Bootstrap test of ordered RIG for multiple testing in genomics of Quantitative Trait Loci in yeasts

E. Mirkes, T. Walsh, E.J. Louis, and A.N. Gorban

University of Leicester, UK

Plan

- Multiple testing of correlations: three approaches:
 - Bonferroni corrections
 - False discovery rate
 - Bootstrap of correlations
- Quantitative Trait Loci (QTL) in heat selected yeast experiment description
- Results of data analysis:
 - Do the selected genomes differ from the unselected ones?
 - Do the QTL interact in heat selected genomes?
 - Are the statistically significant correlations large?
- Conclusion

Multiple testing of correlations: The applied problem

- A sample of N objects is studied;
- We measure n attributes $X_1, ..., X_n$ of these objects;
- R_{ij} is a measure of dependence between X_i and X_j and \hat{R}_{ij} is its sample estimate, for example the relative information gain;
- Which dependencies are significant?

(There are n(n-1) ordered pairs of attributes and some of \hat{R}_{ij} may be large by chance.)

P-hunting

- Study statistics of \hat{R}_{ij} for each pair (X_i, X_j) .
- For a given sufficiently small p-value p_0 find the borders $r_{i\,i}$ such that

$$P(\hat{R}_{ij} > r_{ij}) < p_0.$$

- Find pairs (X_i, X_j) with $\hat{R}_{ij} > r_{ij}$.
- Call all connections between (X_i, X_j) significant with p-value p_0 (or the significance level 1- p_0).

P-hunting

- Study statistics of \hat{R}_{ij} for each pair (X_i, X_j) .
- For a given sufficiently small p-value p_0 find the borders $r_{i\,i}$ such that

$$P(\hat{R}_{ij} > r_{ij}) < p_0.$$

- Find pairs (X_i, X_j) with $\hat{R}_{ij} > r_{ij}$.
- Call all connections between (X_i, X_j) significant with p-value p_0 (or the significance level $1-p_0$).

Nowadays everybody knows that *p*-hunting is incorrect

Bonferroni correction – uniform estimate in *i,j*

Notice that

$$P(\forall i, j \ \hat{R}_{ij} < r_{ij}) \ge 1 - \sum_{i,j} P(\hat{R}_{ij} > r_{ij})$$

- Select a sufficiently small p-value p_0 .
- Study statistics of \hat{R}_{ij} for each pair (X_i, X_j) .
- Find the borders r_{ij} such that $P(\hat{R}_{ij} > r_{ij}) < \frac{p_0}{number\ of\ pairs}$
- Find pairs (X_i, X_j) with $\hat{R}_{ij} > r_{ij}$.
- Call these dependencies significant with p-value p_0 (or the significance level 1- p_0).

Bonferroni correction uniform estimate in i,j

Notice that

$$P(\forall i, j \; \hat{R}_{ij} < r_{ij}) \ge 1 - \sum_{i,j} P(\hat{R}_{ij} > r_{ij})$$

- Select a sufficiently small p-value p_0 .

- Find pairs (X_i, X_j) wit

• Study statistics of \hat{R}_{ij} for each pair (X,X).

• Find the borders r_{ij} such that $P(\hat{R}_{ij} > r_{ij})$ such that the denominator, the number of pairs, is too big,

• Call these dependencies significant with ρ -value ρ_0 (or the significanceuch a uniform estimate

False discovery rate model Statistical significance for genomewide studies

John D. Storey*[†] and Robert Tibshirani[‡]

9440–9445 | PNAS | August 5, 2003 | vol. 100 | no. 16



- For each observed \hat{R}_{ij} find the p-value p_{ij} , that is the probability that such (or larger) value is observed by chance for independent X_i , X_i .
- Analyse the distribution of the p-values p_{ij} :
- The q value of a particular feature (correlation) in multiple testing is the expected proportion of false positives incurred when calling that feature significant.

False discovery rate≈

≈ pFDR_i=P(feature *i* is truly null|feature *i* is significant)

False positive rate=

=p_i=Pr(feature *i* is significant|feature *i* is truly null)

P(feature *i* is truly null)(p)=constant Pr(feature *i* is significant)(p)=1 if $p \le p_0$ and =0 if $p > p_0$

From multiple testing to simple testing by order statistics 1. Maximal correlation

- A sample of N objects is studied;
- We measure *n* attributes $X_1, ..., X_n$;
- We know individual distribution functions for X_i ;
- R_{ij} is a measure of dependence between X_i and X_j and \widehat{R}_{ij} is its sample estimate;
- Assume that we know the distribution

$$\mathbf{P}_{\max}(r) = \mathbf{P}(\max_{ij} \widehat{R}_{ij} > r)$$
 for independent X_1, \dots, X_n in a sample of N objects

- Let $P_{\text{max}}(r_0) < p_0$;
- We observe $\max_{ij} \widehat{R}_{ij} > r_0 \rightarrow$ the probability of this observation by chance is less then p_0 .

