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eory and methods of reduced description
e meaning of stability: “H-theorem”
» The concept of hyperbolicity for O.D.E.’s

» Relation between hyperbolicity and stability (by Bobylev)
for Burnett equations
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» The goal: exact hydrodynamics from Boltzmann.
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nd methods of Reduced Description:

 Chapman Enskog
method
e [nvarian

 Grad method

ilib. approx. principle

Moment

E————

e Chapman Enskog
method

* Invariance principle

» Coarse graining

system
M, (xt)




 Phase space representation

Phase space E consists of distribution functions f (X, V, t):
fdxdv = particles in the volume element dXdV around (X, V) at time t

with: xeQ’ c R’ veQl R’

Good definition of f (X, V,t): f (X,V, t) e F are nonnegative functions and
the following integrals are finiteVx € Q2 :

o i) _[vlilvi;v;f* f (v, x,t)d%

) , >0,1,>0,1,>0 ; (existence of the moments)

: f (x,v)mdv = p(x,t)

Ry
Lower order moments correspond to  *
the hydrodynamic fields: f (X, V)m\/dv - pu(x,t)

: f(x,v)m (v=u) dv = e(x,t)

2
+ HL ()= [ Flv.xt)in f (v, x,t)-1d% H(f)= [ H,(f)d*x:

R3 .
(existence of the entropy)



e Boltzmann Equation:

==3(F) a(1)=~vZ-+Q(1, 1)

Properties:
» Additive invariants of the collision operator:

jQ(f, f){l,v,vz}dv:o

« Detailed balance (Q(f, f): 0):
f(v',xt)f (W, xt)=f(v,xt)f(w,x,t)

3
27T\ 72 —m(v—u) 3
with f givenby: f = fﬁca. ) =%(—m8 j eXp( 2(K = ) J 6= 2§ KT
axwellian B

e Local H-theorem :

dH

ijfff I f(x,v,t)d°v <0
., dH,
i




f (X, vV, t) solution of B.E. evolves, according to the vector field J (f ) ,

over a “ oo-dimensional manifold” .

Notion of Local Manifold: given a finite-dimensional linear space of
parameters A, a bounded domain B in A, and a family of functions

f a,V,T) smoothly parameterized by a & B we consider all bounded
and sufficiently smooth functions a 0): QX — B and we define the locally
finite-dimensional manifold as the set of functions

f(a(x),v,t)

A simple example give the local equilibria: a is the 5D vector of density,
momentum density and temperature, f are Maxwellians.

Problem of reduced description for dissipative systems

| |

Finding stable invariant manifolds in the space of distribution functions.

Locally finite-dimensional manifolds are the natural sources of approximations
for the construction of invariant manifolds in the B.E. theory.



lant Manifold generalizes other historically previous methods
Iption in dissipative systems:

method of normal solutions
Chapman Enskog method

» Grad method.

Whatever the method, the technique is to seek for trial solutions of the B.E.
through projections upon proper locally-finite dimensional submanifolds.
Still, usually, such manifolds are NOT invariant (Af # O).




Example: the locally five-dimensional manifold of local Maxwellians {fLM (n, U,T)}

f _u is the unique solution of the variational problem:
H(f):jfln fd% > min  for: Mo(f)=[flxv)d®v=n
M., (f )=_[ f(x,vvd’v=nu,i=123

M, (f ):J f(x,vv2d® = 3an;BT +nu’

Hence, the LM manifold is the quasiequilibrium manifold.

Is it also an invariant manifold for the Boltzmann Equation?

Defect of invariance: A, = (1 P )J (F(Y))

. 81‘ (n,u,T)
Thermodynamic projector: f (nu.T) Z L jws.]d '

A(fw)=fLM{[m(V‘“)Z—f’](vi_ joinT m( _;aB(v_u)Zj@“f}

2k,T 2




« Chapman Enskog method: a sketch

Solutions to the B.E. are found from a singularly perturbed B.E.,

th:EQ(f,f)
&

where ¢ is a small parameter, and: D, f = g f+ V,g f
ot OX
f is written as an expansion: f.z = ZE” fc(lr:_')
n=0
The procedure of evaluation of the functions is:

Q(fég)’ fég)): 0 ” fc(l(—:)) = fim
o0 0
i =-Q(f2, t0)+ — el (V’ &j fid
The operator 6(%t is defined as:
5

mv? %,
9y puet=—[dmmy. ™ [y 9 043  EULER EQUATIONS
ot {,0 P } I{ 5 }( GX) CE

o0




Further, 5(%t acts upon f\% according to the chain rule:
00 o o000 a0V

= + +
B o o) e A

According to the theory of linear integral equations, the function f |s unique,
once the following “solubility condition” is provided:

j{l,v,vz}félE)d V=0

The first correction adds the terms:

(1) 2
¢ ~_{p, pu,e}= I{m,mv,m_v}(v 0 jf )Jd%v DISSIPATIVE HYDRODYNAMICS
ot 2 OX (expressions for the stress tensor

and the heat flux)

The sequence provides higher order corrections, corresponding to different
hydrodynamic models:

fc(g) —> Euler equations
fég) + dég —> Navier Stokes — Fourier equations
fc(g) + gfélg + g2 féé) —5 Burnett equations

10



e Grad method: a sketch

Assumption behind: decomposition of motions:

* during fast evolution (time 7 ), a set of distinguished moments M’ don’'t change
significantly in comparison to the rest of moments M” (fast dynamics)

» towards the end of the fast evolution, the values of M” become determined
by the values of M’.

« on the time of order & >> 7 dynamics of the distribution function is determined by
the dynamics of M’ (slow evolution period).

f (M V)= 1, (p,u,e,v){lqtia(a)(l\/l -)H(a)(v_u)}

(@)

Upon inserting fG into the B.E. and finding the moments of the resulting
expression, we get the Grad’'s moment equations.

11



2. The meaninqg of stability : H-theorem

e If the gas is in an uniform state (f space independent), the H-function reads as:
H(f)=] f(v)in f(v)d°v
dH

then: E = 0. Thus, B.E. describes relaxation to the unique Global Maxwellian
(whose parameters are fixed by initial conditions).

« Entropy density S =—-k;H (f )+ const. grows monotonically (Lyapunov
functional) along the solutions (relation defining entropy also for beyond
equilibrium states).

* H- theorem an Gra system: f
1+ @) then expanding H-function in the neighborhood of

AH(x,t)zAH[fLM,gp]: HO + [ fu |nfLM¢(v)d3v+3j f, 02 (Vv

for 13 Moment Grad approximation: AH = H O HF ngFI)kB'O

12



3. The concept of hyperbolicity for O.D.E.’s

Let E be a unitary space with (complex) scalar product(-, )
We consider the Cauchy problem for a vector U (t) ceE,t1>0

o.u=I1Bu+—Au
: e > 0 (3.1)

u|t:0 =Uy

under the following assumption about the operators A, B :

* both A and B are real and symmetric, i.e.:
A=A B=B,(u,Au,)=(Au,u,),(u,Bu,)=(Bu,u,)
« Ais negative semi-definite, i.e.:

(u,Au)<0,vueE

« the equation Au = 0 has precisely 1< m < dim E linearly independent
solutions U=¢€_,a =1,...,m, then:

N (A) = KerA— Span(e,,...,e,)

It follows: 2dt || I”==(Au,u) , Jul* = (u,u) (3.2)

We assume: dImE<oo > E=N(A)@R(A)

13



4 Relation between hyperbolicity and stability (by Bobylev)
for Burnett equations derived from B.E.:

Linearization of B.E. near the global Maxwellian: f =T (1+ 9)
1
0,g+v-0,0g=—Lg
g

Fourier transform; 9 (K,V,t)= j g (X,V,t)e_ik'XdBX
€R3
and obtain: 0, +ik-v{ = 1 Lg (cfr. with (3.1)).
&

Then, application of C.E. method, leads to the general equation of hydrodynamics:

ox=[iB(s)+&A(e)x >0, xeN(A) (41
()| =[x (0)|| for Euler

A, B symmetric for Euler and N-S level

x (V)] < [x ()] for N-s

B not symmetric for Burnett level ——> (3.2) does NOT hold!

Loss of symmetry of operator B is the reason of the instability of Burnett equations

14



ylev instability (1982) :

n equation, f (co-dimensional manifold)

CEHNASF:<I\2)A£3N f sf 41402502

v

Hydrodynamics: 3, i (f,,, + 2 +£* 12 +.. 4 = [y foy + £ 2+ 12 +..

Violation of the H-theorem at the Burnett level, was found by Bo
Maxwell molecules and then also studied by Uribe et al. for
molecules.



- Bobylev regularization: HBEs (2006) :

General equation of hydrodynamics:

0.x =[iB(g)+ sA(e)]x = [i(B0 +&°B, + )+ g(AO +&° A+ )]X

change of coordinates: z =Tx = (1+ ng)x x=T'z= [1—52R + 0(54)]2
0,2 =T[iB(¢)+ &A(e)[T *z = {i|B, + £%(B, + RB, — B,R)|+ A, [z + O(¢°)
« A, already symmetric and negative semi-defined.

