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OutlineOutline:

• Kinetic theory and methods of reduced description

• The meaning of stability: “H-theorem”

• The concept of hyperbolicity for O.D.E.’s

• Relation between hyperbolicity and stability (by Bobylev)
for Burnett equations

• Exact Hydrodynamics derived from13M Grad System

• The message of hyperbolicity

• The goal: exact hydrodynamics from Boltzmann.

• What’s next?
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1. Kinetic theory and methods of Reduced DescriptionKinetic theory and methods of Reduced Description:

Moment
system

( ),kM x t

Boltzmann 
equation

( ), ,f x v t

• Chapman Enskog 
method

• Invariance principle
• Coarse graining

• Grad method
• Quasi equilib. approx.

• Chapman Enskog 
method

• Invariance principle

Hydro-
dynamics

( ),hydroM x t
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•• Phase space representationPhase space representation

Phase space E consists of distribution functions

Good definition of                   :                          are nonnegative functions and
the following integrals are finite              :

( ):,, tvxf
=fdxdv particles in the volume element            around            at time  dxdv ( )vx, t

3333 , vvxx vx ℜ⊆Ω∈ℜ⊆Ω∈with:

( ), ,f x v t
xx Ω∈∀

( ) Ftvxf ∈,,

( ) ( )∫
ℜ

=
3

321321 3
321

,, ,,
v

vdtxvfvvvI iiiiii
x 0,0,0 321 ≥≥≥ iii,                                  ;

( ) ( )∫
ℜ

=
3

3

x

xdfHfH x,                                     ;( ) ( ) ( )[ ]∫
ℜ

−=
3

31,,ln,,
v

vdtxvftxvffH x

(existence of the moments)

( ) ( )
( ) ( )

( ) ( ) ( )∫

∫
∫

=
−

=

=

txedvuvmvxf

txumvdvvxf

txmdvvxf

,
2

,

,,

,,

2

ρ

ρ

(existence of the entropy)

•

Lower order moments correspond to
the hydrodynamic fields:

•
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•• Boltzmann EquationBoltzmann Equation::

( )fJ
t
f
=

∂
∂ ( ) ( )ffQ

x
fvfJ ,+
∂
∂

−=

Properties:

• Additive invariants of the collision operator:

( ){ } 0,,1, 2 =∫ dvvvffQ

with     given by:f
( ) ,

2
exp2 22
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πρ
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m
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3ρ
=

( ) ( ) ( ) ( )txwftxvftxwftxvf ,,,,,,',,' =

( ) 0, =ffQ• Detailed balance (                  ) :

• Local H-theorem :

( ) ( ) ( ) ( )∫ ≤=
=

0,,ln, 3
,,

vdtvxfffQ
dt

fdH
tvxff

x

entropy production inequality: 0≥−=
dt

dHk x
Bσ



66

solution of B.E. evolves, according to the vector field          , 
over a  “ -dimensionaldimensional manifoldmanifold” .

( ), ,f x v t ( )fJ
∞ F

Notion of Local ManifoldLocal Manifold: given a finite-dimensional linear space of 
parameters A, a bounded domain B in A, and a family of functions             

smoothly parameterized  by               we consider all bounded 
and sufficiently smooth functions                            and we define the locally
finite-dimensional manifold as the set of functions                               

( ) Ba x →Ω• :
( )tvaf ,, Ba∈

( )( )tvxaf ,,
A simple example give the local equilibria: a is the 5D vector of density, 
momentum density and temperature, f are Maxwellians.

Problem of reduced description for dissipative systems 

Finding stable invariant manifolds in the space of distribution functions. 

Locally finite-dimensional manifolds are the natural sources of approximations
for the construction of invariant manifolds in the B.E. theory.
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The notion of Invariant Manifold Invariant Manifold generalizes other historically previous methods
to reduce description in dissipative systems:

•• Hilbert method of normal solutionsHilbert method of normal solutions

•• Chapman Enskog methodChapman Enskog method

•• Grad method.Grad method.

Whatever the method, the technique is to seek for trial solutions of the B.E. 
through projections upon proper locally-finite dimensional submanifolds.
Still, usually, such manifolds are NOT invariant              .( )0≠∆ f



88

ExampleExample: the locally five-dimensional manifold of local Maxwellians                     ( ){ }TunfLM ,,

is the unique solution of the variational problem:LMf
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( ) ∫ →= minln 3vfdffH for:

Hence, the LM manifold is the quasiequilibrium manifold.

