hopf
bifurcation curveHc(r); what follows from rigorous mathematical considerations
(Marsden and McCracken, 1976).

Figure 1gives a summary of the spatio-temporal dynamics of the system(14)
and(15) in the chaotic regime which becomes possible when the coexistence state
is unstable (Pascual, 1993; Sherrattet al., 1995; Petrovskii and Malchow, 1999,
2001a,b; Sherratt, 2001). While Fig. 1(a) shows a snapshot of the spatial dis-
tribution of the populations,Fig. 1(b) and1(c) give an account of the temporal
dynamics of the system in terms of local and spatially averaged values of the
population densities.Figure 1(d) shows the spatial correlation function of the prey
(the spatial correlation function of the predator exhibits a qualitatively similar
behavior), for more details seePetrovskii and Malchow (2001a).

Once the spatial correlation function is known, the correlation length can be
derived out of its properties. Here and below, we defineLcorr as the position of its
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Figure 1. (a) A snapshot of the spatial distribution of the populations (solid curve for
prey, dotted curve for predator) after onset of chaotic spatio-temporal oscillations in the
predator–prey system(14) and (15) for parametersk = 1.5, r = 0.3, h = 0.4; (b) the
‘local’ phase plane of prey and predator densities calculated in a fixed point; (c) the phase
plane of spatially averaged prey and predator densities; (d) the spatial correlation function
of prey density.

first minimum (Nayfeh and Balachandran, 1995; Abarbanel, 1996). Table 1shows
the value ofLcorr calculated for different sets of parameters as well as the value of
l0 obtained analytically fromequations (10)and(17). One can see that the values
of Lcorr andl0 are in a very good agreement in the caseλ̄ is sufficiently small, i.e.,
λ̄ ∼ 0.1 or less, and there is a certain discrepancy for largerλ̄, cf. the two lines at
the bottom ofTable 1.

3.2. A three-species system. Another example of a biological system showing
the formation of chaotic spatio-temporal patterns is given by a community of
three competitive species. For the sake of analytical simplicity, we restrict our
analysis to the special case of ‘cyclic competition’ (May and Leonard, 1975) here.
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Table 1. The (dimensionless) values of correlation and intrinsic lengths in the predator–
prey system.

Parameters λ̄ l0 (analytical) Lcorr (numerical) Lcorr/l0
k r H

2.0 0.40 0.40 0.013 54 60± 6 1.11
2.0 0.35 0.35 0.048 29 30± 3 1.03
1.5 0.30 0.40 0.039 32 33± 3 1.03
3.0 0.40 0.30 0.060 26 24± 3 0.92
2.0 0.25 0.25 0.073 23 21± 3 0.91
2.0 0.15 0.15 0.060 26 24± 3 0.92
2.0 0.05 0.05 0.024 41 39± 3 0.95
2.0 0.70 0.10 0.152 16 19± 3 1.19
2.0 0.80 0.05 0.220 13 18± 3 1.38

After a suitable re-scaling of the variables (Petrovskiiet al., 2001), the community
dynamics is described by the following equations:

∂u1

∂t
= ∂2u1

∂x2
+ (1 − u1 − αu2 − βu3)u1, (18)

∂u2

∂t
= ∂2u2

∂x2
+ (1 − βu1 − u2 − αu3)u2, (19)

∂u3

∂t
= ∂2u2

∂x2
+ (1 − αu1 − βu2 − u3)u3. (20)

System(18)–(20) without diffusion terms possesses a single coexistence steady
state(ū1, ū2, ū3) where

ū1 = ū2 = ū3 = 1

1 + α + β
. (21)

The maximum real part of the eigenvalues of the linearized system is given by the
following formula (May and Leonard, 1975; Hofbauer and Sigmund, 1988):

λ̄ = 1

1 + α + β

(
−1 + α + β

2

)
. (22)

Whenα + β > 2, the steady state becomes locally unstable and perturbations
of the homogeneous initial state can drive the system into spatio-temporal chaos
(Petrovskiiet al., 2001). Figure 2gives a brief account of the properties of the
system dynamics in this case. Note that the structure of the phase space of system
(18)–(20) is different, compared to the predator–prey system: in the case of cyclic
competition, no stable limit cycle exists and the attractor is given by a heteroclinic
trajectory connecting three unstable ‘one-species-only’ states (1, 0, 0), (0, 1, 0)
and (0, 0, 1), seeMay and Leonard (1975)andHofbauer and Sigmund (1988)for
details.
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Figure 2. (a) A snapshot of the spatial distribution of the populations after onset of
chaotic spatio-temporal oscillations in the system of three competitive species(18)–(20)
for parametersα = 1.3, β = 0.8 (solid curve for the first species, dotted curve for second
species, the third species is not shown because it exhibits qualitatively similar behavior);
(b) the trajectory of the system dynamics in the ‘local’ phase space of the system; (c) the
trajectory of the system dynamics in the phase space of average densities; (d) the spatial
correlation function of the first species density.

