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a b s t r a c t 

Selection of a good initial approximation is a well known problem for all iterative methods of 

data approximation, from k -means to Self-Organizing Maps (SOM) and manifold learning. The 

quality of the resulting data approximation depends on the initial approximation. Principal 

components are popular as an initial approximation for many methods of nonlinear dimen- 

sionality reduction because its convenience and exact reproducibility of the results. Neverthe- 

less, the reports about the results of the principal component initialization are controversial. 

In this work, we separate datasets into two classes: quasilinear and essentially nonlinear 

datasets. We demonstrate on learning of one-dimensional SOM (models of principal curves) 

that for the quasilinear datasets the principal component initialization of the self-organizing 

maps is systematically better than the random initialization, whereas for the essentially non- 

linear datasets the random initialization may perform better. Performance is evaluated by the 

fraction of variance unexplained in numerical experiments. 

© 2015 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Principal components produce the best linear approximations of datasets (“lines and planes of closest fit to systems of points”

[24] ). These lines and planes are popular as initial approximations for many methods of nonlinear dimensionality reduction

[13,17,19] because their convenience and exact reproducibility of the results. The quality of the resulting data approximation

depends on the initial approximation but the systematic analysis of this dependence requires usually too much effort s and the

reports are often controversial. 

In this work, we analyze initialization of Self Organized Maps (SOM). We test and systematically compare two main ap-

proaches to initial approximation of SOM. Originally, Kohonen [18] has proposed random initiation of SOM weights but recently

the principal component initialization (PCI), in which the initial map weights are chosen from the space of the first principal

components, has become rather popular [5] . Nevertheless, some authors have criticized PCI [4,29] (see also discussion of PCI

in recent work [30] ). For example, the initialization procedure is expected to perform much better if there are more nodes in

the areas where dense clusters are expected and less nodes in empty areas. In practical applications, SOM initialization is often

performed in several different ways [25] . 

In this paper, the performance of random initialization (RI) approach is compared to that of PCI for one-dimensional SOM

(models of principal curves). Performance is evaluated by the Fraction of Variance Unexplained (FVU). Datasets were classified

into linear, quasilinear and nonlinear [14,15] . It was observed that RI systematically performs better for nonlinear datasets; how-

ever the performance of PCI approach remains inconclusive for quasilinear datasets. 

SOM can be considered as a nonlinear generalization of the principal component analysis [32,33] . Originally developed by

Kohonen [18] for visualization of distribution of metric vectors, SOM found many applications in data exploration, especially in
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data visualization, vector quantization and dimension reduction. However, like for clustering algorithms [12,26] , the quality of

learning of SOM is greatly influenced by the initial conditions: initial weight of the map, the neighborhood function, the learning

rate, sequence of training vector and the number of iterations [18,28] . Several initialization approaches have been developed and

can be broadly grouped into two classes: the random initialization and the data analysis based initialization [4] . Due to many

possible initial configurations when using random approach, several attempts are usually made and the best initial configuration

is adopted. 

For the data analysis based approach, certain statistical data analysis and data classification methods are used to determine

the initial configuration; a popular method is selecting the initial weights from the space spanned by the linear principal com-

ponent. Modification to the PCA approach was done [4] and over the years other initialization methods have been proposed. An

example is given by Fort et al. [11] . Careful testing is needed for comparison of different SOM initialization strategies. 

In this paper, we consider the performance in terms of the quality of learning of SOM using the Random Initialization (RI)

method (in which the initial weights are randomly selected from the sample data) and the Principal Component Initializa-

tion (PCI) method. The quality of learning is determined by the fraction of variance unexplained [22] . To ensure an exhaustive

study, synthetic data sets distributed along various shapes of dimension two are considered in this study and the map is one-

dimensional (1D). 1D SOMs are important, for example, for approximation of principal curves. The experiment was performed

using the PCA, SOM and Growing SOM (GSOM) applet available online [22] and can be reproduced. The SOM learning has been

done with the same neighborhood function and learning rate for both initialization approaches. Therefore, the two methods are

subject to the same conditions which could influence the learning outcome of our study. To marginalize the effect of the se-

quence of training vectors, the applet adopts the batch learning SOM algorithm [10,11,18] described in the next Section. We also

test our findings on several popular multidimensional benchmarks and on two-dimensional (2D) SOM. 

