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tThe 
on
ept of the limiting step is extended to the asymptotology of multis
ale rea
tion networks. Complete theoryfor linear networks with well separated rea
tion rate 
onstants is developed. We present algorithms for expli
itapproximations of eigenvalues and eigenve
tors of kineti
 matrix. A

ura
y of estimates is proven. Performan
e ofthe algorithms is demonstrated on simple examples. Appli
ation of algorithms to nonlinear systems is dis
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tionMost of mathemati
al models that really workare simpli�
ations of the basi
 theoreti
al modelsand use in the ba
kgrounds an assumption thatsome terms are big, and some other terms are smallenough to negle
t or almost negle
t them. The 
loser
onsideration shows that su
h a simple separationon \small" and \big" terms should be used withpre
autions, and spe
ial 
ulture was developed. Thename \asymptotology" for this dire
tion of s
ien
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was proposed by Kruskal (1963), but fundamentalresear
h in this dire
tion are mu
h older, and manyfundamental approa
hes were developed by I. New-ton (Newton polyhedron, and many other things).Following Kruskal (1963), asymptotology is \theart of des
ribing the behavior of a spe
i�ed solution(or family of solutions) of a system in a limiting 
ase.... The art of asymptotology lies partly in 
hoosingfruitful limiting 
ases to examine ... The s
ienti�
 el-ement in asymptotology resides in the nonarbitrari-ness of the asymptoti
 behavior and of its des
rip-tion, on
e the limiting 
ase has been de
ided upon."Asymptoti
 behavior of rational fun
tions of sev-eral positive variables ki > 0 gives us a toy-example.Let R(k1; : : : kn) = P (k1; : : : kn)=Q(k1; : : : kn)Preprint submitted to Elsevier



be su
h a fun
tion and P;Q be polynomials. To de-rive fruitful limiting 
ases we 
onsider logarithmi
straight lines ln ki = �i� and study asymptoti
al be-havior of R for � ! 1. In this asymptoti
s, for al-most every ve
tor (�i) (outside several hyperplanes)there exists su
h a dominant monomial R1(k) =AQi k�ii that R = R1 + o(R1). The fun
tion thatasso
iates a monomial with ve
tor (�i) is pie
ewise
onstant: it is 
onstant inside some polyhedral 
ones.Impli
it fun
tions given by equations whi
h de-pend on parameters provide plenty of more inter-esting examples, espe
ially in the 
ase when theimpli
it fun
tion theorem is not appli
able. Someanalyti
al examples are presented by Andrianov &Manevit
h (2002) and White (2006). Introdu
tionof algebrai
 ba
kgrounds and spe
ial software is pro-vided by Greuel & P�ster (2002).For a diÆ
ult problem, analysis of eigenvaluesand eigenve
tors of non-symmetri
 matri
es, Vishik& Ljusternik (1960) studied asymptoti
 behavior ofspe
tra and spe
tral proje
tors along the logarith-mi
 straight lines in the spa
e of matri
es. This anal-ysis was 
ontinued by Lidskii (1965).We study networks of linear rea
tions. For a linearsystem with rea
tion rate 
onstants ki all the dy-nami
al information is 
ontained in eigenvalues andeigenve
tors of the kineti
 matrix or, more pre
isely,in its transformation to the Jordan normal form. It is
omputationally expensive task to �nd this transfor-mation for a non-symmetri
 matrix whi
h is usuallysti� (Golub & Van Loan (1996)). Moreover, the an-swer 
ould be very sensitive to the errors in 
onstantski. Nevertheless, it appears that sti�ness 
an helpus to �nd a robust approximation, and in the limitwhen all 
onstants are very di�erent (well-separated
onstants) the asymptoti
al behavior of eigenvaluesand eigenve
tors follow simple expli
it expressions.Analysis of this asymptoti
s is our main goal.In our approa
h, we study asymptoti
 behaviorof eigenvalues and eigenve
tors of kineti
 matri
esalong logarithmi
 straight lines, ln ki = �i� in thespa
e of 
onstants. We signi�
antly use the graphrepresentation of 
hemi
al rea
tion networks anddemonstrate, that for almost every ve
tor (�i) thereexists a simple rea
tion network whi
h des
ribesthe dominant term of this asymptoti
. Followingthe asymptotology terminology (White (2006)), we
all this simple network the dominant system. Forthese dominant system there are expli
it formulasfor eigenvalues and eigenve
tors. The topology ofdominant systems is rather simple: they are a
y
li
networks without bran
hing. This allows us to 
on-

stru
t the expli
it asymptoti
s of eigenve
tors andeigenvalues. All algorithms are represented topolog-i
ally by transformation of the graph of rea
tion (la-beled by rea
tion rate 
onstants). The rea
tion rate
onstants for dominant systems may not 
oin
idewith 
onstant of original network. In general, theyare monomials of the original 
onstants.This result fully supports the observation byKruskal (1963): \And the answer quite generallyhas the form of a new system (well posed prob-lem) for the solution to satisfy, although this issometimes obs
ured be
ause the new system is soeasily solved that one is led dire
tly to the solutionwithout noti
ing the intermediate step."The dominant systems 
an be used for dire
t 
om-putation of steady states and relaxation dynami
s,espe
ially when kineti
 information is in
omplete,for design of experiments and mining of experimen-tal data, and 
ould serve as a robust �rst approxi-mation in perturbation theory or for pre
ondition-ing. They 
an be used to answer an important ques-tion: given a network model, whi
h are its 
riti
alparameters? Many of the parameters of the initialmodel are no longer present in the dominant sys-tem: these parameters are non-
riti
al. Parametersof dominant subsystems indi
ate putative targets to
hange the behavior of the large network.Most of rea
tion networks are nonlinear, it isnevertheless useful to have an eÆ
ient algorithm forsolving linear problems. First, nonlinear systemsoften in
lude linear subsystems, 
ontaining rea
-tions that are (pseudo)monomole
ular with respe
tto spe
ies internal to the subsystem (at most oneinternal spe
ies is rea
tant and at most one is prod-u
t). Se
ond, for binary rea
tions A + B ! :::, if
on
entrations of spe
ies A and B (
A; 
B) are wellseparated, say 
A � 
B then we 
an 
onsider thisrea
tion as B ! ::: with rate 
onstant proportionalto 
A whi
h is pra
ti
ally 
onstant, be
ause its rel-ative 
hanges are small in 
omparison to relative
hanges of 
B . We 
an assume that this 
onditionis satis�ed for all but a small fra
tion of genuinelynonlinear rea
tions (the set of nonlinear rea
tions
hanges in time but remains small). Under su
han assumption, nonlinear behavior 
an be approxi-mated as a sequen
e of su
h systems, followed oneea
h other in a sequen
e of \phase transitions". Inthese transitions, the order relation between some ofspe
ies 
on
entrations 
hanges. Some appli
ationsof this approa
h to systems biology are presented byRadules
u, Gorban, Zinovyev & Lilienbaum (2008).The idea of 
ontrollable linearization \by ex
ess" of2



some reagents is in the ba
kground of the eÆ
ientexperimental te
hnique of Temporal Analysis ofProdu
ts (TAP), whi
h allows to de
ipher detailedme
hanisms of 
atalyti
 rea
tions (Yablonsky, Olea,& Marin (2003)).In 
hemi
al kineti
s various fundamental ideasabout asymptoti
al analysis were developed(Klonowski (1983)): quasieqiulibrium asymptoti
(QE), quasi steady-state asymptoti
 (QSS), lump-ing, and the idea of limiting step.Most of the works on nonequilibrium thermody-nami
s deal with the QE approximations and 
orre
-tions to them, or with appli
ations of these approx-imations (with or without 
orre
tions). There aretwo basi
 formulation of the QE approximation: thethermodynami
 approa
h, based on entropy max-imum, or the kineti
 formulation, based on sele
-tion of fast reversible rea
tions. The very �rst use ofthe entropy maximization dates ba
k to the 
lassi
alwork of Gibbs (1902), but it was �rst 
laimed for aprin
iple of informational statisti
al thermodynam-i
s by Jaynes (1963). A very general dis
ussion ofthe maximum entropy prin
iple with appli
ations todissipative kineti
s is given in the review by Balian,Alhassid & Reinhardt (1986). Corre
tions of QE ap-proximationwith appli
ations to physi
al and 
hem-i
al kineti
s were developed by Gorban, Karlin, Ilg,& �Ottinger (2001); Gorban & Karlin (2005).QSS was proposed by Bodenstein (1913) and waselaborated into an important tool for analysis of
hemi
al rea
tionme
hanism and kineti
s (Semenov(1939); Christiansen (1953); Hel�eri
h (1989)). The
lassi
al QSS is based on the relative smallness of
on
entrations of some of \a
tive" reagents (radi-
als, substrate-enzyme 
omplexes or a
tive 
ompo-nents on the 
atalyst surfa
e) (Aris (1965); Segel &Slemrod (1989)).Lumping analysis aims to 
ombine reagents into\quasi
omponents" for dimension redu
tion (Wei &Kuo (1969); Kuo & Wei (1969); Li & Rabitz (1989);Toth, Li, Rabitz, & Tomlin (1997).The 
on
ept of limiting step gives the limit simpli-�
ation: the whole network behaves as a single step.This is the most popular approa
h for model simpli-�
ation in 
hemi
al kineti
s and in many areas be-yond kineti
s. In the form of a bottlene
k approa
hthis approximation is very popular from traÆ
 man-agement to 
omputer programming and 
ommuni-
ation networks. The proposed asymptoti
 analysis
an be 
onsidered as a wide extension of the 
lassi
alidea of limiting step (Gorban & Radules
u (2008)).The stru
ture of the paper is as follows. In Se
. 2