Is it also an invariant manifold for the Boltzmann Equation?
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•• Chapman Enskog method: a sketchChapman Enskog method: a sketch

Solutions to the B.E. are found from a singularly perturbed B.E.,

( )ffQfDt ,1
ε

=

where    is a small parameter, and:ε f
x

vf
t

fDt ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

= ,

is written as an expansion:f ( )∑
∞

=

=
0n

n
CE

n
CE ff ε

The procedure of evaluation of the functions is:
( ) ( )( ) 0, 00 =CECE ffQ
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⎠
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∂
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Further,          acts upon        according to the chain rule:
( )

( )
( ) ( ) ( )

( )
( )
( )

( ) ( )
e

te
fu

tu
f

t
ff

t
CECECE

CE ∂
∂

∂
∂
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∂
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ρ
ρ

ρ
ρ

( )

t∂
∂ 0 ( )0

CEf

According to the theory of linear integral equations, the function      is unique,
once the following “solubility condition” is provided:

{ } ( ) 0,,1 312 =∫ vdfvv CE

( )1
CEf

The first correction adds the terms:
( )
{ } ( ) vdf

x
vmvmvmeu

t CE
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∂
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∫ρρ DISSIPATIVE HYDRODYNAMICSDISSIPATIVE HYDRODYNAMICS
(expressions for the stress tensor (expressions for the stress tensor 
and the heat flux)and the heat flux)

The sequence provides higher order corrections, corresponding to different 
hydrodynamic models:

......→

( ) →0
CEf Euler equations

( ) ( ) →+ 10
CECE ff ε Navier Stokes – Fourier equations

( ) ( ) ( ) →++ 2210
CECECE fff εε Burnett equations
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•• Grad method: a sketchGrad method: a sketch

Assumption behind: decomposition of motions:

• during fast evolution (time    ), a set of distinguished moments M’ don’t change
significantly in comparison to the rest of moments M” (fast  dynamics)

• towards the end of the fast evolution, the values of M” become determined
by the  values of M’.

• on the time of order           , dynamics of the distribution function is determined by 
the dynamics of M’ (slow evolution period).

τ

τθ >>

( ) ( ) ( )( ) ( )( )
( )

⎥
⎦

⎤
⎢
⎣

⎡
−+= ∑

N

LMG uvHMaveufvMf
α

ααρ '1,,,,'

Upon inserting       into the B.E. and finding the moments of  the resulting 
expression, we get the GradGrad’’s moment equationss moment equations..

Gf
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2. 2. The meaning of stability :  The meaning of stability :  HH--theoremtheorem

• If the gas is in an uniform state (    space independent), the H-function reads as:f

( ) ( ) ( )∫= vdvfvffH 3ln

then:              . Thus, B.E. describes relaxation to the unique Global MaxwellianGlobal Maxwellian
(whose parameters are fixed by initial conditions).

0≤
dt
dH

( ) .constfHkS B +−=• Entropy density                                     grows monotonically (Lyapunov 
functional) along the solutions (relation defining entropy also for beyond
equilibrium states).

• H-theorem and Grad system:                                        
then expanding H-function in the neighborhood of ( )ϕ+= 1LMG ff LMf

( ) [ ] ( ) ( ) vdvfvdvffHfHtxH LMLMLMLM
3230

2
1ln,, ∫∫ ++=∆≡∆ ϕϕϕ

for 13 Moment Grad approximation: 32
0

54 P
qqn

P
nHH kkikik ρσσ

++=∆
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3. 3. The concept of hyperbolicity for O.D.E.The concept of hyperbolicity for O.D.E.’’ss

00

1
t

t

u iBu Au

u u
ε

=

∂ = +

=

, 0ε >

Let     be a unitary space with (complex) scalar product     
We consider the Cauchy Cauchy problem for a vector

E ( ),⋅ ⋅
( ) , 0u t E t∈ ≥

under the following assumption about the operators         :

• both    and    are real and symmetric, i.e.:

• is negative semi-definite, i.e.:

,

(3.1)

A B

A B
( ) ( ) ( ) ( )1 2 1 2 1 2 1 2, , , , , , ,A A B B u Au Au u u Bu Bu u= = = =

( ), 0u Au ≤ , u E∀ ∈
A

• the equation              has precisely                        linearly independent
solutions                                , then:

0Au = 1 dimm E≤ ≤
, 1,...,u e mα α= =

( ) ( )1,..., mN A KerA Span e e= =

It follows: ( )21 1 ,
2

d u Au u
dt ε

= , ( )2 ,u u u=

We assume: ( ) ( )E N A R A= ⊕dim E < ∞

(3.2)
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4. Relation between hyperbolicity and stability (by Bobylev)
for Burnett equations derived from B.E.:

Linearization of B.E. near the global Maxwellian:
1

t xg v g Lg
ε

∂ + ⋅∂ =

( ) ( )
3

3ˆ , , , , ik xg k v t g x v t e d x− ⋅

ℜ

= ∫
(cfr. with (3.1)). 