Table 2shows the value of the correlation lengthLcorr calculated for different
parametersα andβ as well as the corresponding value ofl0 given byequations (10)
and(22). It is readily seen that, although in this case numerical values ofl0 and
Lcorr are different, both quantities exhibit essentially the same type of dependence
on the parameters because their ratio stays approximately constant (with small
fluctuations within the computational error) for all checked parameter sets, cf. the
right-hand column inTable 1. In particular,equation (10)apparently succeeds in
predicting that the correlation length depends on the sumα + β rather than onα
andβ separately and that the value ofLcorr increases whenα + β tends to 2.
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Table 2. Relation between the (dimensionless) values of correlation and intrinsic lengths
in the three competitive species community.

Parameters λ̄ l0 (analytical) Lcorr (numerical) Lcorr/l0
α β

1.20 0.90 0.0161 49 30± 2 0.61
1.30 0.80 0.0161 49 30± 2 0.61
1.15 0.90 0.0082 69 41± 2 0.59
1.22 0.80 0.0033 109 65± 2 0.60
1.07 0.95 0.0033 109 67± 2 0.61
1.21 0.80 0.0017 154 93± 5 0.60

Due to specific properties of the system(18)–(20), it appears practically impos-
sible to check hypothesis(11) for larger values of̄λ. For parameter sets corre-
sponding to a larger̄λ, the rate of convergence of the trajectory to the heteroclinic
attractor in phase space becomes very high. As a result, the time that the sys-
tem spends in the vicinity of the ‘one-species-states’ increases dramatically and
numerical simulations for those parameter values would demand incredibly large
computer resources. Still, since even relatively small changes in the parameter val-
ues lead to a significant change ofLcorr, the results given inTable 2seem to provide
a valuable portion of information to verify the scaling relation(11).

3.3. A two-species chemical system. The two cases considered above, although
essentially different in the type of interspecific interactions, still exhibit a certain
mathematical similarity; e.g., there is only one stationary coexistence state (either
stable or unstable) in both cases. Meanwhile, it is well known that the existence
of another steady state, particularly the existence of a saddle-point, can change the
dynamics significantly (Rai and Schaffer, 2001). The interesting point is whether
the applicability ofequation (11)is restricted to a specific structure of the phase
space of the system.

To address this issue, we consider another example now: the Gray–Scott model
(Gray and Scott, 1990) of an autocatalytic reaction in an open 1D flow reactor:

∂u

∂t
= ∂2u

∂x2
+ F(1 − u) − uv2, (23)

∂v

∂t
= ∂2v

∂x2
+ uv2 − (F + k)v, (24)

with properly chosen dimensionless variables (Pearson, 1993). Now u andv are
the concentrations of the substrate and the autocatalyst respectively,F is the flow
rate andk is the effective rate constant of the decay of the autocatalyst.

One can readily see that, in the system(23) and (24), there are three spatially
homogeneous steady states under conditiond = 1 − 4(F + k)2/F > 0: ‘substrate



Quantification of Spatial Chaos 437

Table 3. Relation between the dimensionless values of intrinsic and correlation lengths in
the chemical autocatalytic system, cf.equation (10).

Parameters λ̄ l0 (analytical) Lcorr (numerical) Lcorr/l0
F k

0.015 0.04 0.0007 233 112± 4 0.48
0.024 0.05 0.0029 116 53± 2 0.46
0.019 0.045 0.0018 148 70± 2 0.47
0.0145 0.04 0.0020 139 67± 2 0.48
0.0083 0.03 0.0011 194 91± 3 0.47

only’ (1, 0), ‘substrate dominated’(us, vs), and ‘autocatalyst dominated’(ua, va)

where

us = 1 + √
d

2
, vs =

(
F

F + k

)
1 − √

d

2
, (25)

ua = 1 − √
d

2
, va =

(
F

F + k

)
1 + √

d

2
. (26)

When crossing the critical curved = 0 in the (k, F)-plane towards smaller
values ofk, the two nontrivial states appear through a saddle-node bifurcation,
the ‘autocatalyst dominated’ state being an unstable node.