we introdu
e basi
 notions and notations. We 
on-sider thermodynami
 restri
tions on the rea
tionrate 
onstants and demonstrate how appear systemswith arbitrary 
onstants (as subsystems of more de-tailed models). For linear networks, the main theo-rems whi
h 
onne
t ergodi
 properties with topol-ogy of network, are reminded. Four basi
 ideas ofmodel redu
tion in 
hemi
al kineti
s are des
ribed:QE, QSS, lumping analysis and limiting steps.In Se
. 3, we introdu
e the dominant system for asimple irreversible 
atalyti
 
y
le with limiting step.This is just a 
hain of rea
tions whi
h appears afterdeletion the limiting step from the 
y
le. Even forsu
h simple examples several new observation arepresented:{ The relaxation time for a 
y
le with limiting stepis inverse se
ond rea
tion rate 
onstant;{ For 
hains of rea
tions with well separated rate
onstants left eigenve
tors have 
oordinates 
loseto 0 or 1, and right eigenve
tors have 
oordinates
lose to 0 or �1.For general rea
tion networks instead of linear
hains appear general a
y
li
 non-bran
hing net-works. For them we also provide expli
it formulasfor eigenve
tors and their 0, �1 asymptoti
s forwell-separated 
onstants (Se
. 4). In (Se
. 5) themain algorithm is presented. Se
. 6 is devoted to asimple demonstration of the algorithm appli
ation.In Se
. 7, we brie
y dis
uss further 
orre
tions todominant systems. The estimates of a

ura
y aregiven in Appendix.2. Main Asymptoti
 Ideas in Chemi
alKineti
s2.1. Chemi
al Rea
tion NetworksTo de�ne a 
hemi
al rea
tion network, we have tointrodu
e:{ a list of 
omponents (spe
ies);{ a list of elementary rea
tions;{ a kineti
 law of elementary rea
tions.The list of 
omponents is just a list of symbols (la-bels) A1; :::An. Ea
h elementary rea
tion is repre-sented by its stoi
hiometri
 equationXi �siAi !Xsi �siAi; (1)where s enumerates the elementary rea
tion, andthe non-negative integers �si, �si are the stoi
hio-metri
 
oeÆ
ients. A stoi
hiomentri
 ve
tor 
s with3




oordinates 
si = �si � �si is asso
iated with ea
helementary rea
tion.For analysis of 
losed 
hemi
al systems with de-tailed balan
e it is usual pra
ti
e to group rea
tionsin pairs, dire
t and inverse rea
tions together, butin more general settings this is not 
onvenient.A non-negative real extensive variable Ni � 0,amount ofAi, is asso
iatedwith ea
h 
omponentAi.It measures \the number of parti
les of that spe
ies"(in parti
les, or in moles). The 
on
entration of Aiis an intensive variable: 
i = Ni=V , where V is vol-ume. It is ne
essary to stress, that in many pra
-ti
ally important 
ases the extensive variable V isneither 
onstant, nor the same for all 
omponentsAi. For more details see, for example the book ofYablonskii, Bykov, Gorban, & Elokhin (1991). Forsimpli
ity, we will 
onsider systems with one 
on-stant volume and under 
onstant temperature, butit is ne
essary always keep in mind the possibilityto return to general equations. For that 
onditions,the kineti
 equations have the following formd
dt =Xs ws(
; T )
s + �; (2)where � is the ve
tor of external 
uxes normalizedto unit volume. It may be useful to represent exter-nal 
uxes as elementary rea
tions by introdu
tion ofnew 
omponent ? together with in
oming and out-going rea
tions ?! Ai and Ai ! ?.The most popular kineti
 law of elementary rea
-tions is the mass a
tion law for perfe
t systems:ws(
; T ) = ks(T )Y 
�sii ; (3)where \kineti
 
onstant" ks(T ) depends on temper-ature T . More general kineti
 law, whi
h 
an be usedfor most of non-ideal (non-perfe
t) systems isws(
; T ) = 's exp 1RT Xi �si�i! ; (4)whereR is the universal gas 
onstant, �i is the 
hem-i
al potential, �i = �F (N;T;V )�Ni = �G(N;T;P )�Ni , F is theHelmgoltz free energy, G is the Gibbs energy (freeenthalpy), P is pressure and 's > 0 is an intensivevariable, kineti
 fa
tor, whi
h 
an depend on any setof intensive variables, �rst of all, on T .Chemi
al thermodynami
s (Prigogine & Defay(1954)) provides tools of 
hoi
e for stability analy-sis of rea
tion networks (Pro
a

ia & Ross (1977))and 
hemi
al rea
tors (Aris (1965)). The laws ofthermodynami
s have been used for analyzing ofstru
tural stability of pro
ess systems by Hangos,

Bokor, & Szederk�enyi (2004). In general rea
tionnetwork 
oeÆ
ients ks (3) or 's (4) are not inde-pendent. In order to respe
t the se
ond law of ther-modynami
s, they should satisfy some equationsand inequalities. The most famous suÆ
ient 
ondi-tion gives the prin
iple of detailed balan
e. Let usgroup the elementary rea
tions in pairs, dire
t andinverse rea
tions, and mark the variables for dire
trea
tions by supers
ript +, and for inverse rea
-tions by �. Then the prin
iple of detailed balan
efor general kineti
s (4) reads:'+s = '�s (5)(Feinberg (1972)). For the isothermal mass a
tionlaw the prin
iple of detailed balan
e 
an be formu-lated as follows: there exists a stri
tly positive point
� of detailed balan
e, at this pointw+s (
�) = w�s (
�) (6)for all s. This is, essentially, the same prin
iple: if wesubstitute in the general rea
tion rate (4) the fra
-tion �i=RT by ln(
i=
�i ), then we will get the massa
tion law, and '+s = '�s . The prin
iple of detailedbalan
e is 
losely related to the mi
roreversibilityand Onsager relations.More general 
ondition was invented by Stue
k-elberg (1952) for the Boltzmann equation. He pro-du
ed them from the S-matrix unitarity (the quan-tum 
omplete probability formula). For the generallaw (4) without dire
t-inverse rea
tions grouping forany state the following identity holds:Xs 's exp 1RT Xi �si�i!�Xs 's exp 1RT Xi �si�i! : (7)Even more general 
ondition whi
h guarantees these
ond law and has 
learmi
ros
opi
 sense (the 
om-plete probability does not in
rease) was obtained byGorban (1984): for any stateXs 's exp 1RT Xi �si�i!�Xs 's exp 1RT Xi �si�i! : (8)To obtain formulas for the isothermal mass a
tionlaw, it is suÆ
ient just to apply the general law (4)with 
onstant 's to the perfe
t free energy F =RTPi 
i(ln 
i + �i0) with 
onstant �i0. More de-tailed analysis was presented, by Gorban (1984).4



In any 
ase, rea
tion 
onstants are dependent,and this dependen
e guarantees stability of equilib-rium and existen
e of global thermodynami
 Lya-punov fun
tions for 
losed systems (2) with � =0. Nevertheless, we often study equations for su
hsystems with os
illations, bifur
ations, 
haos, andother e�e
ts, whi
h are impossible in systems withglobal Lyapunov fun
tion. Usually this means thatwe study a subsystem of a large system, where someof 
on
entrations do not 
hange be
ause they arestabilized by external 
uxes or by a large externalreservoir. These 
onstant (or very slow) 
on
entra-tions are in
luded into new rea
tion 
onstants, andafter this rede�nition they 
an loose any thermody-nami
 property.2.2. Linear Networks and Ergodi
ityIn this Se
., we 
onsider a general network oflinear rea
tions. This network is represented as adire
ted graph (digraph) (Temkin, Zeigarnik, &Bon
hev (1996)): verti
es 
orrespond to 
ompo-nents Ai, edges 
orrespond to rea
tions Ai ! Ajwith kineti
 
onstants kji > 0. For ea
h vertex, Ai,a positive real variable 
i (
on
entration) is de�ned.A basis ve
tor ei 
orresponds to Ai with 
ompo-nents eij = Æij , where Æij is the Krone
ker delta.The kineti
 equation for the system isd
idt =Xj (kij
j � kji
i); (9)or in ve
tor form: _
 = K
. We don't assume any spe-
ial relation between 
onstants, and 
onsider themas independent quantities. The thermodynami
 re-stri
tions on 
onstants are not appli
able here be-
ause, in general, we study pseudomonomole
ularsystems whi
h are subsystems of larger nonlinearsystems and don't represent by themselves 
losedmonomole
ular systems.For any network of linear rea
tions the matrix ofkineti
 
oeÆ
ients K has the following properties:{ non-diagonal elements of K are non-negative;{ diagonal elements of K are non-positive;{ elements in ea
h 
olumn of K have zero sum.For any K with these properties there exists a net-work of linear rea
tions with kineti
 equation _
 =K
. This family of matri
es 
oin
ide with the familyof generators of �nite Markov 
hains, and this 
lassof kineti
 equations 
oin
ide with the 
lass of inverseKolmogorov's equations or master equations for the

