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"To sleep: perchance to dream: ay, there's the rub..."

William Shakespearelo be, or not to be (from Hamlet 3/1)

Brain
Dynamical system

High dimensional

Reacts to stimulation

Memory is our imagination about past



1. Introduction. Framework

M. Hirsch, B. Baird, "Computing with dynamic attractors in neural netwaBisSystems34,173-195 (1995).

OWeview a computational medium as a set of structurally stable+opitut subsystems which can be
coupled in various ways into a | arger syste
behaviorof each subsystem is largely immune to small perturbations due to noise or parameter
changes. We assume that the dynamics of each subsystems is organized into attractor basins; th
attractors can be stationary, periodic or chaotic. As the overall system evolves in time, each subs
passes through a sequence of attractors, some function of which is presented to the observer as
Ooutputd of the system. These seqyyserncbhes of

Computingwith Trajectories (ITsuda

From the mathematical point of viegv,. orbits linking attractors are importantBut there is no reason
to stop at this point. The attractors asgrictly speakingnever reached and must be unstable in certair
directions, so it is equally justified spealof orbits that link, or connect, other orbits. What is the role
of attractors at all?A probable answers that a highdimensional system can only perform effective
computations if itbehaves likea lower dimensionabkystem Chaotic itinerancy achieves this by
permitting the orbitd¢o enterthe vicinity of attractors, thereby significantly reducing the dimensions.
Howevergeneralizinghe same idea, there is no reason why it should not be possible to obtain othe
kindsofo pi ec ewiignenlsownal systemsd which are bas
computations with trajectories distant from attractors.
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Informal description of such processes bjsud¥ GF G0N OG2NI NHA Yy &a¢ |



1. Introduction. Framework

/ Winner-less competitionin neuroscience \
(Rabinovich, 2006)

(b)

heteroclinic connections /

Figure 1. Schematic representation of a stable heteroclinic
channel. The SHC is built with trajectories that condense in the vicinity
of the saddle chain and their unstable separatrices (dashed lines)
connecting the surrounding saddles (circles). The thick line represents
an example of a trajectory in the SHC. The interval ty.,—ty is the
characteristic time that the system needs to move from the metastable
state k to the k+1.

M. Rabinoviclet al. 2008, PLOS Comp. Biology



1. Introduction. Problem

Phenomenon (postulates)

AA highdimensional dynamical system evolving on a compact set
ACNF 2SOG2NRSaEa R2 y20 asdaats 2y Fyeée a4
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AComputes something or makes decisions

Problems

~ A
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AMachinery of analysis for these objects ?
AConstructive approaches for modelling ?

AAnalysis of computational power of such machines ?



2. Concepts. Definitions

Let A be a subset of R", and V(A, <) be its e-neighborhood

1. Original system Yooa = f(t,x, u)

f-RxR'xR™— Rr -continuous

u e R™ is the vector of inputs

2. A C(%rean[)l?rane)g)yStem Ya i = f(tyru) +0(t), 0] <A

Without loss of generality we can assume that the state of the system
evolves on a compact (and that the systems are forw@mehplete)



2. Concepts. Definitions

Definition 1 (Delay time) Consider a solution x(t,xq9) of system Y passing through

T c V(A E) at '

1) The function T+ (2. V(A,<=))

T (2" ' V(Ae))=sup{t —t', t >t | z(r,2") e V(A,e) V T € [t 1]}
¢

is the delay time of x(t, xo) in forward time in V(A.c) at (', 1),
2) The function T~ (2',V(A, <))
T (2" ", V(A,e)) =sup{t' —t, t <t' | x(1,2") e V(A,e) V T € [t,1']}
t

is the delay time of x(t,xo) in backward time in V(A, =) at (', 1").