The ‘substrate only’ state is always a stable node and the ‘substrate dominated’
state is always a saddle-point. A change in the local dynamics can be associated
with the change of the type of the ‘autocatalyst dominated’ state, first of all, with
the change of its stability. It is straightforward to see that the maximum real part
of the eigenvalues of the Jacobian evaluated at the ‘autocatalyst dominated’ state is
given by the following equation:

λ̄ = 1
2(k − v2

a). (27)

The change of stability takes place whenλ̄ = 0 which, after a little algebra, takes
the following form:

k − F

k + F
= √

d. (28)

The Hopf bifurcation that takes place when crossing the curve(28) is predicted
to be supercritical fork < kcr (wherekcr is estimated as about 0.035), and only
in this case a stable limit cycle appears (Rasmussenet al., 1996). Otherwise, no
limit cycle arises and any trajectory starting in the vicinity of the ‘autocatalyst
dominated’ state after a number of expanding convolutions is finally attracted to
the ‘substrate only’ state. Thus, the structure of the local phase plane of the Gray–
Scott model is essentially different from the predator–prey system(14) and(15).
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Figure 3. (a) A snapshot of the spatial distribution of the chemical species (solid
curve for substrate, dotted curve for autocatalyst) after onset of chaotic spatio-temporal
oscillations in the Gray–Scott model of an autocatalytic reaction, cf.equations (23)and
(24), for parametersF = 0.024, k = 0.05; (b) the ‘local’ phase plane of the substrate–
autocatalyst system; (c) the phase plane of spatially averaged species densities; (d) the
spatial correlation function of the substrate density.

It was shown byMerkin et al. (1996) and Davidson (1998)that, for those
parameter values when the ‘autocatalyst dominated’ state is unstable, the system
(23) and (24) can exhibit spatio-temporal chaos.Figure 3gives a brief account
of the properties of the system dynamics in this case. Apparently, in the chaotic
regime the spatial and temporal behavior of the reacting species is qualitatively
similar to the behavior of the biological species, cf.Figs 1and3. Thus, although
our main interest is focused on the dynamics of biological communities, the model
(23) and(24) can be used for testing the hypothesis(11). Table 3shows the value
of Lcorr obtained in our numerical simulations as well as the intrinsic lengthl0.
Again, one can see the very good agreement between these two quantities up to an
approximately constant factor on the order of unity.
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As in the previous case, the properties of the system do not allow us to check
hypothesis(11) for a wider parameter range. One can expect the formation of
chaotic spatio-temporal patterns for such parameter values where the ‘autocatalyst
dominated’ state exists and is unstable; the results of numerical simulations
show that the actual parameter range is somewhat more narrow. However, the
whole domain in the parameter(k, F)-plane where the structure of the phase
plane is as described consists of a narrow strip located betweenk = 0 and
k ≈ 0.06 (Malchow and Petrovskii, 2002). Correspondingly, taking into account
equation (10), λ̄ is bounded in that domain so that the least upper bound appears to
be on the order of 0.01.

4. A TWO-SPECIES SYSTEM WITH UNEQUAL DIFFUSIVITIES

Another interesting point is whether the above analysis can be extended to the
case of unequal diffusivities. Since in this case an analytical treatment of the
generaln-species system appears to be very difficult, we restrict our consideration
to a particular case of a two-species system.

Equation (7)now takes the following form:∣∣∣∣a11 − ν − D1q2 a12

a21 a22 − ν − D2q2

∣∣∣∣ = 0 (29)

which is equivalent to

ν2 − γ ν + φ = 0 (30)

where

γ = tr A − (D1 + D2)q2, φ = D1D2q4 − (a22D1 + a11D2)q2 + detA. (31)

Thus, since

ν = 1
2

(
γ ±

√
γ 2 − 4φ

)
, (32)

the homogeneous state of the system is linearly stable with respect to an inhomo-
geneous perturbation with wavelength|q| whenγ < 0 andφ > 0.

The results of further analysis depend on the sign of the following value:

� = (a22D1 + a11D2)
2 − 4D1D2 detA. (33)

It is readily seen that the inequalityφ > 0 holds identically when� < 0. In this
case, the critical valueq01 is given by the following equation:

γ = tr A − (D1 + D2)q
2
01 = 0, (34)
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Table 4. The dimensionless values of correlation and intrinsic lengths in the predator–prey
system with unequal diffusivities for parametersk = 2.0, r = H = 0.30.

ε = D2/D1 l0 (analytical) Lcorr (numerical) Lcorr/l0

0.1 18 17± 5 0.94
0.5 21 19± 5 0.90
1.0 24 24± 3 1.00
2.0 30 30± 3 1.00
5.0 42 42± 3 1.00

10.0 57 55± 5 0.96

so thatq01 = (tr A/(D1 + D2))
1/2. Note that, in the caseD1 = D2, � would be

negative if and only if the steady state is a focus. In the caseD1 �= D2, however,
the sign of� is not strictly related to the type of the steady state.