�nite Markov 
hains in 
ontinuous time (Meyn &Tweedie (2009); Meyn (2007)).A linear 
onservation law is a linear fun
tion de-�ned on the 
on
entrations b(
) = Pi bi
i, whosevalue is preserved by the dynami
s (9). The 
onser-vation laws 
oeÆ
ient ve
tors bi are left eigenve
torsof the matrix K 
orresponding to the zero eigen-value. The set of all the 
onservation laws forms theleft kernel of the matrixK. Equation (9) always hasa linear 
onservation law: b0(
) = Pi 
i = 
onst.If there is no other independent linear 
onservationlaw, then the system is weakly ergodi
.A set E is positively invariant with respe
t to ki-neti
 equations (9), if any solution 
(t) that startsin E at time t0 (
(t0) 2 E) belongs to E for t > t0(
(t) 2 E if t > t0). It is straightforward to 
he
kthat the standard simplex � = f
 j 
i � 0; Pi 
i =1g is positively invariant set for kineti
 equation (9):just to 
he
k that if 
i = 0 for some i, and all 
j � 0then _
i � 0. This simple fa
t immediately impliesthe following properties of K:{ All eigenvalues � of K have non-positive realparts, Re� � 0, be
ause solutions 
annot leave �in positive time;{ If Re� = 0 then � = 0, be
ause interse
tion of� with any plane is a polygon, and a polygon
annot be invariant with respe
t to rotations tosuÆ
iently small angles;{ The Jordan 
ell of K that 
orresponds to zeroeigenvalue is diagonal { be
ause all solutionsshould be bounded in � for positive time.{ The shift in time operator exp(Kt) is a 
ontra
-tion in the l1 norm for t > 0.{ For weakly ergodi
 systems there exists su
h amonotoni
ally de
reasing fun
tion Æ(t) (t > 0, 0 <Æ(t) < 1, Æ(t)! 0 when t!1) that for any twosolutions of (9) 
(t); 
0(t) 2 �Xi j
i(t)� 
0i(t)j � Æ(t)Xi j
i(0)� 
0i(0)j : (10)The ergodi
ity 
oeÆ
ient Æ(t) was introdu
ed byDobrushin (1956) (see also a book by Seneta (1981)).It 
an be estimated using the stru
ture of the net-work graph (Gorban, Bykov & Yablonskii (1986);Meyn (2007)).Two verti
es are 
alled adja
ent if they share a
ommon edge. A path is a sequen
e of adja
ent ver-ti
es. A graph is 
onne
ted if any two of its verti
esare linked by a path. A maximal 
onne
ted sub-graph of graphG is 
alled a 
onne
ted 
omponent ofG. Every graph 
an be de
omposed into 
onne
ted
omponents.5



A dire
ted path is a sequen
e of adja
ent edgeswhere ea
h step goes in dire
tion of an edge. A ver-tex A is rea
hable from a vertex B, if there exists adire
ted path from B to A.A nonempty set V of graph verti
es forms a sink, ifthere are no dire
ted edges from Ai 2 V to anyAj =2V . For example, in the rea
tion graph A1  A2 !A3 the one-vertex sets fA1g and fA3g are sinks.A sink is minimal if it does not 
ontain a stri
tlysmaller sink. In the previous example, fA1g, fA3gare minimal sinks. Minimal sinks are also 
alled er-godi
 
omponents.A digraph is strongly 
onne
ted, if every vertex Ais rea
hable from any other vertex B. Ergodi
 
om-ponents are maximal strongly 
onne
ted subgraphsof the graph, but inverse is not true: there may ex-ist maximal strongly 
onne
ted subgraphs that haveoutgoing edges and, therefore, are not sinks.The weak ergodi
ity of the network follows fromits topologi
al properties.Theorem 1. The following properties are equiv-alent (and ea
h one of them 
an be used as an alter-native de�nition of weak ergodi
ity):(i) There exist the only independent linear 
on-servation law for kineti
 equations (9) (this isb0(
) =Pi 
i = 
onst).(ii) For any normalized initial state 
(0) (b0(
) =1) there exists a limit state
� = limt!1 exp(Kt) 
(0)that is the same for all normalized initial 
on-ditions: For all 
,limt!1 exp(Kt) 
 = b0(
)
�:(iii) For ea
h two verti
esAi; Aj (i 6= j) we 
an �ndsu
h a vertex Ak that is rea
hable both fromAi and fromAj . This means that the followingstru
ture exists:Ai ! : : :! Ak  : : : Aj :One of the paths 
an be degenerated: it maybe i = k or j = k.(iv) The network has only one minimal sink (oneergodi
 
omponent).�The proof of this theorem 
ould be extra
ted fromdetailed books about Markov 
hains and networks(Meyn (2007); Van Mieghem (2006)). In its presentform it was published by Gorban, Bykov & Yablon-skii (1986) with expli
it estimations of ergodi
ity
oeÆ
ients.For every monomole
ular kineti
 system, themaximal number of independent linear 
onserva-

tion laws (i.e. the geometri
 multipli
ity of the zeroeigenvalue of the matrixK) is equal to the maximalnumber of disjoint ergodi
 
omponents (minimalsinks).2.3. Quasi-equilibrium (QE) or Fast EquilibriumQuasi-equilibrium approximation uses the as-sumption that a group of rea
tions is mu
h fasterthan other and goes fast to its equilibrium. We usebelow supers
ripts `f ' and `s' to distinguish fast andslow rea
tions. A small parameter appears in thefollowing formd
dt = X�; slowws�(
; T )
s� + 1" X&; fastwf&(
; T )
f& ; (11)To separate variables, we have to study the spa
esof linear 
onservation law of the initial system (11)and of the fast subsystemd
dt = 1" X&; fastwf&(
; T )
f&If they 
oin
ide, then the fast subsystem just dom-inates, and there is no fast-slow separation forvariables (all variables are either fast, or 
onstant).But if there exist additional linearly independentlinear 
onservation laws for the fast system, thenlet us introdu
e new variables: linear fun
tionsb1(
); :::bn(
), where b1(
); :::bm(
) is the basis of thelinear 
onservation laws for the initial system, andb1(
); :::bm+l(
) is the basis of the linear 
onservationlaws for the fast subsystem. Then bm+l+1(
); :::bn(
)are fast variables, bm+1(
); :::bm+l(
) are slow vari-ables, and b1(
); :::bm(
) are 
onstant. The quasi-equilibrium manifold is given by the equationsP& wf&(
; T )
f& = 0 and for small " it serves as anapproximation to a slow manifold. In the old andstandard approa
h it is assumed that system (11) aswell as system of fast rea
tions satis�es the thermo-dynami
 restri
tions, and the quasi-equilibrium isjust a partial thermodynami
 equilibrium, and 
ouldbe de�ned by 
onditional extremum of thermody-nami
 fun
tions. This guarantees global stability offast subsystems and all the 
lassi
al singular per-turbation theory like Tikhonov theorem 
ould beapplied.Re
ently, Vora & Daoutidis (2001) took noti
ethat this type of reasoning does not require 
las-si
al thermodynami
 restri
tions on 
onstants. Forexample, let us 
onsider the mass a
tion law ki-neti
s and group the rea
tions in pairs, dire
t and6



inverse rea
tions. If the set of stoi
hiometri
 ve
-tors for fast rea
tions is linearly independent, thenfor this system the detailed balan
e prin
iple holds(obviously), and it demonstrates the \thermody-nami
 behaviour" without 
onne
tion to 
lassi
althermodynami
s. This 
ase of \stoi
hiometri
allyindependent fast rea
tions" 
an be generalized forirreversible rea
tions too (Vora &Daoutidis (2001)).For su
h fast system the quasiequilbrium manifoldhas the same ni
e properties as for thermodynami
partial equilibrium, and approximates slow dynam-i
s for suÆ
iently small ".There are other 
lasses of mass a
tion law sub-systems with su
h a \quasi-thermodynami
" be-haviour, whi
h depends on stru
ture, but not on
onstants. For example, any system of rea
tionswithout intera
tions has su
h a property (Gorban,Bykov, & Yablonskii (1986)). These rea
tions havethe form �Ai ! P :::: any linear rea
tion are al-lowed, as well as rea
tions like 2Ai ! Aj + Ak,3Ai ! Aj +Ak + Al, et
. All su
h fast subsystems
an serve for quasi-equilibrium approximation, be-
ause for them dynami
s is globally stable.Quasi-equilibrium manifold approximates expo-nentially attra
tive slow manifold and is used inmany areas of kineti
s either as initial approxima-tion for slow motion, or just by itself (more dis
us-sion and further referen
es are presented by Gorban& Karlin (2005)).2.4. Quasi Steady-State (QSS) or Fast Spe
iesThe quasi steady-state (or pseudo steady state)assumption was invented in 
hemistry for des
rip-tion of systems with radi
als or 
atalysts. In themost usual version the spe
ies are split in two groupswith 
on
entration ve
tors 
s (\slow" or basi
 
om-ponents) and 
f (\fast intermediates"). For 
atalyti
rea
tions there is additional balan
e for 
f , amountof 
atalyst, usually it is just a sum bf =Pi 
fi. Theamount of the fast intermediates is assumed mu
hsmaller than the amount of the basi
 
omponents,but the rea
tion rates are of the same order, oreven the same (both intermediates and slow 
ompo-nents parti
ipate in the same rea
tions). This is thesour
e of a small parameter in the system. Let uss
ale the 
on
entrations 
f and 
s to the 
ompatibleamounts. After that, the fast and slow time appearandwe 
ould write _
s =W s(
s; 
f), _
f = 1"W f(
s; 
f),where " is small parameter, and fun
tions W s;W fare bounded and have bounded derivatives (are \of