For the random initialization approach, the space of initial starting weights was sampled; this is because as the size of the

data set n increases, the possible choice of initial configuration for a given number of nodes k becomes enormous ( n k ). The

PCI was done using regular grid on the first principal component with equal variance (Mirkes, 2011). For each data set and

initialization approach, the data set was trained using three or four different values of k . We use a heuristic classification of

datasets in three classes, linear, quasilinear and essentially nonlinear [14,15] , to organize the case study and to represent the

results. We describe below the used versions of the SOM algorithms in detail in order to provide the reproducibility of the case

study. 

It is demonstrated that for essentially nonlinear patterns the widely accepted presumption about advantages of PCI SOM

initialization is not universal. RI (possibly with several reinitialization) often performs better than PCI. 

2. Background 

2.1. SOM algorithm 

SOM is an artificial neural network which has a feed-forward structure with a single computational layer. Each neuron in the

map is connected to all the input nodes. The classical on-line SOM algorithm can be summarised as follows: 

1. Initialization: Initial weights are assigned to all the connection w j (0 ). 

2. Competition: all nodes compete for the ownership of the input pattern. Using the Euclidean distance as criterion, the neuron

with the minimum-distance wins. 

j ∗ = arg min 

1 ≤ j≤k 
‖ x(t) − w j (t)‖ , 

where x ( t ) is the input pattern at time t , w j (t) is j th coding vector at time t , k is the number of nodes. 

3. Cooperation: the winning neuron also excites its neighboring neurons (topologically close neurons). The closeness of the i th

and j th neurons is measured by the neighborhood function ηji ( t ): ηii = 1 , ηji → 0 for large | i − j| . 
4. Learning Process (Adaptation): The winning neuron and the neighbors are adjusted with the rule given below: 

w i (t + 1 ) = w i (t) + α(t)η j ∗i (x(t) − w i (t)), 

Thus, the weight of the winning neuron and its neighbors are adjusted towards the input patterns however the neighbors

have their weights adjusted with a value less than the winning neuron. This action helps to preserve the topology of the map.

A scalar factor α( t ) (the speed of learning) defines the size of the correction; for most realizations, its value decreases with

time t [18] . 

2.2. The batch algorithm 

We use the batch algorithm of the SOM learning. This is a version of the SOM algorithm in which the whole training set is

presented to the map before the weights are adjusted with the net effect over the samples [10,18,21] . The algorithm is given

below (after the standard initialization). 

1. Put the set of data point associated with each node equal to empty set: C = ∅ . 
i 
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2. Present an input vector x s and find the winner neuron, which is the weight vector closest to the input data. 

i = arg min 

1 ≤ j≤k 
‖ x s − w j (t)‖ , C i ← C i ∪ { s } . 

3. Repeat step 2 for all the data points in the training set. 

4. Update all the weights as follows 

w i (t + 1 ) = 

( 

k ∑ 

j=1 

ηi j (t)
∑ 

s ∈ C i 
x s 

) 

/ 

k ∑ 

j=1 

ηi j (t) (1)

where ηij ( t ) is the neighborhood function between the i th and j th nodes at time t , and k is the number of nodes. 

2.3. SOM learning algorithm used in the case study 

Before learning, all C i are set to the empty set ( C i = ∅ ), and the steps counter is set to zero. 

1. Associate data points with nodes (form the list of indices) 

C i = 

{
l : ‖ x l − w i ‖ ≤ ‖ x l − w j ‖ ∀ 

i � = j 
}
. 

2. If all sets C i evaluated at step 1 coincide with sets from the previous step of learning, then STOP. 

3. Calculate the new values of coding vectors by formula (1) 

4. Increment the step counter by 1. 

5. If the step counter is equal to 100, then STOP. 

6. Return to step 1. 

The neighborhood function used for this applet has the simple B-spline form given as a B-spline: 

ηi j = 

{ 

1 − | i − j| 
w 

if | i − j| < w 

0 if | i − j| ≥ w, 

(2)

where w is the half width of the spline. 

Selection of the half width regulates the ‘bending’ properties of SOM. For small w it is flexible, for large w it behaves like a

rigid line (1D) or plane (2D). There exist modifications of SOM which use this analogy to bending energy directly [16] . In this

work, we follow the classical ideas of Kohonen [18] and test SOM with three strategies of w selection. First of all, we use SOM

with constant w . By default we take w = 4 . In addition, we use two strategies of shrinking neighborhood range parameter w over

time instances: 

• Strategy 1. Start with w = w max . Learn until STOP. Take w ← w − 1 . Learn until STOP. Repeat till w = w min . Learn until STOP. 

