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Concerned with large-scale non-linear circuits.

Their behaviour is described by:

statestheare)(tx

circuitthetoinputstheare)(tb



Concerned with envelope modulated signals
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Such systems are suitable for MULTI-TIME SCALE analysis

We set 
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p is the number of different time scales
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We rewrite the governing equation in multi-time scale format



We can solve the multi-time scale partial differential equation using:

• Complete time-domain methods

• Mixed time-domain frequency-domain methods

• Mixed time-domain wavelet methods



We will consider wavelet approach

Why? –
•Suitable for highly nonlinear circuits
•Enables us to move from one level of accuracy to 

another in an incremental manner

To simplify matters, consider two time scales.
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x(t) is evaluated along the diagonal of the 
21,tt plane
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x(t) is represented by:
•a series of wavelets in one time scale 
•coefficients which vary in the other time scale

If written for all collocation points in t2
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E is a constant square matrix.
Its columns comprise the values of the N wavelet functions, Ψk(t2),
at the N collocation points
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The governing equation now becomes:

This is an ODE – but it concerns ONE time scale –

-so can be solved numerically in an efficient manner



At this point we employ MODEL REDUCTION techniques
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We expand )( 1tx in a Taylor’s series 0

1t is the initial time

The coefficients ai may be computed recursively



A Krylov space is formed from ai
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q is the order of the reduced system
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We perform a QR decomposition of the Krylov space
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Then Q is employed to perform a congruent transformation:
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where

Reduced system is of size q<<N – where N is the original size
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For oscillators or systems subject to Frequency Modulated signals
we use the Warped Multi-time scale model
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It bends the path along which x(t) is evaluated to account for frequency variation



Again we apply wavelet analysis
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Warped Equation now becomes:
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We apply the same reduction procedure
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Reduced equation is of size q<<N
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Example:

Input signal:

Nonlinear circuit
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CONCLUSIONS

•Multi-timescale analysis suitable for nonlinear circuits
with modulated signals

•Multi-timescale model can be reduced using Krylov
space techniques



MORE RESEARCH WORK REQUIRED 
FOR NONLINEAR MODEL REDUCTION
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