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Outline

• Topographic clustering.
• Topographic Product of Experts, ToPoE
• Simulations
• Products and mixtures of experts.
• Harmonic Topographic Mapping, HaToM
• 2 Varieties of HaToM
• IKToM



The somatosensory
homunculus

• Larger area of cortex for more sensitive body parts.
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Topology Preservation and Data 
Visualisation

• Data space Feature Space

• Nearby      Nearby
• Distant Distant (**)
• Nearby Nearby (**)
• Distant Distant





Orientation selectivity



The Model

• K latent points in a latent space with some 
structure.

• Each mapped through M basis functions to 
feature space.

• Then mapped to data space to K points in 
data space using W matrix (M by D)

• Aim is to fit model to data to make data as 
likely as possible by adjusting W



Mental Model 

1      2       3      4      5    6  ……



Details

• t1, t2, t3, … ,tK (points in latent space)
• f1(), f2(), …, fM()   (basis functions creating 

feature space)
• Matrix Φ (K by M), where φkm = fm(tk), 

projections of latent points to feature 
space.

• Matrix W (M by D) so that ΦW maps latent 
points to data space. tk mk



Products of Gaussian Experts
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Products of Experts



Maximise the likelihood of the data 
under the model
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Using Responsibilities
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Comparison with GTM
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Growing ToPoEs





Advantages

• Growing : need only change Φ which goes 
from K by M to (K+1) by M.

• W is approximately correct and just 
refines its learning.

• Pruning uses the responsibility: if a latent 
point is never the most responsible point 
for any data point, remove it. 

• Keep all other points at their positions in 
latent space and keep training.
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Responsibilities with Tanh()
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A close up











Removing the Probabilistic 
Interpretation
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Harmonic Averages

• Walk d km at 5 km/h, then d km at 10 km/h
• Total time = d/5 +d/10
• Average Speed = 2d/(d/5+d/10)=

• Harmonic Average = 
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K-Harmonic Means beats K-Means 
and MoG using EM

• Perf = ∑
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Growing Harmony Topology 
Preservation

• Initialise K to 2. Init W randomly.
1. Init K latent points and M basis functions.
2. Calculate mk=φkW, k=1,…,K. 

1. Calculate dik, i=1,…,N, k=1,…,K
2. Re-calculate mk, k=1,…,K. (Harmonic alg.)
3. If more, go back to 1.

3. Re-calculate W=(ΦTΦ+γI)-1ΦTШ
4. K= K + 1. If more, go back to 1.



Disadvantages-Advantages ?

• Don’t have special rules for points for 
which no latent point takes responsibility.

• But must grow otherwise twists.
• Independent of initialisation ?
• Computational cost ?



Generalised K-Harmonic Means
for Automatic Boosting
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Two versions of HaToM

• D-HaToM (Data driven HaToM) :
– W and m change only when adding a new 

latent point
– Allows the data to influence more the 

clustering
• M-HaToM (Model driven HaToM) :

– W and m change in every iteration
– The data is continually constrained by the 

model



Simulations(1): 1D dataset
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Kernels for the responsibilities

Epanechnikov tri-cube function

7



Performance Functions

• K-means

• Weighted K-means

• Inverse weighted K-means
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Cancer Data Set 2 - ToPoE



Cancer Data set 2 - IKTOM



Cancer Data set 2 – ToPoE on 
Genes



Cancer Data set 1 – ToPoE
A, ER+(green),  A,ER- (red),  
B,ER+(blue),   B,ER- (black)



Cancer Data set 1 - genes



Conclusion

• New forms of topographic mapping.
• Based on latent space concept but

– free from probabilistic constraints.
• Product           Mixture of experts.

– automatic setting of local variances.
• Two types based on K-harmonic Means
• One based on inverse weighted K-means.
• Very sensitive to data, or not, as required.
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