• Strategy 2. Start with w = w max . Learn one epoch. Take w ← w − 1 . Learn one epoch. Repeat till w = w min . Learn until STOP. 

For batch learning, ‘epoch’ means just one step of the batch algorithm. In our tests for 1D SOM with n nodes we take w max =
n 
2 + 1 and w min = 2 . 

2.4. GSOM 

GSOM was developed to identify a suitable map size in the SOM and to improve the approximation of data [2] . It starts

with a minimal number of nodes and grows new nodes on the boundary based on a heuristic. There are many heuristics for

GSOM growing. Our version is optimized for 1D GSOM, the model of principal curves [22] . GSOM method is specified by three

parameters 

• Neighborhood radius (the half width). This parameter, w, is used to evaluate the neighborhood function, ηij (the same as for

SOM). 

• Maximum number of nodes. This parameter restricts the size of the map. 

• Stop when fraction of variance unexplained percent is less than a preselected threshold. 

The GSOM algorithm includes learning and growing phases. The learning phase is exactly the SOM leaning algorithm. The

only difference is in the number of learning steps. For SOM we use 100 batch learning steps after each learning start or restart,

whereas for GSOM we select 20 batch learning steps in a learning loop. 

2.5. Fraction of variance unexplained 

In this study, data are approximated by broken lines (SOM and GSOM). The dimensionless least square evaluation of the error

is the FVU. It is defined as the fraction: [The sum of squared distances from data to the approximating line /the sum of squared

distances from data to the mean point] [22] . 
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The distance from a point x i to a straight line is the length of a perpendicular dropped from the point to the line p i . This

definition allows us to evaluate FVU for PCA: 

FVU = 

n ∑ 

i =1 

p 2 i / 

n ∑ 

i =1 

‖ x i − x̄ ‖ 

2 , (3) 

where x̄ is the mean point x̄ = (1 /n)
∑ n 

i =1 x i . The nominator in (3) is the sum of the squared deviation of the data points from

their projections onto the line, 
∑ n 

i =1 p 
2 
i 
, the denominator, 

∑ n 
i =1 ‖ x i − x̄ ‖ 2 , is the sum of the squared deviation of the data points

from their mean. 

In order to define FVU for SOM, we need to solve the following problem. For the given array of coding vectors { y i } (i =
1 , 2 , . . . , k) we have to calculate the distance from each data point x to the broken line specified by a sequence of points

{ y 1 , y 2 , . . . , y k } . For this purpose, we calculate the distance from x to each segment [ y i , y i +1 ] and find d ( x ), the minimum of

these distances. 

FVU = 

n ∑ 

i =1 

d 2 (x i )/ 
n ∑ 

i =1 

‖ x i − x̄ ‖ 

2 . (4) 

In this formula, we use the squared distance d 2 ( x i ) from the data point x i to SOM instead of the squared distance p 2 
i 

from x i to a

line used in (3) . We use the distance to the broken line that is less or equal than the distance to the closest node. 

2.6. Initialization methods 

The objective of this paper is to consider the performance of two different initialization methods for SOM using the FVU (4)

as the criterion for measuring the performance or the quality of learning. The two initialization methods compared are: 

• PCA initialization (PCI): The weight vectors are selected from the subspace spanned by the first n principal components. For

this study, the weight vectors are chosen as a regular grid on the first principal component, with the same variance as the

whole dataset. Therefore, given the number of weight vectors k , the behavior of SOM using PCA initialization, is completely

deterministic and results in the only configuration. PCA initialization does not take into account the distribution of the linear

projection results. It can produce several empty cells and may need a post-processing reconstitution algorithm [4] . How-

ever, since the PCA initialization is better organized, SOM computation can be made order of magnitude faster comparing to

random initialization, according to Kohonen [18] . 

• Random Initialization (RI): k weight vectors are selected randomly, independently and equiprobably from the data points.

The size of the set of possible initial configurations given a dataset of size n is n k . Given an initial configuration, the behavior

of the SOM becomes completely deterministic. 

2.7. Linear, quasilinear and nonlinear models 

Data sets can be modelled using linear or nonlinear manifold of lower dimension. According to [14,15] a class of quasilinear

model data set was identified. In this study, data sets will be classified as linear, quasilinear or nonlinear. The non-linearity test

for PCA helps to determine whether a linear model is appropriate for modelling of a data set [19] . 

