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Current practice in materials developmentCurrent practice in materials development

• Design of materials and processes 
is largely empirical

• Macroscopic models are used in 
process design, but 
molecular/microscopic models are 
not

• Materials properties (advanced 
materials) require consideration of 
molecular structure
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Evolution of polymer networks

• A2+B3 hyperbranched polymers
• No solvent negligible cycle formation
• NMR measurements provide branching 

structure
– NMR data suggests unequal 

reactivity of free B3

• Addition of monofunctional A groups 
(A2:B3:A=1:1:1)
– Non-intuitive effect
– Not a robust operating point
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Polymer networks

What is the state of the polymer network?



4

Background

• Objectives
– Use complex simulations to control and engineer nanoscale material 

structure
– Understand and predict the uncertainty

• Technical approach
– Build reduced order (reduced computation) models based on discrete 

configurations using the full simulations
• Aggregation
• Discrete number of states

– Use spatial statistics to model the error
• Errors in a reduced order model are correlated

– Current state: multiple modeling approaches, error analysis is ad hoc 
or non-existent 
• Adaptive tabulation (Pope 1995)
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Plant model

Itoh 2000
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Key question

What is the mathematical structure of a molecular system?

Options
1. Probabilistic representation
• Master equation or Liouville equation
• State-affine control system
• Graph structure
2. Stochastic simulations of time-dependent behavior
• Molecular dynamics (many body Hamiltonian)
• Kinetic Monte Carlo (Poisson statistics)
• State is not meaningful as a dynamic state
3. Moment equations
• Not closed for many properties of interest
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Reduction Approach
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Characterizing the state space

Simulations with constant and varying Ga flux profiles

Run a set of 
simulations under 
different conditions  

Record surface 
snapshots

Quantify the 
microstructure of 

the surface snapshots

Performed 76 KMC simulations
Growth Temperature: 580 °C 
Incident As2 flux: 0.4 ML/s  
Incident Ga flux: 0.06-0.20 ML/s
Lattice size:  300x300

1521 surface 
snapshots are 

recorded

Use a step-step correlation (SSC) function.
Only interested in relative positions of the steps.
Each snapshot is described by a (300x16) SSC matrix.

Film coverage

0.05 ML 0.15 ML 0.20 ML
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Principal component analysis

Reducing the dimensions of the simulation data

n=2PCA retains most of the information:
• Find the principal components 
• Plot eigenvalues versus PCs 
• Pick the first ‘n’ PCs that can capture 

most of the variance

Data reconstruction showed that we need 5 PCs

[x1,x2…x4800]

[y1,y2…y5]

Characterize

Perform 
PCA 
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The self organizing map

An algorithm used for grouping similar surface snapshots

After SOM training:
• 1521 snapshots are 

grouped in 175 map 
nodes.

Before SOM training:
• Each surface snapshot is 

described by a 5-D data 
vector.

• Each map node is 
described by a 5-D 
prototype vector.

During SOM training:
• Prototype vectors 

are initialized 
randomly and 
modified during 
training.

• Each snapshot is 
mapped onto a 
particular node.

• Similar snapshots 
are mapped onto the 
same map node.
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Cell mapping

Transitions between different snapshot groups

• Performing system identification:
– Pick one snapshot from each 

map node.
– Run additional simulations

starting from selected 
snapshots under each 
different flux setting. 

– Identify and record the map 
node that the system reaches
in each case.

• Cell mapping provides a dynamic 
model:
– Relationship between the 

system state and the surface 
coverage under different flux 
profiles.

Cell-to-cell 
mapping

Flux setting 1

Flux setting 2
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Local (one-step) error associated with 
cell mapping 

Cell Mapping error:
||SSC1-SSC2|| / [( ||SSC1|| + ||SSC2|| ) / 2] 
SSC functions are constructed from prototype vectors.

SSC1

SSC2

Assumption: Structures in
the same node should show
identical dynamic behavior

under same input.

If the assumption
is correct for one step

If the assumption
is incorrect

Cell mapping error=0

If the assumption
is correct for

multiple steps
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Results of the CME (local error) analysis

• 52% of the mappings turned out to be identical
– With a 0.52 probability, the mapping error 

is ‘0’
• With a 0.9 probability:

– Mapping error < 0.75%
• Surface structures in the same groups show 

similar dynamic behavior.
• A larger SOM can decrease the CME.

– Larger SOM= Larger cell map
– Computational load for cell mapping 

would increase.

SSC1

SSC2

Compute the error for
each node under each

flux setting

Discretize the error
domain into bins

Compute the probability 
of having certain error values
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Testing the dynamic model

Run test simulations and evaluate model performance

Test KMC 
simulation with

random input profile

Estimate the trajectory
and compare with the 
real trajectory of the 

KMC simulation

Check if the prediction 
for the final film 

structure accurate

How can we quantify 
prediction error?

||SSCs-SSCp|| / ||SSCs|| 
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Global (multi-step) prediction error

• Cumulative distribution function (CDF) 
of the error 
– With a probability of 0.99, error

is less than 2.5 %.

• The mean value of error at different 
film coverage levels (ESSC<1.2%)
– Mean ESSC increases steadily at 

high film coverage (prediction
gets worse)

• Error at 0.2 ML is lower for simulations 
in the training data
– Dynamic model is more familiar 

with the film structures in the 
training data

• No need to run more test simulations
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Optimizing film structure

Minimizing the deposition time

• Used eight flux settings (0.06, 0.08 … 0.20 ML/s).
– 10 surface coverage intervals.
– 810 possible flux profiles.

• 48% reduction in the deposition time.
• Optimal profile is found without running 810 KMC 

simulations
– It would have taken 2.9 million years using an 

Intel Xeon processor (2.66 GHz speed).
– Took 5 minutes using the dynamic model

Find the 
most 

regular 
film 

structure
Find the optimal 

flux profile
to reach that 

structure
Simulation vs

prediction
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• Apply and generalize kriging
for static systems to the                                       
dynamic models 

– Discrete time models
– Kriging is a method, initially developed by geologists, which 

uses the sample points as a “true” reference points to infer the 
value of the unknown points.

Modeling of the Error

Error quantification and prediction via spatial statistics
• Develop procedures for spatial statistics

1. the sample points
2. the form of the spatial correlation function
3. a set of regression functions
4. the method for parameter identification
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A Simple Example

• Parameter Identification
– MLE is a good method for 

its simplicity, easy to 
program, fast response and 
accurate solution. 

• DACE
– A standard experimental 

design approach causes 
high error near the 
boundaries due to the local 
approximations performed 
in kriging.

• Regression function
– A constant (not necessarily 

the mean)
• Model of error correlation

– Gaussian
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Prediction of the Error Variance

• Use variance as an estimate for uncertainty in the model

• Observations

– No uncertainty at the sampled points

– Uniform sampling leads to high uncertainty near the boundaries

• Questions

– Where to sample?

– How to use the snapshots?

– How to resample?

– What regression functions

to use?
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Impact

• Empirical models based on large simulations are used in many 
applications
– Tabulation models in combustion and reacting flow
– Equation-free computing, tabulation, and Markov modeling in 

molecular simulations 
– Potential applications in multi-vehicle systems

• Methods must be developed to predict and control the uncertainty in the 
reduced models (variance v. bounds)
– Suggest when to resample
– Steer away from uncertain regions

• Spatial statistics provide a flexible method for modeling error across 
this spectrum of empirical models
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