the same order"). We 
an apply the standard singu-lar perturbation te
hniques. If dynami
s of fast 
om-ponents under given values of slow 
on
entrationsis stable, then the slow attra
tive manifold exists,and its zero approximation is given by the systemof equationsW f(
s; 
f) = 0. Bifur
ations in fast sys-tem 
orrespond to 
riti
al e�e
ts, in
luding ignitionand explosion.This s
heme was analyzedmany times with plentyof details, examples, and some 
ompli
ations. Ex-haustive 
ase study of the simplest enzyme rea
tionwas provided by Segel & Slemrod (1989) . For het-erogenious 
atalyti
 rea
tions, the book by Yablon-skii, Bykov,Gorban, & Elokhin (1991) gives analysisof s
aling of fast intermediates (there aremany kindsof possible s
aling). In the 
ontext of the Computa-tional Singular Perturbation (CSP) approa
h, Lam(1993) and Lam&Goussis (1994) developed 
on
eptof the CSP radi
als. Gorban & Karlin (2003, 2005)
onsidered QSS as initial approximation for slow in-variant manifold. Analysis of the error of the QSSwas provided by Turanyi, Tomlin, & Pilling (1993).The QE approximation is also extremely popularand useful. It has simpler dynami
al properties (re-spe
ts thermodynami
s, for example, and gives no
riti
al e�e
ts in fast subsystems of 
losed systems).Nevertheless, neither radi
als in 
ombustion, nor in-termediates in 
atalyti
 kineti
s are, in general, 
loseto quasi-equilibrium. They are just present in mu
hsmaller amount, and when this amount grows, thenthe QSS approximation fails.The simplest demonstration of these two approx-imation gives the simple rea
tion: S + E $ SE !P +E with rea
tion rate 
onstants k�1 and k2. Theonly possible quasi-equilibrium appears when the�rst equilibrium is fast: k�1 = ��=". The 
orrespond-ing slow variable is Cs = 
S+
SE , bE = 
E+
SE =
onst. For the QEmanifold we get a quadrati
 equa-tion k�1k+1 
SE = 
S
E = (Cs � 
SE)(bE � 
SE). Thisequation gives the expli
it dependen
e 
SE(Cs), andthe slow equation reads _Cs = �k2
SE(Cs), Cs +
P = bS = 
onst.For the QSS approximation of this rea
tion ki-neti
s, under assumption bE � bS , we have fast in-termediates E and SE. For the QSS manifold thereis a linear equation k+1 
S
E � k�1 
SE � k2
SE = 0,whi
h gives us the expli
it expression for 
SE(
S):
SE = k+1 
SbE=(k+1 
S + k�1 + k2) (the standardMi
haelis{Menten formula). The slow kineti
s reads_
S = �k+1 
S(bE�
SE(
S))+k�1 
SE(
S). The di�er-en
e between the QSS and the QE in this example7



is obvious.The terminology is not rigorous, and often QSS isused for all singular perturbed systems, and QE isapplied only for the thermodynami
 ex
lusion of fastvariables by the maximum entropy (or minimum offree energy, or extremum of another relevant ther-modynami
 fun
tion) prin
iple (MaxEnt). This ter-minologi
al 
onvention may be 
onvenient. Never-theless, without any relation to terminology, the dif-feren
e between these two types of introdu
tion of asmall parameter is huge. There exists plenty of gen-eralizations of these approa
hes, whi
h aim to 
on-stru
t a slow and (almost) invariantmanifold, and toapproximate fast motion as well. The following ref-eren
es 
an give a �rst impression about these meth-ods: Method of Invariant Manifolds (MIM) (Roussel& Fraser (1991); Gorban&Karlin (2005),Method ofInvariant Grids (MIG), a dis
rete analogue of invari-ant manifolds (Gorban, Karlin, & Zinovyev (2004)),Computational Singular Perturbations (CSP) (Lam(1993); Lam & Goussis (1994); Zagaris, Kaper, &Kaper (2004)) Intrinsi
 Low-Dimensional Manifolds(ILDM) by Maas, & Pope (1992), developed furtherin series of works byBykov,Goldfarb, Gol'dshtein, &Maas, U. (2006)), methods based on the Lyapunovauxiliary theorem (Kazantzis & Kravaris (2006)).2.5. Lumping AnalysisWei & Prater (1962) demonstrated that for(pseudo)monomole
ular systems there exist linear
ombinations of 
on
entrations whi
h evolve in timeindependently. These linear 
ombinations (quasi-
omponents) 
orrespond to the left eigenve
tors ofkineti
 matrix: if lK = �l then d(l; 
)=dt = (l; 
)�,where the standard inner produ
t (l; 
) is 
on
entra-tion of a quasi
omponent. They also demonstratedhow to �nd these quasi
omponents in a properlyorganized experiment.This observation gave rise to a question: howto lump 
omponents into proper quasi
omponentsto guarantee the autonomous dynami
s of thequasi
omponents with appropriate a

ura
y. Weiand Kuo studied 
onditions for exa
t (Wei & Kuo(1969)) and approximate (Kuo &Wei (1969)) lump-ing in monomole
ular and pseudomonomole
ularsystems. They demonstrated that under 
ertain
onditions large monomole
ular system 
ould bewell{modelled by lower{order system.More re
ently, sensitivity analysis and Lie groupapproa
h were applied to lumping analysis (Li &

Rabitz (1989); Toth, Li, Rabitz, & Tomlin (1997)),and more general nonlinear forms of lumped 
on-
entrations are used (for example, 
on
entration ofquasi
omponents 
ould be rational fun
tion of 
).Hut
hinson & Luss (1970) studied lumping-analysis of mixtures with many parallel �rst orderrea
tions. Farkas (1999) generalized these resultsand 
hara
terized those lumping s
hemes whi
hpreserve the kineti
 stru
ture of the original system.Coxson & Bis
ho� (1987) pla
ed lumping analysisin the linear systems theory and demonstrated therelationships between lumpability and the 
on
eptsof observability, 
ontrollability and minimal real-ization. Djouad & Sportisse (2002) 
onsidered thelumping pro
edures as eÆ
ient te
hniques leadingto nonsti� systems and demonstrated eÆ
ien
yof developed algorithm on kineti
 models of at-mospheri
 
hemistry. Lin, Leibovi
i & Jorgensen(2008) formulated an optimal lumping problem asa mixed integer nonlinear programming (MINLP)and demonstrated that it 
an be eÆ
iently solvedwith a sto
hasti
 optimization method, Tabu Sear
h(TS) algorithm.The power of lumping using a time-s
ale basedapproa
h was demonstrated by Whitehouse, Tom-lin, & Pilling (2004). This 
omputationally 
heapapproa
h 
ombines ideas of sensitivity analysis withsimple and useful grouping of spe
ies with similarlifetimes and similar topologi
al properties 
ausedby 
onne
tions of the spe
ies in the rea
tion net-works. The lumped 
on
entrations in this approa
hare simply sums of 
on
entrations in groups. For ex-ample, spe
ies with similar 
omposition and fun
-tionalities 
ould be lumped into one single represen-tative spe
ies (Pepiot-Desjardins & Pits
h (2008)).Lumping analysis based both on mathemati
alarguments and fundamental physi
al and 
hemi-
al properties of the 
omponents is now one of themain tools for model redu
tion in highly multi
om-ponent systems, su
h as the hydro
arbon mixturein petroleum 
hemistry (Zavala & Rodriguez &Vargas-Villamil (2004)) or bio
hemi
al networksin systems biology (Maria (2006)). The optimalsolution of lumping problem often requires the ex-haustive sear
h, and instead of them various heuris-ti
s are used to avoid 
ombinatorial explosion. Forthe lumping analysis of the systems biology mod-els Dokoumetzidis & Aarons (2009) developed aheuristi
 greedy sear
h strategy whi
h allowed themto avoid the exhaustive sear
h of proper lumped
omponents.Pro
edures of lumping analysis form a part of gen-8



eral algebra of model building and model simpli�-
ation transformations. Hangos & Cameron (2001)applied formal methods of 
omputer s
ien
e and ar-ti�
ial intelligen
e for analysis of this algebra. Inparti
ular, a formal method for de�ning syntax andsemanti
s of pro
ess models has been proposed.The modern systems and 
ontrol theory provideseÆ
ient tools for lumping{analysis. The so-
alledbalan
ed model redu
tion was invented in late 1970s(Moore (1981)). For a linear system a set of \targetvariables" is sele
ted. The dimension of the system nis large, while the number of the target variables, forexample, inputs m and outputs p, usually satis�esm; p� n. The balan
ed model redu
tion problem 
anbe stated as follows (Guger
in & Antoulas (2004)):�nd a redu
ed order system su
h that the followingproperties are satis�ed:(i) The approximation error in the target vari-ables is small, and there exists a global errorbound.(ii) System properties, like stability and passivity,are preserved.(iii) The pro
edure is 
omputationally eÆ
ient.In large dimensions, spe
ial e�orts are needed to re-solve the a

ura
y/eÆ
ien
y dilemma and to �ndeÆ
iently the approximate solution of the model re-du
tion problem (Antoulas & Sorensen (2002)).Various methods for balan
ed trun
ation are de-veloped: Lyapunov balan
ing, sto
hasti
 balan
ing,bounded real balan
ing, positive real balan
ing, andfrequen
y weighted balan
ing (Guger
in &Antoulas(2004)). Nonlinear generalizations are proposed aswell (Lall, Marsden & Glavaki (2002); Condon &Ivanov (2004)).2.6. Limiting StepsIn the IUPAC Compendium of Chemi
al Ter-minology (2007) one 
an �nd a de�nition of lim-iting steps. Rate-
ontrolling step (2007): \A rate-
ontrolling (rate-determining or rate-limiting) stepin a rea
tion o

urring by a 
omposite rea
tion se-quen
e is an elementary rea
tion the rate 
onstantfor whi
h exerts a strong e�e
t { stronger than thatof any other rate 
onstant { on the overall rate."Let us 
omplement this de�nition by additional
omment: usually when people are talking aboutlimiting step they expe
t signi�
antly more: thereexists a rate 
onstant whi
h exerts su
h a strong ef-fe
t on the overall rate that the e�e
t of all other rate
onstants together is signi�
antly smaller. For the