• Linear Model. A data set is said to be linear (in dimension one, with given accuracy) if it can be approximated by a straight

line with sufficient accuracy). These data can be easily approximated by the principal components without SOM. We do not

study such data. 

• Quasilinear Model. A dataset is called quasilinear (in dimension one) if the principal curve approximating the dataset can be

univalently and orthogonally projected on the first principal component. For this study, the border cases between nonlinear

and quasilinear datasets (like “S”) are also classified as quasilinear. See examples in Fig. 1 a and d. 

• Nonlinear Model. In this paper, we call a dataset essentially nonlinear if it does not fall into the class of quasilinear datasets.

See example in Fig. 1 b, c, and e. 

PCI SOM and 100 RI 1D SOMs were prepared for each pattern, every strategy of w selection, and for number of nodes n =
10 , 20 , 50 , 75 and 100. The typical behavior of FVU for a quasilinear pattern (‘C’ scattered, Fig. 1 a, the second image in the row),

and a nonlinear pattern (Horseshoe scattered Fig. 1 c, the second image in the row) is presented in Table 2 for w = 4 . The 100

samples of RI SOM are presented by the sample mean of FVU ( RI FVU ), the fraction of samples with RI FVU < PCI FVU (the column

≤ PCI in the table), and the sample standard deviation of RI FVU ( σ (RI FVU)). 

Let us characterise each pattern by two numbers: the average fraction of RI SOMs with FVU < PCI FVU ( < PCI for short) and

the average fraction of RI SOMs with FVU = PCI FVU ( = PCI for short). If we consider the choice of the pattern of a given type

as a random event then we can combine the results of the tests for all individual patterns in two tables, Table 3 for different

morphologies of patterns and Table 4 for quasilinear and nonlinear patterns. 

The tables clearly demonstrate that for nonlinear patterns RI perfoms significantly better than for quasilinear ones. The learn-

ing strategies with graduate decrease of w in time, from 1 + n/ 2 to 2, produce RI SOMs closer to PCI SOM than the strategy with

constant w = 4 . For these strategies, there exist non-negligible number of cases where the results of RI SOM learning coincide

with PCI SOM (see the columns ‘ = PCI’ in Tables 3 and 4 ). 
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Fig. 1. (a) Quasilinear data set; (b, c, e) nonlinear data set; (d) a border case between nonlinear and quasilinear dataset. The first principal component approx- 

imations are shown (black line). The left column contains clear patterns, the second column from the left contains scattered patterns, the second column from 

the right contains the clear patterns with added noise, and the right column contains the scattered patterns with added noise. 

Table 1 

Classification of data sets used in the case study and presented in Fig. 1 . 

Etalon Clear Scattering Noise Noise & scattering 

C Quasilinear Quasilinear Nonlinear Quasilinear 

Circle Nonlinear Nonlinear Nonlinear Nonlinear 

Horseshoe Nonlinear Nonlinear Nonlinear Nonlinear 

S Quasilinear Quasilinear Nonlinear Quasilinear 

Spiral Nonlinear Nonlinear Nonlinear Nonlinear 

Table 2 

The results of testing for two patterns of different types. For each row, 100 trials of RI are used, 

RI FVU in each row is the average value of these 100 trials, and σ (RI FVU) is the empirical stan- 

dard deviation for these 100 trials. 

Pattern Nodes PCI FVU RI FVU ≤ PCI (%) σ (RI FVU) 

‘C’ scattered 10 0.0651 0.0660 46 0.0083 

20 0.0119 0.0184 48 0.0078 

50 0.0023 0.0034 7 0.0 0 08 

75 0.0017 0.0020 21 0.0 0 04 

100 0.0015 0.0016 49 0.0 0 02 

Horseshoe scattered 10 0.1730 0.1717 72 0.0048 

20 0.0828 0.0507 100 0.0141 

50 0.0183 0.0062 100 0.0020 

75 0.0065 0.0026 100 0.0 0 08 

100 0.0042 0.0017 100 0.0 0 03 

 

 

 

 

 

 

 

 

Let us compare the RI SOM to data approximation by GSOM (instead of PCI SOM). For the spiral patterns the histograms are

presented in Fig. 2 and GSOM performs better than PCI SOM. The statistics for all patterns is presented in Tables 5 and 6 (for the

neighborhood function with fixed half width w = 4 ). We can see that for the nonlinear patterns the relative performance of RI

SOM with respect to GSOM is better than for the quasilinear ones. 