. B= B, + RB, — B,R real and symmetric

Hyperbolicity achieved through a “regularization” operator R (real and symmetric)

|

H-Theorem restored

16



- The Idea of the work :

Boltzmann equation, f

GRAD
METHOD T = fin@+9)

Moment system:

CHAPMAN .yl i
ENSKOG atj.vl Vvs fy L+ @)d v = le veved[f,, L+e)d®
CHAPMAN G—)EG(O)é‘ZG(l)-I—...
ENSKOG g — gq®2q® +...
Hydrodynamics

Burnett hydrodynamics, as derived from Grad system, displays the same
instability seen through derivation from B.E. (consistency):

+anqk3p 43y = 2
2 _(1) 5P q:m(0)+52q(1)
Questions: does the hyperbolic regularization apply on the 13 Moment Grad

U:€G(O)+€ o
system and restore the H-Theorem at the Burnett level? Does it work also to
higher order levels?

O3 O
2

d,AH =dtj£H<°>+n

17



5. Exact Hydrodynamics from 13M Grad System :

1D13 Moment (linear) Grad system attains the following form (1D case):

0,p=—0U
ou=-0,p—-0,1 -0,0
2 2
0,1 = —gaxu —gaxq (5.1)
0,0 = —ﬂﬁx —ééxq —0o
3
0,9 = —gaXT —axa—gq

Turning into the Fourier space, we seek for solutions of the form & = &, eXp(a)’[ + ikX)

where ¢ is a generic function and K is a real valued wavenumber proportional to the
Knudsen numberg.

Application of the Chapman-Enskog method to the reduction of the system (1)
results in the following series expansion of the nonhydrodynamic variables:

o =Y. o =D
n=0 n=0

18



It can be proven that functions o, and Uy have the following structure, for alln=0,1,...

o =a (-k?Jiku,
0&2””) =b, (— k? )n+1 O +C, (— k? )n+1Tk
" = x (- k?)'ikp, +y, (- k2 JikT,
qk2n+1 i n(_ kz)”+1uk

Hence we can expresso, and J, as:

=ikAu, —k’Bp, —k*CT, (5.2)
g, =ikXp, +ikYT, —k*Zu,
where: Ak)=Y a,(-k2) . B(K)= b, (-k2) ... (5.3)
n=0 n=0

Substituting these expressions into the Fourier-transformed balance
equations (5.1), we obtain the closed (reduced) system of hydrodynamic
equations which is conveniently written in a vector form:

0, X = MX (5.4)

19



0 IK 0

with: X=10,U,T}, M =|ikl-k’B) -k’A  ikll—k’C)| (5.5

“Zex Likf-kiz) -2k
3 3 3

Finally we find the dispersion relation for the hydrodynamic modes a)(k) by
solving the characteristic equation:

det{M —al |=0 (5.6)

Chapman Enskog approximates the functions (5.3) with polynomials whose
coefficients can be explicitly determined through a nonlinear recurrence
procedure.

At the Burnett level:

4

P :—ﬂikuk+ﬂk2pk—gk2Tk [ o

Felm ]
aC *

15 7

qk = — Z I ka + Z k Zuk ‘ B v Naler-2ioies

-B m— et

K 20



The standard CE polynomial approximations lead to unstable hydrodynamic
equations.

Dealing with a linear kinetic model it is still possible to search for exact
hydrodynamic solutions, i.e., constitutive relations for the stress tensor and the heat
flux, achieved by performing exact summation of the functions in (5.3).

exact summation Dynamic
of Chapman <:> Invariance
Enskog

principle

Dynamic Invariance Principle (DIP):

A z—%ikuk —%iqu(X,Y,Z,k)—ak(A, B,C.k) omg, =% g 5 1+ 9% gy Pupq

0P, ou, I
micro 5 : 2
) qk:—Elka—|ko-k(A,B,C,k)—qu(X,Y,Z,k) 8["""”°qk=%8tqk+%atuk+%5ﬁk
k k k

The DIP states that the two time derivatives coincide, since the set {ak : qk} has
to solve both the full Grad system and the reduced system.