Y ~ : T+ (4 ~ L.

maximal ZHPT (@1, V(4.€)), i}}tffT (2., V(A,¢)) minimal

delay times sup T~ (2 ' V(A.2)). inf T~ (2. ' V(A 2)) delay times
't z't'




2. Concepts. Definitions

Definition 2 (Inducible Delay time) Let 2(t,20.0) be a solution of system Xa.
1) The function Ty (2',V(A, <)):

T V(A 2) = sup  sup{t—t, t >t | x(r,2",0) e V(A,e) ¥V 1 € [, 1]}
5, 16(t)lle=A

is the inducible delay time of x(t,xq) in forward time in V(A, =) at (2/,t).

2) The function Ty (2", V(A,z))

my

T ' V(A2)= sup sup{t' —t, t<t'|z(r,2".0) e V(A e) ¥V 1 eltt]}
5, 130 e<A t

is the inducible delay time of x(t,xq) in backward time in V(A, <) at (2'. 1)

m




2. Concepts. Definitions

Definition 3 (A-invariance) Let A € Rog € Rog be given.
1) A set A is A-positively invariant if

T2 V(A 0)) =00, Vo' e A
2) A set A is A-backward invariant if
Tyt V(A 0)) =00, V2’ € A

3) A set A is A-invariant if it is both A-positively and backward invariant




2. Concepts. Definitions

Definition 4 (Pulling sets) A set A is called pulling with respect to a set U iff for all
' e U there exists t > t':
r(t,x') e A

Definition 5 [Ghost attracting set] A A-positively invariant set A is called an (s, A)
ghost attracting (or simply ghost attracting) iff
1) there exists a set U of positive measure and = € R such that V(A, <) is pulling
with respect to U ;
2) V(A,¢2) is not positively invariant (admits T3-slow relazations);
3) for every x' € U there exists a function o, : R — R™, |[0,(1)]|.c < A such that
lim dist(x(t, 2", 0,), A) = 0.

t—oo

Set U is the basin of attraction of A.

An (£, A) ghost attracting set is an (s, A) ghost attractor iff the omega-limit set of
x(t, 2, o) coincides with A for all 2’ € U.



2. Concepts. Definitions

let {z;}2; be a converging sequence of non-negative real numbers: lim;_..s; = 0. A set

A which is (£;,0) ghost attracting for all =; is weakly attracting.

Let A be a (weakly) attracting set. We say that A is s-persisting if for some ¢ € R

and sufficiently small A € Ry the set V(A, =) is not a (=, A) ghost.

[

A simple prototype

Space of all memory S
sets linked together by M)
a dense trajectory

A

f,.nﬂ’i’ﬂcﬁmensional affractor

iy,
)

Memory/ computation threshiold /

Subthreshold
dynamics
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3. A minimal problem and first results

Problem: to be able to detect and describe mathematically creation of an attractor
f 20 GSR 2y I RSyaS (NI a2SOi



3. A minimal problem and first results

L¥ G4KS Y2RSf Aa | aeadasSy 27
motions in the highedimensional set z = f(z, A, 1) f:R"xRxR—R",
motions in the lowdimensional set A = g(z, A\, 1), g:RTxRxR—R

Higherdimensional,

Assumption 1 The function f(-,-,-) in (6) is locally Lipschitz in = and \ uniformly in
t, and there exists V : R* — R, V € C! such that

afllzl)) = V(z) < alllz]), a, aeKx

& je A1) < (Vi) + AV ()p(A).
a, 8 € C°[0, ), a(0) = 0,4(0) =0, ¢ K.

contracting

Lowdimensional,

Assumption 2 The function g(-,-,-) in (6) is locally Lipschitz in = and X\ uniformly in
t, and there exist 6,& € K such that the following inequality holds for all z € R"™, t € R:

exploring

—£([A]) = o([|lz[l) < g(z, A, t) <0V A= 0.