Fourier transform:

and obtain:

( )gff GM += 1

gLgvikgt ˆ1ˆˆ
ε

=⋅+∂

Then, application of C.E. method, leads to the general equation of hydrodynamicsgeneral equation of hydrodynamics:

, ( )x N A∈0ε > , (4.1)( ) ( )[ ]xAiBxt εεε +=∂

symmetric for Euler and N-S level 
• for Euler   

• for N-S

( ) ( )0x t x=

( ) ( )0x t x≤
BA,

not symmetric for Burnett level (3.2) does NOT hold!B

Loss of symmetry of operator     is the reason of the instabilitLoss of symmetry of operator     is the reason of the instability of Burnett equationsy of Burnett equationsB
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• Bobylev instability (1982) :

fBoltzmann equation, 

( ) ( ) ...221 +++→ CECELM ffff εε

(    -dimensional manifold)∞

CHAPMAN 
ENSKOG

Hydrodynamics: ( ) ( )( ) ( ) ( )( ) vdfffJvdfff CECELMiCECELMit
32213221 ...... +++=+++∂ ∫∫ εεψεεψ

Violation of the H-theorem at the Burnett level, was found by Bobylev for 
Maxwell molecules and then also studied by Uribe et al. for hard sphere 
molecules.
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• Bobylev regularization: HBEs (2006) :

General equation of hydrodynamics:

( ) ( )[ ] ( ) ( )[ ]xAABBixAiBxt ...... 1
2

01
2

0 +++++=+=∂ εεεεεε

( )[ ]zORzTx 421 1 εε +−== −change of coordinates: ( )xRTxz 21 ε+==

( ) ( )[ ] ( )[ ]{ } ( )3
0001

2
0

1 εεεεεε OzARBRBBBizTAiBTzt ++−++=+=∂ −

• already symmetric and negative semi-defined.

• real and symmetric

0A

RBRBBB 001
~ −+=

Hyperbolicity achieved through a “regularization” operator     (real and symmetric) R

H-Theorem restored
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• The idea of the work :
fBoltzmann equation, 

GRAD 
METHOD ( )ϕ+→ 1LMff

Moment system: 
( ) ( )[ ]∫∫ +=+∂ vdfJvvvvdfvvv LM

iii
LM

iii
t

3
321

3
321 11 321321 ϕϕ

CHAPMAN 
ENSKOG

( ) ( )

( ) ( ) ...
...

120

120

+→

+→

qqq εε

σεεσσ

CHAPMAN 
ENSKOG

Hydrodynamics

( )

( ) ( ) ( ) ( )
?

54
3

32
0

120120

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++=∆ ∫

+=+=

xd
P
qqn

P
nHdHd

qqq

kkikik
tt

εεσεεσσ

ρσσ

Burnett hydrodynamics, as derived from Grad system, displays the same 
instability seen through derivation from B.E. (consistency):

QuestionsQuestions: does the hyperbolic regularization apply on the 13 Moment Grad
system and restore the H-Theorem at the Burnett level? Does it work also to 
higher order levels?
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5. Exact Hydrodynamics from 13M Grad System :

1D13 Moment (linear) Grad system attains the following form (1D case):

qTq

qu

quT

Tu
u

xxt

xxt

xxt

xxxt

xt

3
2

2
5

15
8

3
4

3
2

3
2

−∂−∂−=∂

−∂−∂−=∂

∂−∂−=∂

∂−∂−−∂=∂
−∂=∂

σ

σσ

σρ
ρ

Application of the Chapman-Enskog method to the reduction of the system (1) 
results in the following series expansion of the nonhydrodynamic variables:

ζ
( )ikxtk += ωζζ expTurning into the Fourier space, we seek for solutions of the form      

where    is a generic function and    is a real valued wavenumber proportional to the 
Knudsen number   .