Since the steady state is assumed to be locally unstable, it holds trA > 0. Taking
into account that in a two-species system trA = 2λ̄, we arrive at the following
equation for the critical wavenumber:

q01 =
(

λ̄

〈D〉
)1/2

where〈D〉 = D1 + D2

2
. (35)

Now let us consider the case� ≥ 0. In the caseγ > 0 (which is equivalent
to |q| < q01), max Reν1,2 is apparently positive. In the caseγ ≤ 0, the critical
wavenumber is given by the equationφ = 0 from which we obtain:

q02 =
[

(a22D1 + a11D2) + √
�

2D1D2

]1/2

, (36)

assuming that the numerator in square brackets is not negative. Thus, the
homogeneous steady state appears to be stable with respect to small inhomoge-
neous perturbations with wavenumbers|q| > q0 where

q0 = max{q01, q02}. (37)

In case parameter values are such thatq02 does not exist [e.g., the numerator in
(36) is negative],equation (37)is reduced toq0 = q01. It is readily seen that
equation (37)coincides with(9) for D1 = D2.

Equations (10)and(37)give the value of the ‘intrinsic length’l0 for a two-species
system with unequal diffusivities. However, whether hypothesis(11) about the
relation betweenLcorr andl0 remains true in this case is yet to be checked. To run
computer experiments, we choose the predator–prey system(14) and(15) whereε

can now be an arbitrary positive number. The results are shown inTable 4. As well
as in the previous cases, one can see that hypothesis(11) is in very good agreement
with numerical results.
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Figure 4. Numerically calculated correlation lengthLcorr plotted vs. intrinsic length
l0 for different systems: triangles for the predator–prey system, diamonds for the three
competitive species system, squares for the substrate–autocatalyst system.

5. DISCUSSION AND CONCLUSIONS

The results of our numerical simulations of chaotic spatio-temporal dynamics
in different systems show that hypothesis(11) about the relation between the
intrinsic lengthl0 and the correlation lengthLcorr of the system is valid in a wide
parameter range, seeFig. 4. An immediate consequence of this conclusion is that
the following equation can be used in order to estimate the value ofLcorr:

Lcorr = c∗l0 (38)

wherel0 is given byequation (10)andc∗ is approximately constant,c∗ ≈ 1 for
the predator–prey system,c∗ ≈ 0.6 for the system of three competitive species and
c∗ ≈ 0.47 for the autocatalytic chemical system. In particular, we want to mention
that equation (38)predicts an infinite growth ofLcorr for parameters approaching
their critical value when the coexistence state becomes stable. This is in good
agreement with our numerical results, cf.Tables 1–3 andFig. 4. However, there is
a certain discrepancy betweenLcorr andl0 that is not described by the linear relation
(11) in the parameter range whereλ̄ becomes sufficiently large (correspondingly,
Lcorr sufficiently small). It may indicate that, in reality,c∗ is a function of the
system parameters with scaling properties so thatc∗ ≈ const �= 0 for λ̄ � 1.

It should be noted that the existence of a correlation length in a community
of interacting species has important implications. In the diffusion-reaction
system (1), spatio-temporal chaos, with its endogenous property of forming
irregular uncorrelated spatial patterns, cannot be observed if the length of the



442 S. Petrovskii et al.

system is less thanLcorr because in this case the species oscillations at all dif-
ferent sites are correlated due to diffusive coupling. (Note that this remark does
not exclude a possibility of purely temporal chaos which can take place in a
spatially homogeneous time-continuous system with three or more interacting
species.) This prediction is in full coincidence with the results of our computer
simulations. Since spatio-temporal chaos is shown to decrease the risk of pop-
ulation extinction (de Rooset al., 1991; Hassellet al., 1991; Allenet al., 1993;
Bascompte and Sol´e, 1994; Jansen, 1995; Petrovskii and Malchow, 2001b), the
above conclusion may provide a new explanation of well-known experimental
results [e.g.,Luckinbill (1974)] when a predator–prey system goes extinct in a
small domain but appears to be persistent in a larger domain.

In our study, we have used only purely deterministic models of population
dynamics. That may raise certain doubts concerning the ecological relevance of
our results since the actual dynamics of any community of interacting biological
species arises from the interplay between various deterministic and stochastic
factors. However, the relative importance of these factors remains obscure.
Moreover, as has been shown recently byMalchowet al. (2002), there may exist
a critical level of environmental noise so that the functioning of the systems with
subcritical stochasticity is mainly controlled by deterministic processes.