21



of equations, here referred as invariance equations (IE),
ions A B,...,Z
82 20 2

4 1, 40 4 _
-3 — Ak (A B- E+T]|+§.!: O =0,
S X+ B A+FAB L 2ROX = 0,

13—5}’+L’-' - A+EAC’+§EGF =0, (5.7)

2o 2y iy
A+33+k EA-I-3F+31: Yi=n,
kB - %I — K74 KZB - g}’l’ =0,
2 2Y V(0 - D)+ KO - SR = o
2 3 3 '

The dispersion relation was found by simultaneously solving numerically the IE

(5.17) and the characteristic equation (5.6).

The resulting hydrodynamic spectrum consists of two modes:
*Wye (k) acoustic mode, represented by two complex-conjugate

() jice (k)real-valued diffusive heat mode.




! el Among the many sets of solutions
T e to the system (5.7), the relevant ones
: B cooplerpir ] are continuous functions with the
. - =0 asymptotics: |im N 0
= k—0
&F -4 b win Eqs (12,1614
sl o et o Remarkably, we find that the solution
with this asymptotics is unique, and
ol e 7 represented by a pair of complex
| o conjugated sets {S,S*}.
B 0.l 2 0.2 04 05 11 0z (&
k
Notice that:

e exact hydrodynamics is stable (i.e.: H-theorem exists).
Hence the failure of the CE method does NOT lie in the method itself, but
In the truncation to lower order levels.

- a critical point occurs, for kK =Kk,
For k > kC, the CE method does not recognize any longer the resulting
diffusive branch as an extension of a hydrodynamic branch.

23



S,S*}, real valued fork <K_, continues upon a complex

3EF

25}

| A=) |

1 1 1
0 D2 04 06 i 1
k

The first important message: there is no closed set of hydrodynamic equations
after kc, even though the acoustic mode extends smoothly beyond kc

Is exact (stable) hydrodynamics also hyperbolic?
o.x =[R(M)-i3(M )]

n

R(M)= 3" (-1 RV = RO - £°RE + Ofe*
=0

3(M)= 3 (1) RO = 10021 ®

=0

n



We find that the operatorsz(M )and 3(M ) involve the following real-valued

operators:

| (n) _ K 2n+1

R(n) _ k2n+2 0

_yn

Equations of hydrodynamics (5.8) are hyperbolic and stable provided that

we can find a transformation of hydrodynamic fields, such that:

' iR(M ) and S(I\/I ) are both real and symmetric

« R(M") has negative semidefinite eigenvalues.

Therefore, we seek a transformation {2 such thatM "= QMQ_lIS symmetric

and‘R(M )

IS semi-negative.

1 0 1
Qpp QpT
0 Q 0

(5.9)
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R
73X +2Y|z
Q,, =/ X[[3B-2z[[c][-2c]+2v[[B][[z]]
___3c]ix
o BX +2v[[Z]

O =y3[Clv[B]-lclix)

| IS

with the symbolic notation:

[e-1- (ke

With € provided by (5.9), we have that the resulting hydrodynamics is hyperbolic.
We, next, calculate the eigenvalues of %(M ') (containing transport coefficients):

2
A, =01, =k%cA, A, = gkzgY (5.10)
Hence, the T-transformed hydrodynamics reads as:
0.2=QMQ'z=M"'zZ

where: (M ')T =M

{Tr(l\/l <0

Det (M ')> 0

HYPERBOLICITY

— » DISSIPATIVITY

i

R
U . A

T e

——a| |

m =

R |




ative hydrodynamics from 3D13M Grad
system

0o =—1K- U,
ou, =—ik(p, +T,)-ik-o,

2.
O Ty =_§|k'(uk "‘Qk)
= 4 —
0,0, =—2iKu, —glqu -0,
5. ] 2
5tqk :—Elka —|k'O-k —qu

We decompose vectors and tensors into longitudinal and transversal parts:

LS
K|

— 1P 1. AP 1L il p
U =uce +U.;q, =06 +0,;0, =0, €E€ +20

€

to obtain two closed sets of equations which can be solv



Bo, —k°CT, o = ikDeu
+IKYT, —k°Zu/} qp =-k°Uu,

3D exact hydrodynamics: 8t Xk =M K Xk

with Xy :(pk’ukp’Tk’ukl) M,




Due to the block diagonal structure of M « and to the fact that the hyperbolic
feature of M kp was already analyzed in 1D13M, a transformation exists and it
IS unique also in the 3D case:

Q0
0 Q!

whereQi Is found to be manifestly simple: Qi = |

Q =

Further, due to the é)ccurrence of negative eigenvalues,
(4=0,1,=K°A A, = §k2Y,,14,5 = k?D ) an H-Theorem holds:

Defining an “H functional”:  H (t) :%j[p'z(r,t)+u'2(r,t)+T'2(r,t)]dBr

“d3 <0

Xk,s

S
and turning onto the Fourier space, this leads to: 6,H (t) = Zjﬁs
s=1

Thus, the H-theorem is proved for linearized exact hydrodynamics from 3D13M
(for k <k)

29



6. The message of hyperbolicity

» Bobylev, dealing with Burnett hydrodynamics from B.E., pointed out the
connection between hyperbolicity and stability.
We found out that the same hyperbolic regularization works for Burnett
hydrodynamics as derived from Grad system.