Let us estimate the number of RI SOMs which we can learn (with fixed w = 4 ) to obtain the FVU less than that of PCI SOM

with probability 90%. For the quasilinear patterns we estimate the probability of obtaining RI SOM with FVU worse than for PCI

SOM as 0.7111 (see the first row in Table 4 ). Probability of obtaining seven RI SOMs with FVU not less than for PCI SOM is 0.7111 7

≈ 0.0919 < 0.1. Therefore, it is sufficient to try seven RI SOMs to obtain FVU less than for PCI SOM with probability ≈ 90%. For the

nonlinear patterns the situation is even better: if we estimate the probability P (RI FVU > PCI FVU) as 0.442 (see the second row
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Table 3 

The results of testing RI versus PCI for patterns of different morphology with 95% confidence 

intervals. For each morphology, we take all the corresponding data sets from Fig. 1 . In each 

row, for each data set and the number of nodes n = 10 , 20 , 50 , 75 and 100, 100 trials of RI SOM 

are used (500 RI SOM in total for each data set). Statistical data for individual patterns are 

presented in [1] . 

Strategy Pattern < PCI (%) = PCI (%) 

w = 4 Clear 32 .59 (17.51–47.68) 2 .41 (0.07–4.75) 

Scattered 40 .08 (26.13–54.03) 4 .48 (0.41–8.55) 

Noised 55 .24 (41.50–68.98) 0 .28 (0.00–0.61) 

Scattered and noised 62 .36 (49.14–75.58) 2 .24 (0.00–4.92) 

Strategy 1 Clear 2 .95 (0.00–6.36) 73 .50 (61.06–85.94) 

Scattered 10 .56 (2.44–18.68) 79 .36 (69.11–89.61) 

Noised 24 .96 (15.00–34.92) 48 .48 (37.63–59.33) 

Scattered and noised 26 .20 (14.10–38.30) 61 .00 (47.57–74.43) 

Strategy 2 Clear 41 .14 (26.47–55.80) 25 .18 (11.61–38.75) 

Scattered 35 .16 (23.63–46.69) 26 .36 (17.73–34.99) 

Noised 60 .20 (48.44–71.96) 2 .68 (0.41–4.95) 

Scattered and noised 61 .04 (51.48–70.60) 6 .24 (2.97–9.51) 

Table 4 

The results of testing RI versus PCI for quasilinear and nonlinear patterns with 95% confidence 

intervals. For each type of patterns we take all the corresponding data sets from Fig. 1 (their 

classification is presented in Table 1 ). In each row, for each data set and the number of nodes 

n = 10 , 20 , 50 , 75 and 10 0, 10 0 trials of RI SOM are used (500 RI SOM in total for each data set). 

Strategy Pattern model < PCI (%) = PCI (%) 

w = 4 Quasilinear 28 .89 (18.56–39.23) 3 .46 (0–7.18) 

Nonlinear 55 .80 (46.97–64.62) 1 .90 (0.67–3.13) 

Strategy 1 Quasilinear 4 .64 (0.23–9.06) 89 .26 (82.90–95.62) 

Nonlinear 21 .42 (15.04–27.80) 55 .4 8 (4 8.22–62.74) 

Strategy 2 Quasilinear 33 .96 (24.11–43.82) 23 .14 (13.50–32.78) 

Nonlinear 56 .00 (48.61–63.39) 11 .42 (6.77–16.07) 
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Fig. 2. A typical example of distribution of RI SOM FVU in percent of PCI FVU (with fixed w = 4 ). Vertical solid line with thin arrow above corresponds to PCI 

SOM FVU. Vertical dashed line with wide arrow above corresponds to GSOM FVU. All four histograms illustrate the distribution of RI SOM FVU with 20 SOM 

nodes for the spiral pattern: (a) clear spiral, (b) scattered spiral, (c) noised spiral, and (d) scattered and noised spiral. More statistical data for individual patterns 

are presented in [1] . 
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Table 5 

The results of testing RI versus GSOM for patterns of different morphology 

with 95% confidence intervals 

Pattern < GSOM (%) = GSOM (%) 

Clear 24 .23 (6.91–41.54) 5.36 (1.19–9.54) 

Scattered 9 .40 (0.95–17.85) 7.48 (1.56–13.40) 

Noised 72 .56 (60.57–84.55) 1.36 (0–2.81) 

Scattered and noised 62 .00 (47.85–76.15) 2.52 (0–5.08) 

Table 6 

The results of testing RI versus GSOM for quasilinear and nonlinear patterns 

with 95% confidence intervals. 