Our results may also cast a new light on the long-standing enigma such as the
‘biological scale’ in the plankton dynamics. It is well known that while on a
small scale (less than one hundred meters) and a large scale (more than a few
dozens of kilometers) the spatial horizontal distribution of plankton in marine
ecosystems is mainly controlled by the properties of the environment (Platt, 1972;
Denman, 1976), on an intermediate scale the properties of the plankton spatial
distribution are significantly modified by the biological interactions in the plankton
community (Powellet al., 1975; Weberet al., 1986; Levin, 1990). The lower
bound of this scale is called the KISS length, its origin is well understood and its
value has been calculated consistently from a few different approaches. However,
the origin of the upper bound remains a mystery.

In order to address this issue, we can apply the results obtained above for
the predator–prey system. Such an approach is justified by the following two
reasons. Firstly, it is widely accepted that the main biological phenomena
affecting plankton dynamics are population growth and zooplankton grazing on
phytoplankton. Secondly, although conclusive evidence is still lacking, there
is a growing number of indications of chaos in the dynamics of ecological
communities, seeMedvinskyet al. (2001) for a review and an extended list of
references. Thus, assuming that plankton dynamics is actually chaotic, the spatio-
temporal patterns obtained in the predator–prey system(14) and (15) can be
associated with the plankton patterns on the biological scale, its upper bound then
being given by the correlation length.

In order to calculateLcorr, we useequations (10), (17) and (38). Referring
to the parameter estimates provided by different authors (Nisbetet al., 1991;



Quantification of Spatial Chaos 443

Truscott and Brindley, 1994; Sherratt, 2001), we choose the typical valuesα =
1.0 day−1, γ = 0.7 day−1, µ = 0.05 day−1, κ = 0.15, h/b = 0.3 [see the
comments belowequations (12)and (13)]. The turbulent diffusivity is roughly
estimated asD = 105 cm2 s−1 (Nihoul, 1980). Using these values, we arrive
at Lcorr ≈ 30 km which is in a very good agreement with the results of
field observations (Weberet al., 1986; Levin, 1990). Note that, since the value
(dimensionless) ofl0 remains of the same order within a certain parameter range,
seeTable 1, this agreement is not violated by a reasonably small variation of
parameter values.

A more general implication of our results concerns the choice of an ade-
quate model to describe deterministic chaos. Namely, by now many theoretical
results concerning spatio-temporal chaos in a system of interacting chemical
and/or biological species have been obtained in terms of so-calledλ–ω sys-
tems (the complex-variable analogue of theλ–ω systems is also known as the
Ginzburg–Landau equation), cf.Kopell and Howard (1973), Kuramoto (1984),
Bohr et al. (1998), Sherratt (2001)and the references therein. Briefly, aλ–ω

system appears as the first-order approximation of a general diffusion-reaction
system considering the size of the limit cycle as a small parameter. An advantage
of this approach is thatλ–ω systems often appear to be mathematically much sim-
pler than the original diffusion-reaction systems, especially in the case when the
original system consists of many species. Theλ–ω systems are valid for parameter
values near the Hopf bifurcation but there is also a strong opinion that they provide
an adequate description of the dynamics of the corresponding diffusion-reaction
systems in a much wider parameter range. Our results, however, seem to indicate
that spatio-temporal chaos in theλ–ω systems is just a mathematical artifact
without any clear relation to reality. It clearly follows fromequations (10)and
(38) as well as from the numerical simulations, seeTables 1to 3, that the value
of Lcorr grows to infinity in the vicinity of the Hopf bifurcation. It means that, for
corresponding parameter values, in any spatially bounded system (which is always
the case for real biological or chemical systems) its sizeL appears to be less
than the value of the correlation length in the system. That makes the existence
of chaos impossible exactly in that parameter region where theλ–ω system is
formally valid. This intrinsic contradiction might explain why the approach based
on theλ–ω systems fails to describe the type of population dynamics correctly
[cf. Sherratt (2001)], predicting spatio-temporal chaos for those cases where field
observations report regular patterns.

In conclusion, we want to mention that our study leaves a few questions open.
Firstly, it remains unclear how to calculate analytically the value of the structural
coefficientc∗. Secondly, it will be interesting to see whether our analysis can be
applied to the case when the diffusion coefficients are not constant, e.g., vary in
space or are density dependent. Finally, an important question is how our results
can be modified when stochastic factors are taken into account. These issues
outline the direction of future research.
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