IUPAC Compendium de�nition a rate-
ontrollingstep always exists, be
ause among the 
ontrol fun
-tions generi
ally exists the biggest one. On the 
on-trary, for the notion of limiting step that is usedin pra
ti
e, there exists a di�eren
e between sys-tems with limiting step and systems without limit-ing step.During XX 
entury, the 
on
ept of the limitingstep was revised several times. First simple idea of a\narrow pla
e" (the least 
ondu
tive step) 
ould beapplied without adaptation only to a simple 
y
leor a 
hain of irreversible steps that are of the �rstorder (see Chap. 16 of the book Johnston (1966) orthe paper by Boyd (1978)). When resear
hers try toapply this idea in more general situations they meetvarious diÆ
ulties su
h as:{ Some rea
tions have to be \pseudomonomole
u-lar." Their 
onstants depend on 
on
entrationsof outer 
omponents, and are 
onstant only un-der 
ondition that these outer 
omponents arepresent in 
onstant 
on
entrations, or 
hange suf-�
iently slow (i.e. are present in signi�
antly big-ger amount).{ Even under �xed or slow outer 
omponents 
on-
entration, the simple \narrow pla
e" behaviour
ould be spoiled by bran
hing or by reverse rea
-tions. The simplest example is given by the 
y
le:A1 $ A2 ! A3 ! A1. Even if the 
onstant ofthe last step A3 ! A1 is the smallest one, thestationary rate may be mu
h smaller than k3b(where b is the overall balan
e of 
on
entrations,b = 
1 + 
2 + 
3), if the 
onstant of the reverserea
tion A2 ! A1 is suÆ
iently big.In a series of papers, Northrop (1981, 2001) 
learlyexplained these diÆ
ulties and suggested that the
on
ept of rate{limiting step is \outmoded". Nev-ertheless, the main idea of limiting is so attra
tivethat Northrop's arguments stimulated the sear
h formodi�
ation and improvement of the main 
on
ept.Ray (1983) proposed the use of sensitivity analy-sis. He 
onsidered 
y
les of reversible rea
tions andsuggested a de�nition: The rate{limiting step in area
tion sequen
e is that forward step for whi
h a
hange of its rate 
onstant produ
es the largest e�e
ton the overall rate.Ray's approa
h was revised by Brown & Cooper(1993) from the system 
ontrol analysis point ofview (see the book of Cornish-Bowden & Cardenas(1990)). They stress again that there is no uniquerate{limiting step spe
i�
 for an enzyme, and thisstep, even if it exists, depends on substrate, produ
tand e�e
tor 
on
entrations.9



Near 
riti
al 
onditions the 
riti
al simpli�
ationappears, whi
h is also a type of limitation, be
ausesome rea
tions be
ome 
riti
ally important (Yablon-sky, Mareels, & Lazman (2003))Two 
lassi
al examples of limiting steps demon-strate us the 
hain of linear rea
tion and the linear
atalyti
 
y
le, when they in
lude a rea
tion whi
his signi�
antly slower, than other rea
tions.A linear 
hain of rea
tions, A1 ! A2 ! :::An,with rea
tion rate 
onstants ki (for Ai ! Ai+1),gives the �rst example of limiting steps. Let therea
tion rate 
onstant kq be the smallest one. Thenwe expe
t the following behaviour of the rea
tion
hain in time s
ale & 1=kq: all the 
omponentsA1; :::Aq�1 transform fast into Aq , and all the 
om-ponents Aq+1; :::An�1 transform fast into An, onlytwo 
omponents, Aq and An are present (
on
entra-tions of other 
omponents are small) , and the wholedynami
s in this time s
ale 
an be represented bya single rea
tion Aq ! An with rea
tion rate 
on-stant kq . This pi
ture be
omes more exa
t when kqbe
omes smaller with respe
t to other 
onstants.The 
atalyti
 
y
le is one of the most importantsubstru
tures that we study in rea
tion networks. Inthe redu
ed form the 
atalyti
 
y
le is a set of linearrea
tions: A1 ! A2 ! : : : An ! A1:Redu
ed form means that in reality some of theserea
tion are not monomole
ular and in
lude someother 
omponents (not from the listA1; : : : An). Butin the study of the isolated 
y
le dynami
s, 
on
en-trations of these 
omponents are taken as 
onstantand are in
luded into kineti
 
onstants of the 
y
lelinear rea
tions.For the 
onstant of elementary rea
tion Ai ! weuse the simpli�ed notation ki be
ause the produ
tof this elementary rea
tion is known, it is Ai+1 fori < n and A1 for i = n. The elementary rea
tionrate is wi = ki
i, where 
i is the 
on
entration ofAi. The kineti
 equation is:_
i = ki�1
i�1 � ki
i; (12)where by de�nition 
0 = 
n, k0 = kn, and w0 =wn. In the stationary state ( _
i = 0), all the wi areequal: wi = w. This 
ommon ratew we 
all the 
y
lestationary rate, andw = b1k1 + : : : 1kn ; 
i = wki ; (13)where b =Pi 
i is the 
onserved quantity for rea
-tions in 
onstant volume. Let one of the 
onstants,

kmin, be mu
h smaller than others (let it be kmin =kn): ki � kmin if i 6= n : (14)In this 
ase, in linear approximation w = knb,
n = b 1�Xi<n knki ! ; and 
i = bknki for i 6= n :(15)The simplest zero order approximation for thesteady state gives
n = b; 
i = 0 (i 6= n): (16)This is trivial: all the 
on
entration is 
olle
ted atthe starting point of the \narrow pla
e," but may beuseful as an origin point for various approximationpro
edures.So, the stationary rate of a 
y
le is determinedby the smallest 
onstant, kmin, if it is mu
h smallerthan the 
onstants of all other rea
tions (14):w � kminb: (17)In that 
ase we say that the 
y
le has a limiting stepwith 
onstant kmin.3. Dynami
s of Catalyti
 Cy
le withLimiting Step3.1. EigenvaluesThere is signi�
ant di�eren
e between the exam-ples of limiting steps for the 
hain of rea
tions andfor irreversible 
y
le. For the 
hain, the steady statedoes not depend on nonzero rate 
onstants. It is just
n = b; 
1 = 
2 = ::: = 
n�1 = 0. The smallest rate
onstant kq gives the smallest positive eigenvalue,the relaxation time is � = 1=kq. The 
orrespondingapproximation of eigenmode (right eigenve
tor) r1has 
oordinates: r11 = ::: = r1q�1 = 0, r1q = 1, r1q+1 =::: = r1n�1 = 0, rn = �1. This exa
tly 
orresponds tothe statement that the whole dynami
s in the times
ale & 1=kq 
an be represented by a single rea
tionAq ! An with rea
tion rate 
onstant kq . The lefteigenve
tor for eigenvalue kq has approximation l1with 
oordinates l11 = l12 = ::: = l1q = 1, l1q+1 = ::: =l1n = 0. This ve
tor provides the almost exa
t lump-ing on time s
ale & 1=kq. Let us introdu
e a newvariable 
lump =Pi li
i, i.e. 
lump = 
1+
2+:::+
q.For the time s
ale & 1=kq we 
an write 
lump+ 
n �b, d
lump=dt � �kq
lump, d
n=dt � kq
lump.In the example of a 
y
le, we approximate thesteady state, that is, the right eigenve
tor r0 for10



zero eigenvalue (the left eigenve
tor is known and
orresponds to the main linear balan
e b: l0i � 1). Inthe zero-order approximation, this eigenve
tor has
oordinates r01 = ::: = r0n�1 = 0, r0n = 1.If kn=ki is small for all i < n, then the kineti
behaviour of the 
y
le is determined by a linear 
hainof n�1 rea
tionsA1 ! A2 ! :::An, whi
h we obtainafter 
utting the limiting step. The 
hara
teristi
equation for an irreversible 
y
le, Qni=1(� + ki) �Qni=1 ki = 0, tends to the 
hara
teristi
 equation forthe linear 
hain, �Qn�1i=1 (�+ ki) = 0, when kn ! 0.The 
hara
teristi
 equation for a 
y
le with limit-ing step (kn=ki � 1) has one simple zero eigenvaluethat 
orresponds to the 
onservation law P 
i = band n� 1 nonzero eigenvalues�i = �ki + Æi (i < n): (18)where Æi ! 0 whenPi<n knki ! 0.A 
y
le with limiting step (12) has real eigenspe
-trum and demonstrates monotoni
 relaxation with-out damped os
illations. Of 
ourse, without limita-tion su
h os
illations 
ould exist, for example, whenall ki � k > 0, (i = 1; :::n).The relaxation time of a stable linear system (12)is, by de�nition, � = 1=minfRe(��i)g (� 6= 0). Forsmall kn, � � 1=k� , k� = minfkig, (i = 1; :::n� 1).In other words, for a 
y
le with limiting step, k� isthe se
ond slowest rate 
onstant: kmin � k� � :::.3.2. Eigenve
tors for Rea
tion Chain and forCatalyti
 Cy
le with Limiting StepLet the irreversible 
y
le in
lude a limiting step:kn � ki (i = 1; :::; n � 1) and, in addition, kn �jki�kj j (i; j = 1; :::; n�1, i 6= j), then the eigenve
-tors of the kineti
 matrix almost 
oin
ide with theeigenve
tors for the linear 
hain of rea
tions A1 !A2 ! :::An, with rea
tion rate 
onstants ki (forAi ! Ai+1) (Gorban & Radules
u (2008)).The kineti
 equation for the linear 
hain is_
i = ki�1
i�1 � ki
i; (19)The 
oeÆ
ient matrix K of these equations is verysimple. It has nonzero elements only on the maindiagonal, and one position below. The eigenvaluesof K are �ki (i = 1; :::n � 1) and 0. The left andright eigenve
tors for 0 eigenvalue, l0 and r0, are:l0 = (1; 1; :::1); r0 = (0; 0; :::0; 1); (20)all 
oordinates of l0 are equal to 1, the only nonzero
oordinate of r0 is r0n and we represent ve
tor{
olumn r0 in row.