From multiple testing to simple testing by order statistics 2. General procedure

Order the first k sample estimates:

$$\widehat{R}_{ij}^1 \ge \widehat{R}_{ij}^2 \ge \dots \ge \widehat{R}_{ij}^k;$$

Assume that we know the distribution

$$\mathbf{P}_l(r) = \mathbf{P}(\hat{R}_{ij}^l > r)$$

for l=1,...,k and independent $X_1,...,X_n$ in a sample of N randomly chosen objects;

- Select p-value p_0 . Let $P_i(r_i) < p_0$ for i=1,...,k.
- If we observe $\hat{R}_{ij}^l > r_l$ for all l=1,...,k then these correlations are significant with the level $1-p_0$.

Where can we take the disrtibutions

$$\mathbf{P}_l(r) = \mathbf{P}(\hat{R}_{ij}^l > r)?$$

- The number of attributes X_i is significantly smaller than the number of pairs (X_i, X_i) ;
- Therefore, we can often rely on the observed individual distributions of X_i (even with Bonferroni corrections) much more than on the empirical correlations;
- Bootstrap: generate sufficiently many samples of N objects with independent and properly distributed X_i and estimate $\mathbf{P}(\hat{R}_{ii}^l > r)...$

In the case study below

- The number of attributes is *n*=16;
- The sample size is N=896;
- The correlation measure is

$$RIG(X|Y) = \frac{Entropy(X) - Entropy(X|Y)}{Entropy(X)}$$

• The number of pairs is 240 (RIG is non-symmetric).

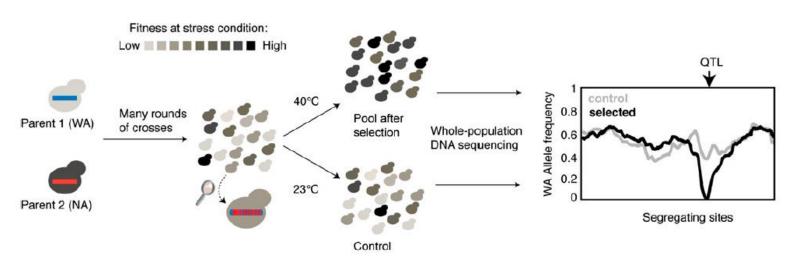
We used genomes for the 960 heat selected individuals and of 172 unselected individuals

Revealing the genetic structure of a trait by sequencing a population under selection

Leopold Parts,^{1,6} Francisco A. Cubillos,² Jonas Warringer,^{3,4} Kanika Jain,² Francisco Salinas,² Suzannah J. Bumpstead,¹ Mikael Molin,³ Amin Zia,⁵ Jared T. Simpson,¹ Michael A. Quail,¹ Alan Moses,⁵ Edward J. Louis,² Richard Durbin,¹ and Gianni Liti^{2,6}

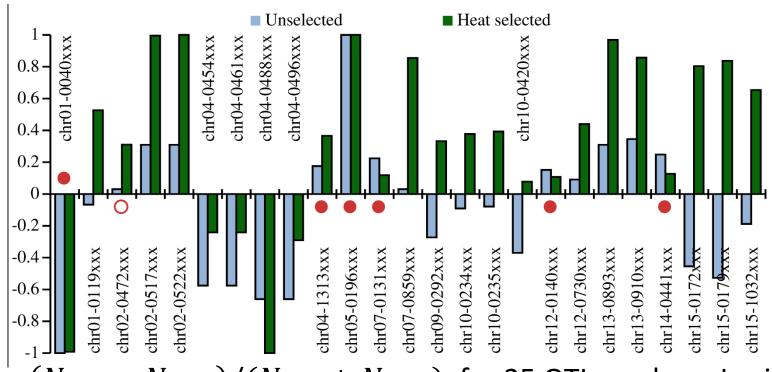
21:1131-1138 © 2011 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/11; www.genome.org

Genome Research www.genome.org



(i) Crossing different strains, (ii) growing the pool in a restrictive condition, (iii) sequencing total DNA from the pool.

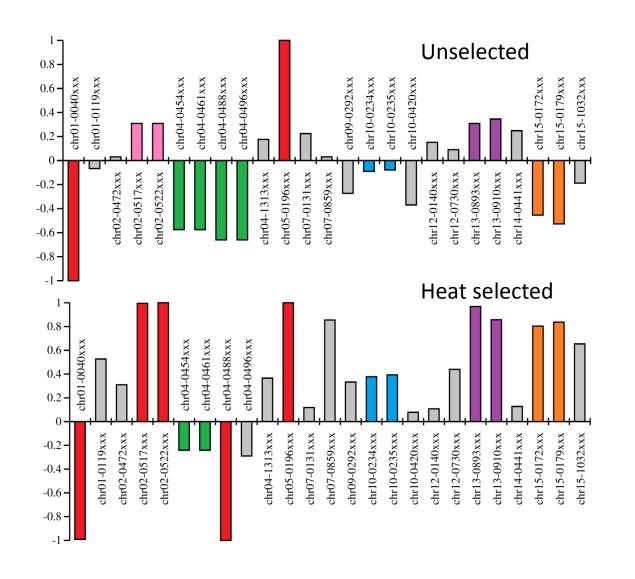
NA/WA alleles for QTL markers in unselected and heat selected samples



 $(N_{\text{NA}} - N_{\text{WA}})/(N_{\text{NA}} + N_{\text{WA}})$ for 25 QTL markers. Loci with (Bonferroni corrected) p>0.1 are marked by solid circle and with $0.1 \ge p \ge 0.01$ by circle. All other p<0.01.