k
ε

( ) ( )∑∑
∞

=

∞

=

==
00

,
n

n
kk

n

n
kk qqσσ

(5.1)
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It can be proven that functions      and     have the following structure, for all       kσ kq ,...1,0=n

( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) k

n
n

n
k

k
n

nk
n

n
n

k

k
n
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n

n
n

k

k
n

n
n

k

ukzq

ikTkyikkxq

Tkckb

ikuka

1212

222

121212

22

++

+++

−=

−+−=

−+−=

−=

ρ

ρσ

σ

Hence we can express      and      as:kσ kq

kkkk

kkkk

ZukikYTikXq

CTkBkikAu
2

22

−+=

−−=

ρ

ρσ

( ) ( ) ( ) ( ) ,...,
0

2

0

2 ∑∑
∞

=

∞

=

−=−=
n

n
n

n

n
n kbkBkakA

Substituting these expressions into the Fourier-transformed balance 
equations (5.1), we obtain the closed (reduced) system of hydrodynamic 
equations which is conveniently written in a vector form:

(5.2)

(5.3)where:

Mxxt =∂ (5.4)
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)( ) (
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00

{ },,, Tux ρ=with: (5.5)

Finally we find the dispersion relation for the hydrodynamic modes           by 
solving the characteristic equation:

( )kω

[ ] 0det =− IM ω (5.6)

Chapman Enskog approximates the functions (5.3) with polynomials whose 
coefficients can be explicitly determined through a nonlinear recurrence 
procedure.
At the Burnett level:

kkk

kkkk

ukikTq

Tkkiku

2

22

4
7

4
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3
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3
4

3
4

+−=

−+−= ρσ
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The standard CE polynomial approximations lead to unstable hydrodynamic 
equations.
Dealing with a linear kinetic model it is still possible to search for exact
hydrodynamic solutions, i.e., constitutive relations for the stress tensorstress tensor and the heat heat 
fluxflux, achieved by performing exact summation of the functions in (5.3).

exact summation 
of Chapman 

Enskog

Dynamic  
Invariance 
principle

Dynamic Invariance Principle (DIP):

( ) ( )

( ) ( )kZYXqkCBAikikTq

kCBAkZYXikqiku
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micro
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∂
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∂
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+∂
∂
∂
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∂
∂
∂

+∂
∂
∂

+∂
∂
∂

=∂

ρ
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ρ
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The DIP states that the two time derivatives coincide, since the set                 has 
to solve both the full Grad system and the reduced system.

{ }kk q,σ
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DIP implies a closed set of equations, here referred as invariance equations (IE), 
relating the six functions ZBA ,...,,

(5.7)

The resulting hydrodynamic spectrum consists of two modes:

• acoustic mode, represented by two complex-conjugated roots of (5.6)

• real-valued diffusive heat mode.

( )kacω

( )kdiffω

The dispersion relation was found by simultaneously solving numerically the IE 
(5.17) and the characteristic equation (5.6).
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Among the many sets of solutions
to the system (5.7), the relevant ones 
are continuous functions with the 
asymptotics: 0lim

0
=

→ hydrk
ω

Remarkably, we find that the solution 
with this asymptotics is unique, and 
represented by a pair of complex 
conjugated sets          .{ }*,SS

Notice that:

• exact hydrodynamics is stable (i.e.: Hexact hydrodynamics is stable (i.e.: H--theorem exists)theorem exists).
Hence the failure of the CE method does NOT lie in the method itself, but  
in the truncation to lower order levels.

• a critical point occursa critical point occurs, for           .
For           , the CE method does not recognize any longer the resulting
diffusive branch as an extension of a hydrodynamic branch. 

ckk =
ckk >
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Also, the set of solutions          , real valued for           , continues upon a complex 
manifold.

{ }*,SS ckk ≤

The first important messageThe first important message: there is no closed set of hydrodynamic equations 
after      , even though the acoustic mode extends smoothly beyond     .ckck
Is exact (stable) hydrodynamics also hyperbolic?