Below we use expli
it form of K left and righteigenve
tors. Let ve
tor{
olumn ri and ve
tor{rowli be right and left eigenve
tors of K for eigenvalue�ki. For 
oordinates of these eigenve
tors we usenotation rij and lij . Let us 
hoose a normalization
ondition rii = lii = 1. It is straightforward to 
he
kthat rij = 0 (j < i) and lij = 0 (j > i), rij+1 =kjrj=(kj+1 � ki) (j � i) and lij�1 = kj�1lj=(kj�1 �kj) (j � i), andrii+m = mYj=1 ki+j�1ki+j � ki ; lii�m = mYj=1 ki�jki�j � ki : (21)It is 
onvenient to introdu
e formally k0 = 0. Undersele
ted normalization 
ondition, the inner produ
tof eigenve
tors is: lirj = Æij , where Æij is the Kro-ne
ker delta.If the rate 
onstants any two 
onstants, ki, kj are
onne
ted by relation ki � kj or ki � kj (i.e. theyare well separated), thenki�jki�j � ki � � 1; if ki � ki�j ;0; if ki � ki�j ; (22)Hen
e, jlii�mj � 1 or jlii�mj � 0. To demonstratethat also jrii+mj � 1 or jrii+mj � 0, we shift nomina-tors in the produ
t (21) on su
h a way:rii+m = kiki+m � ki m�1Yj=1 ki+jki+j � ki :Exa
tly as in (22), ea
h multiplier ki+jki+j�ki here iseither almost 1 or almost 0, and kiki+m�ki is eitheralmost 0 or almost �1. In this zero-one asymptoti
slii =1; lii�m � 1if ki�j > ki for all j = 1; : : :m; else lii�m � 0;rii =1; rii+m � �1if ki+j > ki for all j = 1; : : :m� 1and ki+m < ki; else rii+m � 0: (23)In this asymptoti
 (Fig. 1), only two 
oordinates ofright eigenve
tor ri 
an have nonzero values, rii = 1and rii+m � �1 where m is the �rst su
h positiveinteger that i + m < n and ki+m < ki. Su
h malways exists be
ause kn = 0. For left eigenve
torli, lii � : : : lii�q � 1 and lii�q�j � 0 where j > 0 andq is the �rst su
h positive integer that i � q � 1 >0 and ki�q�1 < ki. It is possible that su
h q doesnot exist. In that 
ase, all lii�j � 1 for j � 0. Itis straightforward to 
he
k that in this asymptoti
lirj = Æij .11
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1 -1Fig. 1. Graphi
al representation of eigenve
tors approxima-tion for the linear 
hain of rea
tions with well separated
onstants. To �nd the left (l) and right (r) eigenve
tors foreigenvalue k it is ne
essary to delete from the 
hain all therea
tions with the rate 
onstants < k (dashed lines) and to�nd the maximal 
onne
ted interval, where the rea
tion with
onstant k (bold arrow) is situated. The right eigenve
tor rhas 
oordinate 1 for the vertex, whi
h is the beginning of therea
tion with 
onstant k, and 
oordinate �1 for the vertex,whi
h is end of the interval in the dire
tion of rea
tions. Theleft eigenve
tor l has 
oordinate 1 for the beginning of therea
tion with 
onstant k and for all pre
eding verti
es fromthe 
onne
ted interval. All other 
oordinates of r and l arezero.The simplest example gives the order k1 � k2 �::: � kn�1: lii�j � 1 for j � 0, rii = 1, rii+1 � �1and all other 
oordinates of eigenve
tors are 
lose tozero. For the inverse order, k1 � k2 � ::: � kn�1,lii = 1, rii = 1, rin � �1 and all other 
oordinates ofeigenve
tors are 
lose to zero.For less trivial example, let us �nd the asymptoti
of left and right eigenve
tors for a 
hain of rea
tions:A1!5 A2!3 A3!4 A4!1 A5!2 A6;where the upper index marks the order of rate 
on-stants: k4 � k5 � k2 � k3 � k1 (ki is the rate
onstant of rea
tion Ai ! :::).For left eigenve
tors, rows li, we have the followingasymptoti
s:l1 � (1; 0; 0; 0; 0; 0); l2 � (0; 1; 0; 0; 0; 0);l3 � (0; 1; 1; 0; 0; 0); l4 � (0; 0; 0; 1; 0; 0);l5 � (0; 0; 0; 1; 1; 0): (24)For right eigenve
tors, 
olumns ri, we have thefollowing asymptoti
s (we write ve
tor-
olumns inrows):r1 � (1; 0; 0; 0; 0;�1); r2 � (0; 1;�1; 0; 0; 0);r3 � (0; 0; 1; 0; 0;�1); r4 � (0; 0; 0; 1;�1; 0);r5 � (0; 0; 0; 0; 1;�1): (25)The 
orresponding approximation to the general so-lution of the kineti
 equations is:
(t) = (l0; 
(0))r0 + n�1Xi=1 (li
(0))ri exp(�kit); (26)where 
(0) is the initial 
on
entration ve
tor, andfor left and right eigenve
tors li and ri we use their

zero-one asymptoti
. In other words, approximationof the left eigenve
tors provides us with almost exa
tlumping (for analysis of exa
t lumping see the paperby Li & Rabitz (1989)) .4. A
y
li
 Non-bran
hing Network: Expli
itFormulas for Eigenve
torsSo, to analyze asymptoti
 of eigenvalues andeigenve
tors for a irreversible 
y
le, we 
ut the rea
-tion with the smallest 
onstant, get a linear 
hain,and analyze the eigenvalues and eigenve
tors forthis 
hain. For a general multis
ale rea
tion net-work (instead of a 
y
le) we will 
ome, after somesurgery, to a
y
li
 non-bran
hing rea
tion networks(instead of a linear 
hain).For any network without bran
hing, we 
an sim-plify the notation for the kineti
 
onstants, by intro-du
ing �i = kji for the only rea
tion Ai ! Aj , or�i = 0, if there is no su
h a rea
tion. Also it is usefulto introdu
e a map � on the set of verti
es: �(i) = j,if there exist rea
tion Ai ! Aj , and �(i) = i if thereare no outgoing rea
tions from the Ai ! Aj . Foriterations of the map � we use notation �q .For an a
y
li
 non-bran
hing rea
tion network,for any vertex Ai there is an eigenvalue ��i andthe 
orresponding eigenve
tor. If Ai is a sink vertex,then this eigenvalue is zero. For left and right eigen-ve
tors ofK that 
orrespond to Ai we use notationsli (ve
tor-row) and ri (ve
tor-
olumn), 
orrespond-ingly.Let us suppose that Af is a sink vertex of thenetwork. Its asso
iated right and left eigenve
tors
orresponding to the zero eigenvalue are given by:rij = Æij ; lij = 1 if and only if �q(j) = i for someq > 0.For nonzero eigenvalues, right eigenve
tors will be
onstru
ted by re
urren
e starting from the vertexAi and moving in the dire
tion of the 
ow. The 
on-stru
tion is in opposite dire
tion for left eigenve
-tors.For right eigenve
tor ri only 
oordinates ri�k(i)(k = 0; 1; : : : �i) 
ould have nonzero values, andri�k+1(i) = ��k(i)��k+1(i) � �i ri�k(i) = kYj=0 ��j(i)��j+1(i) � �i= �i��k+1(i) � �i k�1Yj=0 ��j+1(i)��j+1(i) � �i :(27)12
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Fig. 2. Graphi
al representation of eigenve
tors approxima-tion for the a
y
li
 non-bran
hing rea
tion network with wellseparated 
onstants (
ompare to Fig. 1). The eigenvalue �k
orresponds to the rea
tion Ai ! A�(i) (bold arrow). To theright from Ai are verti
es A�q(i) and to the left are thoseAj , for whi
h there exists su
h q that �q(j) = i. The rea
-tions with the rate 
onstants < k (dashed lines) are deletedfrom the network. The right and left eigenve
tors 
ould havenonzero 
oordinates only for verti
es from the maximal 
on-ne
ted subgraph of the presented graph, where the Ai issituated. The right eigenve
tor r has 
oordinate 1 for Ai(beginning of the bold arrow), and 
oordinate �1 for thevertex, whi
h is the minimal in that 
onne
ted subgraph.The left eigenve
tor l has 
oordinate 1 for the beginning ofthe rea
tion with 
onstant k and for all pre
eding verti
esfrom the subgraph. All other 
oordinates of r and l are zero.For left eigenve
tor li 
oordinate lij 
ould havenonzero value only if there exists su
h q � 0 that�q(j) = i (this q is unique be
ause the system isa
y
li
):lij = �j�j � �i li�(j) = q�1Yk=0 ��k(j)��k(j) � �i : (28)For well separated 
onstants, we 
an write theasymptoti
 representation expli
itly, analogously to(23) (Fig. 2). For left eigenve
tors, lii = 1 and lij =1 (for i 6= j) if there exists su
h q that �q(j) = i,and ��d(j) > �i for all d = 0; : : : q � 1, else lij = 0.For right eigenve
tors, rii = 1 and ri�k(i) = �1 if��k(i) < �i and for all positive m < k inequality��m(i) > �i holds, i.e. k is �rst su
h positive inte-ger that ��k(i) < �i (for �xed point Ap we use �p =0). Ve
tor ri has not more than two nonzero 
oor-dinates. It is straightforward to 
he
k that in thisasymptoti
 lirj = Æij .For example, let us �nd that asymptoti
 for abran
hed a
y
li
 system of rea
tions:A1!7 A2!5 A3!6 A4!2 A5!4 A8; A6!1 A7!3 A4where the upper index marks the order of rate 
on-stants: �6 > �4 > �7 > �5 > �2 > �3 > �1 (�i isthe rate 
onstant of rea
tion Ai ! :::).For zero eigenvalue, the left and right eigenve
torsarel8 = (1; 1; 1; 1; 1; 1; 1; 1; 1); r8 = (0; 0; 0; 0; 0; 0; 0; 1):