Pattern model < GSOM (%) = GSOM (%) 

Quasilinear 24.96 (11.60–38.33) 8.04 (2.19–13.89) 

Nonlinear 49.75 (39.77–59.74) 2.57 (1.21–3.92) 

 

 

 

 

 

 

 

 

 

 

 

in Table 4 ) then for three RI SOMs the probability to find at least one FVU better than for PCI SOM is greater than 90%. All these

numbers are valid for our choice of patterns and their smearing ( Fig. 1 ). 

Of course, our conclusion is limited by the choice of the patterns morphology (smooth curves smeared by two procedures,

scattering with small radius and uniformly distributed nose) and by the choice of the smooth curves (‘C’, spiral, etc, see Fig. 1 ).

This limitation is unavoidable in any benchmark testing. Moreover, the low dimension of patterns (2D) and SOMs (1D) may be

also considered as the limitation of the analysis. Therefore, in the next section we check the validity of our observations on

several popular multidimensional benchmarks. 

3. Comparison of PCI and RI for multidimensional datasets 

It is interesting to learn the comparative results n -dimensional ( n > 3) and complex datasets. We tested PCI and RI on several

well known benchmarks available in UC Irvine Machine Learning Repository [20] : 

• The famous Fisher’s Iris dataset (4 features and 150 samples) [8] ; 

• Wine [9] (the short UCI version, 13 features and 177 samples); 

• Forest fires (13 features and 515 samples) [6] ; 

• Abalone (8 features and 4176 samples) [23] . 

For 1D SOM the results are presented in Table 7 . The number of nodes varies from 10 to 100. The neighborhood function ηij

is one dimensional B-spline (2) with the half width w = 4 . The results for 2D SOM with the square grid of nodes are presented

in Table 8 . The neighborhood function ηij for 2D SOM has the same form (2) with w = 4 , where | i − j| stands for the Euclidean

distance between the nodes on the grid. 100 randomly initiated SOMs are used for each row of the tables. 

For 1D SOM, the sample mean of FVU for RI ( RI FVU ) for sufficiently large number of nodes becomes smaller than PCI FVU.

For 2D SOM this effect is also observed with the only exclusion for Abalone dataset ( RI FVU becomes close to PCI FVU but not
Table 7 

The results of RI and PCI testing for multidimensional data sets (1D SOM). 

Database Nodes PCI FVU RI FVU ≤ PCI (%) σ (RI FVU) 

Iris 10 0.075 0.077 49 0.0030 

20 0.045 0.048 11 0.0029 

50 0.027 0.025 96 0.0013 

100 0.022 0.015 100 0.0 0 09 

Wine 10 0.497 0.505 32 0.0100 

20 0.419 0.426 10 0.0064 

50 0.313 0.308 79 0.0061 

100 0.238 0.222 100 0.0059 

Forest fires 10 0.702 0.699 69 0.0070 

20 0.601 0.603 34 0.0050 

50 0.475 0.472 62 0.0097 

100 0.358 0.344 87 0.0122 

Abalone 10 0.256 0.257 98 0.0016 

20 0.162 0.147 98 0.0538 

50 0.094 0.086 98 0.0025 

100 0.070 0.066 100 0.0011 
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Table 8 

The results of RI and PCI testing for multidimensional data sets (2D SOM). 

Database Nodes PCI FVU RI FVU ≤ PCI (%) σ (RI FVU) 

Iris 5 × 5 0.066 0.071 15 0.0037 

10 × 10 0.027 0.029 25 0.0014 

15 × 15 0.016 0.016 57 0.0010 

20 × 20 0.011 0.010 79 0.0 0 07 

Wine 5 × 5 0.474 0.473 67 0.0044 

10 × 10 0.339 0.340 47 0.0066 

15 × 15 0.253 0.249 74 0.0052 

20 × 20 0.191 0.188 68 0.0054 

Forest fires 5 × 5 0.663 0.661 78 0.0047 

10 × 10 0.514 0.514 53 0.0059 

15 × 15 0.410 0.402 81 0.0099 

20 × 20 0.331 0.309 100 0.0105 

Abalone 5 × 5 0.258 0.212 93 0.0187 

10 × 10 0.105 0.097 88 0.0063 

15 × 15 0.069 0.070 38 0.0022 

20 × 20 0.057 0.058 25 0.0014 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

smaller than this value). The sample standard deviation of RI FVU ( σ (RI FVU)) presented in the tables allows us to estimate the

confidence intervals for RI FVU and RI FVU . 