( ) ( )[ ]

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )624120
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5130
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OIIIRM

ORRRM

xMiMx
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+−=−=ℑ
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ℑ−ℜ=∂

∑

∑
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=

∞
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+

(5.8)
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We find that the operators           and           involve the following real-valued 
operators:

( )Mℜ ( )Mℑ
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Equations of hydrodynamics (5.8) are hyperbolic and stable provided that 
we can find a transformation of hydrodynamic fields, such that:

• and            are both real and symmetric( )'Mℜ ( )'Mℑ

( )'Mℜ• has negative semidefinite eigenvalues.
1' −ΩΩ= MMTherefore, we seek a transformation     such that               is symmetric 

and             is semi-negative.
Ω

( )'Mℜ

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

Ω
Ω

ΩΩ

Ω
=Ω
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T

uu 00
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101

1 ρρρ (5.9)
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[ ][ ]
[ ][ ][ ][ ] [ ][ ] [ ][ ]

[ ][ ]
[ ][ ]

[ ][ ] [ ][ ] [ ][ ]( )XCBYC

ZYX
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ZBYCCZBX
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+
=Ω
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+
Ω

=Ω

3

23
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2223

23

2

ρ

ρρ

[ ][ ] ( ) •−=• 21 εk

With      provided by (5.9), we have that the resulting hydrodynamics is hyperbolic.
We, next, calculate the eigenvalues of             (containing transport coefficients):

with the symbolic notation:

Ω
( )'Mℜ

YkAk ελελλ 2
3

2
21 3

2,,0 ===

( )
( )⎩

⎨
⎧

≥
≤

0'
0'

MDet
MTr

Hence, the T-transformed hydrodynamics reads as:

zMzMzt '1 =ΩΩ=∂ −

( ) '' MM T =where: HYPERBOLICITYHYPERBOLICITY

DISSIPATIVITYDISSIPATIVITY

(5.10)
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•Hyperbolic dissipative hydrodynamics from 3D13M Grad 
system

( )

( )

kkkkt

kkkkt

kkkt

kkkkt

kkt

qikikTq

kqikui

quikT

ikTiku
uik
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2
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−⋅−−=∂

−−−=∂

+⋅−=∂

⋅−+−=∂
⋅−=∂

σ

σσ

σρ
ρ

We decompose vectors and tensors into longitudinal and transversal parts:

⊥⊥⊥ +=+=+=

=

kkk
p
kkkk

p
kkkk

p
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k

eeqeqqueuu

k
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σσσ 2;;

to obtain two closed sets of equations which can be solved separately
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t k k kx M x∂ =3D exact hydrodynamics:
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⎠

⎞
⎜⎜
⎝

⎛
=

⊥
k

p
k

k M
M

M
0

0



2929

Due to the block diagonal structure of       and to the fact that the hyperbolic 
feature of         was already analyzed in 1D13M, a transformation exists and it 

is unique also in the 3D case: 

p
kM

kM

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Ω
Ω

=Ω
⊥
k

p
k

k 0
0

where       is found to be manifestly simple:⊥Ωk Ik =Ω⊥

Further, due to the occurrence of negative eigenvalues,
(                                                             ) an H-Theorem holds:2 2 2

1 2 3 4,5
20, , ,
3

k A k Y k Dλ λ λ λ= = = =

( ) ( ) ( ) ( )'2 '2 '2 31 , , ,
2

H t r t u r t T r t d rρ⎡ ⎤= + +⎣ ⎦∫Defining an “H functional” :

( )
5 2' 3

,
1

0t s k s k
s

H t x dλ
=

∂ = ≤∑∫and turning onto the Fourier space, this leads to:

Thus, the H-theorem is proved for linearized exact hydrodynamics from 3D13M
( for           )ck k≤
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6. The message of hyperbolicity

• Bobylev, dealing with Burnett hydrodynamics from B.E., pointed out the
connection between hyperbolicity and stability.
We found out that the same hyperbolic regularization works for Burnett  
hydrodynamics as derived from Grad system.

• Beyond Burnett level (up to an arbitrary order    , also in limit              , of  
“exact  hydrodynamics”),  we need to take into account also dissipative 
properties of the “ -- transformedtransformed”” hydrodynamics. Namely:

∞→nn

Ω

⎩
⎨
⎧

itydissipativ
ityhyperbolic sufficient condition stability

(existence of H-theorem)

• Exact (stable) hydrodynamics, from 13M Grad system, is hyperbolic.

ck
• We found the occurrence of a critical point on the wavelength domain:
there is no closed exact hydrodynamic description beyond     .
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7. The goal: exact hydrodynamics from Boltzmann eq.

fBoltzmann equation, 
GRAD 

METHOD ( )ϕ+→ 1LMff

Moment system: 
( ) ( )[ ]∫∫ +=+∂ vdfJvvvvdfvvv LM

iii
LM

iii
t

3
321

3
321 11 321321 ϕϕ

CHAPMAN 
ENSKOG

( )

( )∑

∑
∞

=

−

∞

=

−

=

=

1

1

1

1

n

nn

n

nn

qq ε

σεσ

CHAPMAN 
ENSKOG

Hydrodynamics

( )∑
∞

=

=
0n

n
CE

n ff ε

Exact 
Hydrodynamics 
from B.E. =??