For left eigenve
tors, rows li, that 
orrespond tononzero eigenvalues we have the following asymp-toti
s:l1 � (1; 0; 0; 0; 0; 0; 0; 0); l2 � (0; 1; 0; 0; 0; 0; 0; 0);l3 � (0; 1; 1; 0; 0; 0; 0; 0); l4 � (0; 0; 0; 1; 0; 0; 0; 0);l5 � (0; 0; 0; 1; 1; 1; 1; 0); l6 � (0; 0; 0; 0; 0; 1; 0; 0):l7 � (0; 0; 0; 0; 0; 1; 1; 0) (29)For the 
orresponding right eigenve
tors, 
olumnsri, we have the following asymptoti
s (we writeve
tor-
olumns in rows):r1�(1; 0; 0; 0; 0; 0; 0;�1); r2�(0; 1;�1; 0; 0; 0; 0; 0);r3�(0; 0; 1; 0; 0; 0; 0;�1); r4�(0; 0; 0; 1;�1; 0; 0; 0);r5�(0; 0; 0; 0; 1; 0; 0;�1); r6�(0; 0; 0; 0; 0; 1;�1; 0);r7�(0; 0; 0; 0;�1; 0; 1; 0): (30)5. Cal
ulating the Dominant System for aLinear Multis
ale Network5.1. Problem StatementWe study asymptoti
al behavior of the transfor-mation of the kineti
 matrix K to the normal formalong the lines ln kij = �ij� when � ! 1. For al-most all dire
tion ve
tors (�ij) (outside several hy-perplanes) there exists a minimal rea
tion networkwhi
h rea
tion rate 
onstants are monomials of kij(Qij kfijij , where fij are not obligatory positive num-bers) and eigenve
tors and eigenvalues approximatethe eigenve
tors and eigenvalues when � !1 witharbitrary high relative a

ura
y. We 
all this mini-mal system the dominant system. Existen
e of dom-inant systems is proven by dire
t 
onstru
tion (thisSe
.) and estimates of a

ura
y of approximations(Appendix).The dominant systems 
oin
ide for ve
tors (�ij)from some polyhedral 
ones. Therefore, we don'tneed to study a given value of (�ij) but rather haveto build these 
ones together with the 
orrespon-dent dominant systems. The following formal rule(\assumption of well separated 
onstants") allowsus to simplify this task: if in 
onstru
tion of dom-inant systems we need to 
ompare two monomials,Mf = Qij kfijij and Mg = Qij kgijij then we 
an al-ways state that either Mf �Mg or Mf �Mg and
onsider the logarithmi
 hyperplane Mf =Mg as aboundary between di�erent 
ones. At the end, we13



iA

jA

}{max lilji kkFig. 3. Constru
tion of the auxiliary rea
tion network bypruning. For every vertex, it is ne
essary to leave the out-going rea
tion with maximal rea
tion rate 
onstant. Otherrea
tions should be deleted.
an join all 
ones with the same dominant system.We are interested in robust asymptoti
 and do notanalyze dire
tions (�ij) whi
h belong to the bound-ary hyperplanes. This robust asymptoti
 with wellseparated 
onstants and a
y
li
 dominant systemsis typi
al be
ause the ex
lusive dire
tion ve
tors be-lon to a �nite number of hyperplanes.There may be other approa
hes based on (i) theMaslov dequantization and idempotent algebras(Litvinov & Maslov (2005)), (ii) the limit of log-uniform distributions in wide boxes of 
onstantsunder some 
onditions (Feng, Hooshangi, Chen,Li, Weiss, & Rabitz (2004); Gorban & Radules
u(2008)), or (iii) on 
onsideration of all possible or-derings of all monomials with integer exponents and
onstru
tion of 
orrespondent dominant systems(Robbiano (1985) proved that there exists only a �-nal number of su
h orderings and enumerated all ofthem, see also the book by Greuel & P�ster (2002)).They give the same �nal result but with di�erentintermediate steps.5.2. Auxiliary Operations5.2.1. From Rea
tion Network to AuxiliaryDynami
al SystemLet us 
onsider a rea
tion networkW with a givenstru
ture and �xed ordering of 
onstants. The set ofverti
es ofW isA and the set of elementary rea
tionsis R. Ea
h rea
tion from R has the form Ai ! Aj ,Ai; Aj 2 A. The 
orresponding 
onstant is kji. Forea
h Ai 2 A we de�ne �i = maxjfkjig and �(i) =argmaxjfkjig. In addition, �(i) = i if kji = 0 for allj. The auxiliary dis
rete dynami
al system for the re-a
tion networkW is the dynami
al system � = �Wde�ned by the map � on the �nite set A. The auxil-iary rea
tion network (Fig. 3) V = VW has the sameset of verti
es A and the set of rea
tions Ai ! A�(i)with rea
tion 
onstants �i. Auxiliary kineti
s is de-

1C 2C qC

)( 2CAtt)( 1CAtt )( qCAtt

Fig. 4. De
omposition of a dis
rete dynami
al system.s
ribed by _
 = ~K
, where ~Kij = ��jÆij + �jÆi �(j).5.2.2. De
omposition of Dis
rete Dynami
alSystems on Finite SetsDis
rete dynami
al system on a �nite set V =fA1; A2; : : : Ang is a semigroup 1; �; �2; :::, where �is a map � : V ! V . Ai 2 V is a periodi
 point,if �l(Ai) = Ai for some l > 0; else Ai is a tran-sient point. A 
y
le of period l is a sequen
e of ldistin
t periodi
 points A; �(A); �2(A); : : : �l�1(A)with �l(A) = A. A 
y
le of period one 
onsists ofone �xed point, �(A) = A. Two 
y
les, C;C 0 either
oin
ide or have empty interse
tion.The set of periodi
 points, V p, is alwaysnonempty. It is a union of 
y
les: V p = [jCj . Forea
h point A 2 V there exist su
h a positive integer�(A) and a 
y
le C(A) = Cj that �q(A) 2 Cj forq � �(A). In that 
ase we say thatA belongs to basinof attra
tion of 
y
le Cj and use notation Att(Cj) =fA j C(A) = Cjg. Of 
ourse, Cj � Att(Cj). For dif-ferent 
y
les, Att(Cj)\Att(Cl) = ?. If A is periodi
point then �(A) = 0. For transient points �(A) > 0.So, the phase spa
e V is divided onto subsetsAtt(Cj) (Fig. 4). Ea
h of these subsets in
ludesone 
y
le (or a �xed point, that is a 
y
le of length1). Sets Att(Cj) are �-invariant: �(Att(Cj)) �Att(Cj). The set Att(Cj) n Cj 
onsist of transientpoints and there exists su
h positive integer � that�q(Att(Cj )) = Cj if q � � .Dis
rete dynami
al systems on a �nite sets 
orre-spond to graphs without bran
hing points. Noti
ethat for the graph that represents a dis
rete dy-nami
 system, attra
tors are ergodi
 
omponents,while basins are 
onne
ted 
omponents.14
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CFig. 5. Gluing a 
y
le with rate 
onstants renormalization.
QSl are the quasistationary 
on
entrations on the 
y
le. Af-ter gluing, we have to leave the outgoing from A1 rea
tionwith the maximal renormalized rate 
onstant, and deleteothers.5.3. Algorithm for Cal
ulating the DominantSystemFor this general 
ase, the algorithm 
onsists oftwo main pro
edures: (i) 
y
les gluing and (ii) 
y
lesrestoration and 
utting.5.3.1. Cy
les GluingLet us start from a rea
tion network W with agiven stru
ture and �xed ordering of 
onstants. Theset of verti
es of W is A and the set of elementaryrea
tions is R.If all attra
tors of the auxiliary dynami
 system�W are �xed points Af1; Af2; ::: 2 A, then the aux-iliary rea
tion network is a
y
li
, and the auxiliarykineti
s approximates relaxation of the whole net-workW .In general 
ase, let the system �W have sev-eral attra
tors that are not �xed points, but 
y
lesC1; C2; ::: with periods �1; �2; ::: > 1. By gluingthese 
y
les in points, we transform the rea
tionnetwork W into W1. The dynami
al system �Wis transformed into �1. For these new system andnetwork, the 
onne
tion �1 = �W1 persists: �1 isthe auxiliary dis
rete dynami
al system forW1.For ea
h 
y
le, Ci, we introdu
e a new vertex Ai.The new set of verti
es, A1 = A [ fA1; A2; :::g n([iCi) (we delete 
y
les Ci and add verti
es Ai).All the rea
tion A ! B from the initial set R,(A;B 2 A) 
an be separated into 5 groups:(i) both A;B =2 [iCi;(ii) A =2 [iCi, but B 2 Ci;(iii) A 2 Ci, but B =2 [iCi;(iv) A 2 Ci, B 2 Cj , i 6= j;(v) A;B 2 Ci.Rea
tions from the �rst group do not 
hange. Rea
-tion from the se
ond group transforms into A! Ai