3. A minimal problem and first results

From:Gorban Tyukin Steur andNijmeijer(submitted)

Lemma 1 (Boundedness 1) Let system (6) be given and satisfy Assumptions 1, 2.
Suppose that there exist a function

U: e KncH0,o00)

and a positive constant a € Ry such that

ou(V)
1%
Then the domain

a(V) + BV)o (V)] +8 (a7 (V) + £ (V) <0, ¥ V € [0,a]

Qo ={(z,A) | z € R", A€ Rsp, ¢¥(a) = A =¢(V(x)), V(z) €10,d]}
is forward invariant with respect to (6), and furthermore

3N €[0,¢(a)] : tlim_ A(t) =N,
and

lim g(x(t), A(t).t) = 0.

t—o0



3. A minimal problem and first results

Figure 2: Illustration of the proof of Lemma 1.

dv/OV = 0 it is always pointing in the direction of A < (V).
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Panel a: boundary A = (V).
vector (Ov/dV,—1) is a normal vector to the curve A = ¢(V) at the point A. Because

Y

The

Panel b: boundary

A = const. Because A < 0 for all A > 0 the vector (dV,d\) is pointing in the direction of

A= P((V).
v:d_vf(xm) ‘;"v_i <0, ¥VVe [Ua])
A=y(V)
\ = glx, A1)
Cjﬁ; V(@) + BV (@) (1AD] + (] ]) + £(A)

A=4(V (2))



3. A minimal problem and first results

The same approach can be used to specify domains from with the trajectories
ySOSaal NAfeé Saol LISX

dV.
[ dy | 4K @' V,.d x) ’
AV d a v(N=h N B
( 4 @’ Vd N
dV,
- & A - & 2

a b




3. A minimal problem and first results

From:Tyukin Steur Nijmeijer and van_Leeuwer(SIAM Journal on Control and Optimization)
LT GKS Y2RSf A& bhe¢ | aeadsSy

Sa

contracting

Sw

wandering, searching

Contracting : S, : ||X(t)||A < ﬁ(”x(tD)HA t—to) + CH%(t)”oo,[tg,t]

osearchingg: i mu(r)dr <) = h(a(t) < | rua(r)dr

Yo(a - b) < yo1(a) - Yo,2(b)

mercornected as: [ a(Jx(r)lLJdr <h(a(t)) ~ a(t) < | allx(r) L)



3. A minimal problem and first results

Separable contracting dynamics

x4 < [1x(Eo)l 4 - Be(t = to) + ¢ - [|(2(7, 20))|oo, 10,

With Lipschitz nonlinearity in the searching part
170(8)| < Dy - |5

/t'}’1(|IX(’T)IIA)GPr Sh(Z(to))—h(Z(t))S/t o(l[%(7)]| 4)d.

Lemma2 (Nonuniform SmaltGain) Thereis a trappingregionif thefollowing holds

Df},:‘o'C‘g(l,

o209 r (- 2)

forsome d€(0,1), k € (1,00)

with

19



Standard approaches

1) domains of attractiorg neighborhoods
2) for autonomous systems implies stability

X to)|F o
[x @)= 1

x o=

Given: sequence of time instances ti
Prove: sequence of distances does not increase (.
converges)

Mathematical framework

wcontraction mapping theorems
wmethod of Lyapunov functions
wsmallgain theorems

1%

20



Standard approaches Possible unstable convergence 21

An asymptot|cally convergent trajectory that
1) domains of attractiorg neighborhoods R2Sa y20 NBFOK GKS G N

2) for autonomous systems implies stability

X o=

0
A Xt 1

’} KEF

Given: sequence of time instances ti
Prove: sequence of distanceS® does not increase (i.e. 1) lim,., . o,=0
converges)

Mathematical framework 2) ZT” = 0

wcontraction mapping theorems
wmethod of Lyapunov functions
wsmallgain theorems




Standard approaches

Proposed 22

1) domains of attractiorg neighborhoods
2) for autonomous systems implies stability

X o=

0
A Xt

’] KEF

Weak attracting sets, concept of Milnor attracting sets

1) domains of attractiorg sets of positive measure
2) possible to analyze unstable systems

X(to)e Qo

X(tl)E Q1

/_\X(ti)e |
Qi =

L

Given: sequence of time instances

Prove: sequence of partial sums t; diverges

Prove: sequence of distances
converges)

does not increase (.