Exact Hydrodynamics from 
Grad method =

hyperbolic+dissipative?? hyperbolic+dissipative

( ) ( ) vdfJvdf
n

n
CE

n
ii

n

n
CE

n
it

3

0

3

0
⎟
⎠

⎞
⎜
⎝

⎛
=∂ ∑∫∫ ∑

∞

=

∞

=

εψεψ
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QuestionQuestion: : is it possible to infer anything about the possible hyperbolicity of 
exact hydrodynamics derived from B.E., once we know that exact 
hydrodynamics derived from Grad approximation is hyperbolic?

More generally: is it possible to derive properties for hydrodynamics deriving
from    (living upon the unbounded manifold associated to B.E.), once we know 
about hydrodynamics deriving from the projection of    over a locally-finite
dimensional (sub)manifold?

f
f
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• A sketch of the solution:

We seek for normal solutions (Hilbert, 1911), that is, solutions to the Boltzmann 
equation which depend on space and time only through five hydrodynamic fields:

( ) ( ) ( )( )trTtrutrnvff ,,,,,,=
then we linearize around the global equilibrium solution (      ), 

to obtain - after proper rescaling to adimensional variables:
00 ;0; TTu === ρρ

[ ] ( ) ( ) ( )[ ]kkk
GMGM TCCuBBnAAfff δδδϕ ++++++=+= 00011

( )fLfikcf jjt =+∂FT of the linearized Boltzmann equation 
reads as:

where we denote:                                   BGK collision operator( ) ( )GMfffL −−=
τ
1

2

32
30
1 c

t

GM e
v

nf −=
π

global Maxwellian

02 Tkv Bt = thermal velocity

τ relaxation time
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This leads to equations of hydrodynamics in their general form:

( ) [ ]
[ ]kikikikkt

kjikjikjikkkt

kkt

TcCcucBcncAcikuikT

TcCcucBcncAcikTniku
uikn

><+><+><⋅−⋅−=∂

><+><+><⋅−+−=∂
⋅−=∂

222

3
2

3
2 δδδ

δδδ

( ) ( )∫>=< dccfc GMξξwhere:

( ) ( ) ( ) 01 =−=∆ ϕϕ JPInvariance Equations:

( ) ( ) ϕϕϕϕ −⋅−==∂ cikJMICRO
t

( ) ( ) kt
k

kt
k

kt
k

MACRO
t T

T
u

u
n

n
PJ ∂

∂
∂

+∂
∂
∂

+∂
∂
∂

==∂
ϕϕϕϕϕ
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we end up with a set of integral (nonlinear) equations:

( ) ( )
( )

( ) ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠
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⎜
⎜
⎜

⎝

⎛

+
+
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++><−><+−
><+−++><−−
><−><+−+

0
0
0

110
11

11

0

0

0

2

2

2

CC
BB
AA

cikcCcikcCcik
cBcikcikcBcikik

cAcikcAcikcik

jjjjjij

jjjjjijj

jjjijjj

δ
δ
δ

δδ
δδ
δδ

solutions to this system provides the expressions 
for the non-hydrodynamic variables:

kikikiki

kjikjikjikij

TcCcucBcncAcq

TcCcucBcncAc

><+><+>=<

><+><+>=<
222

,

,

δδδ

δδδσ

ObservationObservation: no critical point occurs along the spectrum of the hydrodynamic modes
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8. What’s next?

• The ideaThe idea: the occurrence of a critical point in the hydrodynamic modes is not a 
general feature of linear hydrodynamics, rather it is just a consequence of its 

derivation via a projection of the distribution function over some submanifold (like 
with 13M Grad).

( )[ ]xvAf i , ( ) ( )( ) ( )xAvHxvA n
i

n
i

)(~, ⋅= ∑
Projection

Invariance
Equations

( )xvAi , ( )xA n
i

)(~

Invariance
Equations

Projection

[ ] ??0, =ΠIE• Do the two operations commute?