» Beyond Burnett level (up to an arbitrary order N, also in limit 1 —>o0 | of
“exact hydrodynamics”), we need to take into account also dissipative
properties of the “ (2- transformed” hydrodynamics. Namely:

h){pe-rbol-lc-lty sufficient condition stability
dissipativity (existence of H-theorem)

» Exact (stable) hydrodynamics, from 13M Grad system, is hyperbolic.

» We found the occurrence of a critical point on the wavelength domain:
there is no closed exact hydrodynamic description beyond kc

30



ct hydrodynamics from Boltzmann eq.

ann equation, f

GRAD  f 5, (1+¢)

METHOD

CHAPMAN
ENSKOG Moment system:

4 0, Jvpvyvs fu, (Lt o)d®y = [vivivs 3y, (L+o)ld v
= i
CE
n=0

0

L n _(n-1)
CHAPMAN @ = leg o
Hydrodynamics ENSKOG
v
Exact Exact Hydrodynamics from
Hydrodynamics Grad method =

from B.E. =?? hyperbolic+dissipative

atJWiign fég)dBVzJWiJ(iign fc(lrz]))dsv
n=0 n=0




Question: is it possible to infer anything about the possible hyperbolicity of
exact hydrodynamics derived from B.E., once we know that exact
hydrodynamics derived from Grad approximation is hyperbolic?

More generally: is it possible to derive properties for hydrodynamics deriving
from f (living upon the unbounded manifold associated to B.E.), once we know
about hydrodynamics deriving from the projection of T over a locally-finite
dimensional (sub)manifold?
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e A sketch of the solution:

\We seek for normal solutions (Hilbert, 1911), that is, solutions to the Boltzmann
equation which depend on space and time only through five hydrodynamic fields:

f = f(v,n(r,t)u(r,t),T(r,t))

then we linearize around the global equilibrium solution (o0 = p,;u =0;T =T,),
to obtain - after proper rescaling to adimensional variables:

f= 9= F ML+ + A +{87 + Bl +(C7 + TP

FT of the linearized Boltzmann equation 8t f + Cjikj f = L(f )

reads as:
where we denote: L(f )=—£(f — %) BGK collision operator
T
fM —n,—~—e*  global Maxwellian
2V
v, = /szTO thermal velocity

r relaxation time 7



guations of hydrodynamics in their general form:

—ik -u,
U, =—ik(nk +Tk)—ik-[< 5Acicj > nk+<éBcicj >uk+<5(3c:icj >Tk]

=—g'k-uk —Eik-[< SAc’c, > n + < dBc’c, > U, + < &cc, >Tk]
3 S|

where: < &(c)>= j f M £(c)dc

nvariance Equations: (@)= A=P)I(@)=0




(L+ikc,)
ik,
a

we end up with a set of integral (nonlinear) equations:

—ikj(l+<56\qcj >)
—1k; <dBcc, >+kc; +1
—ik (1+ < L, >)

—ik, <dAc’c; >
—ikj(1+<6BCZCj >)
—ik; <&Zczcj >+ikic, +1

solutions to this system provides the expressions
for the non-hydrodynamic variables:

A + A
B’ +B
C’'+&C

O =<OAC,C; >N, +<BC,C; >U, +<C,C; >T,

g, =< 0Ac’c; > n + < Bc’c; > u, + < &c’c; > T,

Observation: no critical point occurs along the spectrum of the hydrodynamic modes
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8. What's next?

: the occurrence of a critical point in the hydrodynamic modes is not a
ral feature of linear hydrodynamics, rather it is just a consequence of its
lvation via a projection of the distribution function over some submanifold (like
with 13M Grad).

Projection

f[A (v, x)] ~ A(v.x)= 2 H" () AT(x)

Invariance Invariance
Equations Equations

v

A(v,x)

Projection

« Do the two operations commute? [IE, H] =077