P+ Given: sequence of distances i

Mathematical framework

wcontraction mapping theorems
wmethod of Lyapunov functions
wsmallgain theorems

Mathematical framework

w Nonuniform smalgain theorem




4. Model. Design principles

. There is a transitive losdimensional invariant set (maximal attractor)
. CKAA FOUONYOG2NI OFYy ONR1SY Ayid2z2 GKS| a

. Slight perturbation leads to that no other attractors emerge, but there are ghagst
attracting sets

Basins of attraction of these ghost attracting sets do not have common points| with
that of the resting state




Higherdimensional,

4. Model. Diagrams, Equations and Parameters

Bep - » .
B=-7,(Rp-q) o <
N =72 x+ y— X X+ V) 5 o
e d=-rla-dpw k)(Z o y-6)+o( iu—@)j], ¥=2x— y- ¥ X+ ¥)), % %
€ rrycRoe 00,00 WeR ke R, :yKZl—f(Q)§0(y—9i)j+5]5e R S g
S 2 i
S g(p.\y)=1+ wtanhk p); ¢ (2= €& cfa

Important Parameters of the model

~
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4. Model. Inputinduced memory diagrams

Ghost Attractor

Autonomous behavior Resting state Input -induced trajectories



4. Model. Inputinduced memory diagrams




4. Model
#=72(x+ y- X X+ V)
¥=2(x— y- X X+ Y)),

B#=-7,(p—-Qq)
Z=7K21‘ f(q)w(y—&)}é}, se R,

&=-r[q-dp W k){i eo( y-6)+o( iu—éa,)j],
7,,7,€R,y 0.,6,€[01], weR ke R,
g(p,w)=1+ wtanh(k p); ¢ (2= €

What predictions can we make ? (depending on the parameters)

Aexistence of memory
Aillusions
Alimitations of active (suprghreshold) memory
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4. Model. Properties (Bode system)

Observedehavior
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4. Model. Properties

I NB o HOOMWMBS ¢ | IFR2 Dy 2WSY2NE adl G
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Conjecture. The model is computationally universal, i.e. it reproduces programs which &
Turing machine with finite number of states can produce over a finite number of steps.

Idea of the proof;

Model A Asynchronous Hopfield Networlks Universal computations



5. Discussion

Extension totori (point-ghostsA orbit-ghostg leads to

oNeurolocatoe Krgukoy 2006) Oscillatory memoryRBrisyukand YKazanovich
1999, 2003, 2006, and Biological Cybernetics, 2009

Instantaneous Frequency (Hz)

.“"“‘--. — :.'..,;::‘ ; '~ e RN ;
// \\\ 56 S8 60 6 64 66 68 70 T2 74
Time (sec)
Fig. 2 Instantaneous frequency of the CO and POs as a function of
time. There are two groups of POs and the natural frequencies of POS

of one group are distributed in the interval [5, 10] and of another group
in the interval [20, 25]. The frequency of CO “jumps™ from the fre-

quency range of one group of POs to the range of another, temporally
synchronizing most oscillators in the “selected” group

Models of memory and attention



6. Conclusion

. Mathematical modelling of the brain is considered from the view point of
dyrjamical (and controlled) systems. Hggmensional, evolving on (to) a transitive
aSUX FYR GNBRdAzOAY3IE Ala O2YLX SEAGE A

. A novel concept of computation with ghost attractors has been presented. Our
formal definition of ghost attractors is constructive. The concept unifies earlier
frameworks (computing with attractors, Hirsh, or trajectoriésudg and offers a
resolution to the debate about which framework is better suited as a model of
brain computations

. A mathematical formalism is developed to study emergence of weak attractors in
a class of systems described as an interplay between contacting higher
dimensional an exploring lodimensional components

. We presented a simple model realizing these features. Surprisingly, the model ha
certain computational universality (as the Hopfield nets do) and is operationally
similar to more biologically plausible models sucmasrolocator