(Here, *p*-value is the probability to observe the same or larger difference between distributions of alleles in a locus for selected and unselected samples if the probability distributions are the same.)

Distribution of $(N_{NA} - N_{WA})/(N_{NA} + N_{WA})$ for unselected and heat selected pools

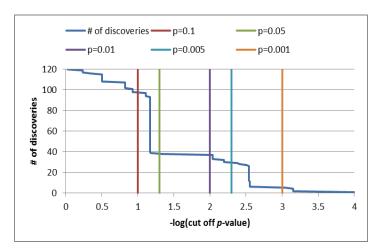


Red - one parent allele (constant loci) and almost constant loci (the fraction of one of the alleles is greater than 99%).

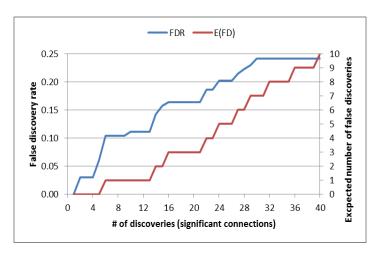
Magenta, Green, Blue, Violet, and Brown different groups of linked loci.

Grey - all other loci (not linked).

The number of significant correlations and estimated number of false discoveries



The number of significant connections with respect to *p*-value for BToRIG.



The false discovery rate and expected number of false discoveries as a function of the number of discoveries.

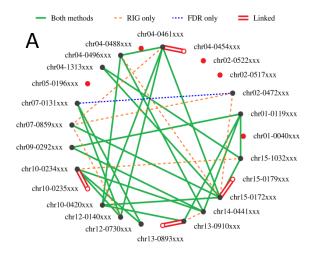
Which links are important for the heat tolerance?

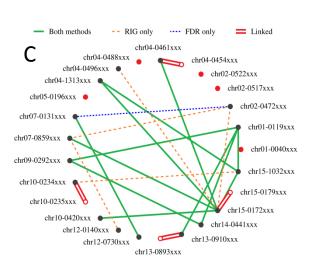
Significant does not mean large.

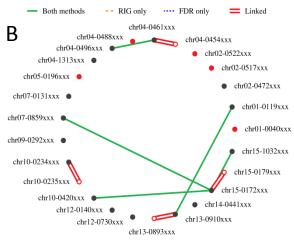
What else should we take into account?

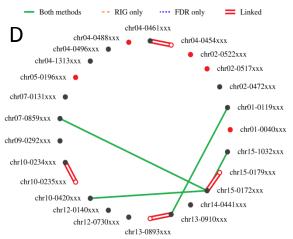
- The *level* of correlations (if RIG<0.01 then it is difficult to find a solid reason to consider this connection as important when the number of candidates is ~20);
- The *novelty*: there should be a difference between the links in the heat selected and unselected samples
- The novelty may be measured by RIG ratio $RIG_{selected}/RIG_{unselected}$ or by relative entropy H(selected | unselected)

Significantly dependent loci for heat selected pools









- A) Significant connections.
- **B**) Significant connections with $RIG \ge 0.01$.
- **C**) Significant connections with $RIG_{selected}/RIG_{unselected} \ge 2$ or H(selected | unselected) > 0.5.
- **D)** Significant connections with RIG ≥ 0.01 , and $RIG_{selected}/RIG_{unselected} \geq 2$ or H(selected | unselected) > 0.5.

Red solid circles – the constant loci.

Red circles with white centres - the loci in linkage disequilibrium with other loci (doubled red line). Solid green lines connect loci defined as significantly dependent by DFR and BToRIG.

Conclusion

- Bootstrap test of ordered correlation measures is efficient when the number of pairs is much larger than the number of attributes;
- It works and the results in the case study are (surprisingly) similar to the False Discovery Rate approach which has very different backgrounds.
- Multiple testing of significance of associations after selection should be supplemented by the evaluation of importance (size) and novelty.

- For the heat tolerance of yeasts, a statistical analysis of entropy and information gain in genotypes of a selected population can reveal further interactions than previously seen.
- Various non-random associations were found across the genome both within chromosomes and between chromosomes.

E-print

EM Mirkes, T Walsh, EJ Louis, AN Gorban, Long and short range multi-locus QTL interactions in a complex trait of yeast, <u>arXiv:1503.05869</u> [q-bio.GN]