The fraction of samples with RI FVU < PCI FVU (the column ≤ PCI in the tables) is large enough to claim that the random

initiation with selection of the best SOM a posteriori may be more efficient than the principal component initiation. 

4. Discussion 

The simple systematical case study demonstrates that the widely accepted presumption about advantages of PCI SOM initial-

ization is not universal. The frequency of RI SOM with FVU that is less than FVU for PCI SOM is 55% for the nonlinear patterns

selected as benchmarks for our study. This means that four random initializations are sufficient to obtain the FVU which is less

or equal to the PCI SOM FVU with probability 95% in these cases. For the quasilinear patterns the situation is different and the

performance of PCI SOM is better. Nevertheless, it is sufficient for the selected quasilinear benchmarks to try RI SOM seven times

to obtain FVU less than for PCI SOM with probability 90%. 

The proposed classification of datasets into two classes, quasilinear and nonlinear, is important for understanding of dynamics

of manifold learning and for selection of the initial approximation. The linear configurations may be considered as a limit case of

the quasilinear ones. We defined quasilinear (in dimension one) dataset using the principal curve and studied one-dimensional

SOMs. In applications, SOMs of higher dimensions (two or even three) are used much more often. Therefore, the next step should

be the development of the concept of quasilinear datasets for higher dimensions of approximants. 

It is possible to generalize this definition to dimension k > 1 using injectivity of projection of the k -dimensional principal

manifold onto the space of first k principal components. Nevertheless, it may be desirable to consider the quasilinearity of the

data distribution without such a complex intermediate concept as “principal manifold”. Indeed, SOM is often considered as an

approximation of the principal manifold [32,33] and it is reasonable to avoid usage of the principal manifolds of the definition

of quasilinearity which will be used for selection of the initial approximation in manifold learning. Let us operate with the

probability distributions directly. 

Consider a probability distribution in the dataspace with probability density p ( x ). Assume that there is a gap between k first

eigenvalues of the correlation matrix and the rest of its spectrum. Then the projector �k of the dataspace onto the space of first

k principal components is defined unambiguously. This projector is orthogonal with respect to the standard inner product in the

space of the normalized data. We call the distribution p ( x ) quasilinear in dimension k if the conditional distribution 

p (x | �k (x) = y)

is for each y either log-concave or zero. 

The requirement of log-concavity is motivated by the properties of such distributions: convolution of log-concave distribu-

tions and their marginal distributions are also log-concave [7] . Therefore, this class of distributions is much more convenient than

the naïve unimodal distributions [3] . Most of the commonly used parametric distributions are log-concave and log-concave dis-

tributions necessarily have subexponential tails. Non-parametric maximum likelihood estimations for log-concave distributions 

are developed even in multidimensional case [31] . 

Finally, let us formulate a hypothesis: if the probability distribution is quasilinear in dimension k then the PCI will perform

better than RI, at least for sufficiently large data sets. This hypothesis is supported by our tests. 

5. Conclusion 

Selection of an initial approximation is crucial for all methods of manifold learning [13] . It seems very natural to start from

the best linear approximation, that is, from the principal components. This initial approximation guarantees reproducibility of
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the results and the produced nonlinear approximation can be considered as an improvement of the linear one. Nevertheless,

our tests demonstrate that the randomization of the initial approximation can help a lot in manifold learning for the nonlinear

datasets. Of course, there may be many heuristical rules for the further improvement of the initiation, for example, to respect

the cluster structure. The optimal choice of the initial approximation depends on the geometry of the dataset. For the essentially

nonlinear datasets randomized initial approximation performs better (for the benchmarks used in our work). For the quasilinear

datasets use of principal components as the initial approximation may be recommended. 

We tested a simple algorithm of random initialization based on random selection of data points. Advanced algorithms of

randomized initialization should take into account the data structure at various scales. Random initialization can be also included

into heuristic strategies of global optimization like genetic algorithms and evolution strategies. The idea of use of these heuristics

in SOM training was proposed long ago [27] . Nevertheless, the detailed analysis and testing of these approaches is needed for

practical applications and requires future research. 
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