(to the whole glued 
y
le) with the same 
onstant.Rea
tion of the third type 
hanges intoAi ! B withthe rate 
onstant renormalization: let the 
y
le Cibe the following sequen
e of rea
tions A1 ! A2 !:::A�i ! A1, and the rea
tion rate 
onstant forAi !Ai+1 is ki (k�i for A�i ! A1). For the limiting rea
-tion of the 
y
le Ci we use notation klim i. If A = Ajand k is the rate rea
tion for A ! B, then the newrea
tion Ai ! B has the rate 
onstant kklim i=kj .This 
orresponds to a quasistationary distributionon the 
y
le (15). The new rate 
onstant is smallerthan the initial one: kklim i=kj < k, be
ause klim i <kj due to de�nition of limiting 
onstant. The same
onstant renormalization is ne
essary for rea
tionsof the fourth type. These rea
tions transform intoAi ! Aj . Finally, rea
tions of the �fth type vanish.After we glue all the 
y
les (Fig. 5) of auxiliarydynami
al system in the rea
tion networkW , we getW1. Let us assign W := W1, A := A1 and iterateuntil we obtain an a
y
li
 network and exit. Thisa
y
li
 network is a \forest" and 
onsists of treesoriented from leafs to a root. The number of su
htrees 
oin
ide with the number of �xed points in the�nal network.After gluing we 
an identify the rea
tions, whi
hwill be in
luded into the dominant system. Their
onstants are the 
riti
al parameters of the networks.The list of these parameters, 
onsists of all rea
-tion rates of the �nal a
y
li
 auxiliary network, andof the rate 
onstants of the glued 
y
les, but with-out their limiting steps. Some of these parametersare rate 
onstants of the initial network, other havethe monomial stru
ture. Other 
onstants and 
orre-sponding rea
tions do not parti
ipate in the follow-ing operations. To form the stru
ture of the domi-nant network, we need one more pro
edure.5.3.2. Cy
les Restoration and CuttingWe start the reverse pro
ess from the glued net-work Vm onAm. On a step ba
k, from the setAm toAm�1 and so on, some of glued 
y
les should be re-stored and 
ut. On the qth step we build an a
y
li
rea
tion network on Am�q , the �nal network is de-�ned on the initial vertex set and approximates re-laxation of W .To make one step ba
k from Vm let us sele
t theverti
es of Am that are glued 
y
les from Vm�1. Letthese verti
es be Am1 ; Am2 ; :::. Ea
h Ami 
orrespondsto a glued 
y
le from Vm�1, Am�1i1 ! Am�1i2 !:::Am�1i�i ! Am�1i1 , of the length �i. We assume thatthe limiting steps in these 
y
les areAm�1i�i ! Am�1i1 .15
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jAFig. 6. The main operation of the 
y
le surgery: on a stepba
k we get a 
y
le A1 ! :::! A� ! A1 with the limitingstep A� ! A1 and one outgoing rea
tion Ai ! Aj . Weshould delete the limiting step, reatta
h (\re
harge") theoutgoing rea
tion Ai ! Aj from Ai to A� and 
hange itsrate 
onstant k to the rate 
onstant kklim=ki. The new valueof rea
tion rate 
onstant is always smaller than the initialone: kklim=ki < k if klim 6= ki. For this operation only one
ondition k� ki is ne
essary (k should be small with respe
tto rea
tion Ai ! Ai+1 rate 
onstant, and 
an ex
eed anyother rea
tion rate 
onstant).Let us substitute ea
h vertex Ami in Vm by �i ver-ti
es Am�1i1 ; Am�1i2 ; :::Am�1i�i and add to Vm rea
tionsAm�1i1 ! Am�1i2 ! :::Am�1i�i (that are the 
y
le rea
-tions without the limiting step) with 
orresponding
onstants from Vm�1.If there exists an outgoing rea
tion Ami ! B inVm then we substitute it by the rea
tion Am�1i�i !B with the same 
onstant, i.e. outgoing rea
tionsAmi ! ::: are reatta
hed to the heads of the limitingsteps (Fig. 6). Let us rearrange rea
tions from Vm ofthe form B ! Ami . These rea
tions have prototypesin Vm�1 (before the last gluing). We simply restorethese rea
tions. If there exists a rea
tion Ami ! Amjthen we �nd the prototype in Vm�1, A ! B, andsubstitute the rea
tion byAm�1i�i ! B with the same
onstant, as for Ami ! Amj .After that step is performed, the verti
es set isAm�1, but the rea
tion set di�ers from the rea
tionsof the network Vm�1: the limiting steps of 
y
les areex
luded and the outgoing rea
tions of glued 
y
lesare in
luded (reatta
hed to the heads of the limitingsteps). To make the next step, we sele
t verti
es ofAm�1 that are glued 
y
les from Vm�2, substitutethese verti
es by verti
es of 
y
les, delete the lim-iting steps, atta
h outgoing rea
tions to the headsof the limiting steps, and for in
oming rea
tions re-store their prototypes from Vm�2, and so on.After all, we restore all the glued 
y
les, and 
on-stru
t an a
y
li
 rea
tion network on the setA. Thisa
y
li
 network approximates relaxation of the net-work W . We 
all this system the dominant systemof W and use notation dommod(W).

In the simplest 
ase, the dominant system is de-termined by the ordering of 
onstants. But for suÆ-
iently 
omplex systems we need to introdu
e aux-iliary elementary rea
tions. They appear after 
y
legluing and havemonomial rate 
onstants of the formk& = Qi k&ii , where &i are integers, but not manda-tory positive. The dominant system depends on thepla
e of these monomial values among the ordered
onstants. For systemswithwell separated 
onstantswe 
an also assume that ea
h of these new 
onstantswill be well separated from other 
onstants (Gorban& Radules
u (2008)).5.4. ExampleTo demonstrate a possible bran
hing of des
ribedalgorithm for 
y
les surgery (gluing, restoring and
utting) with ne
essity of additional orderings, letus 
onsider the following system:A1!1 A2!6 A3!2 A4!3 A5!4 A3; A4!5 A2; (31)(where the upper index marks the order of rate 
on-stants). The auxiliary dis
rete dynami
al system forrea
tion network (31) isA1!1 A2!6 A3!2 A4!3 A5!4 A3:It has only one attra
tor, a 
y
le A3!2 A4!3 A5!4 A3.This 
y
le is not a sink for the whole network (31) be-
ause rea
tion A4!5 A2 leads from that 
y
le. Aftergluing the 
y
le into a vertex A13 we get the new net-work A1!1 A2!6 A13!? A2. The rate 
onstant for therea
tion A13!A2 is k123 = k24k35=k54, where kij isthe rate 
onstant for the rea
tion Aj ! Ai in theinitial network (k35 is the 
y
le limiting rea
tion).The new network 
oin
ides with its auxiliary systemand has one 
y
le, A2!6 A13!? A2. This 
y
le is a sink,hen
e, we 
an start the ba
k pro
ess of 
y
les restor-ing and 
utting. One question arises immediately:whi
h 
onstant is smaller, k32 or k123. The smallestof them is the limiting 
onstant, and the answer de-pends on this 
hoi
e. Let us 
onsider two possibili-ties separately: (1) k32 > k123 and (2) k32 < k123.(1) Let as assume that k32 > k123. The �nal auxil-iary system after gluing 
y
les is A1!1 A2!6 A13!? A2.Let us delete the limiting rea
tion A13!? A2 from the
y
le. We get an a
y
li
 system A1!1 A2!6 A13. The
omponent A13 is the glued 
y
le A3!2 A4!3 A5!4 A3.Let us restore this 
y
le and delete the limitingrea
tion A5!4 A3. We get the dominant systemA1!1 A2!6 A3!2 A4!3 A5. Relaxation of this system16



approximates relaxation of the initial network (31)under additional 
ondition k32 > k123.(2) Let as assume now that k32 < k123. The �-nal auxiliary system after gluing 
y
les is the same,A1!1 A2!6 A13!? A2, but the limiting step in the 
y
leis di�erent, A2!6 A13. After 
utting this step, we geta
y
li
 system A1!1 A2 ?A13, where the last rea
tionhas rate 
onstant k123.The 
omponent A13 is the glued 
y
leA3!2 A4!3 A5!4 A3 :Let us restore this 
y
le and delete the limiting re-a
tion A5!4 A3. The 
onne
tion from glued 
y
leA13!? A2 with 
onstant k123 transforms into 
onne
-tion A5!? A2 with the same 
onstant k123.We get the dominant system:A1!1 A2 ; A3!2 A4!3 A5!? A2 :The order of 
onstants is now known: k21 > k43 >k54 > k123, and we 
an substitute the sign \?" by\4": A3!2 A4!3 A5!4 A2.For both 
ases, k32 > k123 (k123 = k24k35=k54) andk32 < k123 it is easy to �nd the eigenve
tors expli
itlyand to write the solution to the kineti
 equations inexpli
it form.6. The Reversible Triangle of Rea
tionsIn this se
tion, we illustrate the analysis of dom-inant systems on a simple example, the reversibletriangle of rea
tions.A1 $ A2 $ A3 $ A1 (32)This triangle appeared in many works as an idealobje
t for a 
ase study. Our favorite example is thework of Wei & Prater (1962). Now in our study thetriangle (32) is not ne
essarily a 
losed system. We
an assume that it is a subsystem of a larger sys-tem, and any rea
tion Ai ! Aj represents a rea
-tion of the form : : :+Ai ! Aj+ : : :, where unknownbut slow 
omponents are substituted by dots. Thismeans that there are no mandatory relations be-tween rea
tion rate 
onstants, and six rea
tion rate
onstants are arbitrary nonnegative numbers.Let the rea
tion rate 
onstant k21 for the rea
tionA1 ! A2 be the largest.Let us des
ribe all possible auxiliary dynami
alsystems for the triangle (32). For ea
h vertex, wehave to sele
t the fastest outgoing rea
tion. For A1,it is always A1 ! A2, be
ause of our 
hoi
e of enu-meration (the higher s
heme in Fig. 7). There existtwo 
hoi
es of the fastest outgoing rea
tion for two
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AttractorsFig. 7. Four possible auxiliary dynami
al systems for the re-versible triangle of rea
tions with k21 > kij for (i; j) 6= (2; 1):(a) k12 > k32, k23 > k13; (b) k12 > k32, k13 > k23; (
)k32 > k12, k23 > k13; (d) k32 > k12, k13 > k23. For ea
hvertex the outgoing rea
tion with the largest rate 
onstantis represented by the solid bold arrow, and other rea
tionsare represented by the dashed arrows. The digraphs formedby solid bold arrows are the auxiliary dis
rete dynami
alsystems. Attra
tors of these systems are isolated in frames.other verti
es and, therefore, only four versions ofauxiliary dynami
al systems for (32) (Fig. 7). Letus analyze in detail 
ase (a). For the 
ases (b) and(
) the details of 
omputations are similar. The ir-reversible 
y
le (d) is even simpler and was alreadydis
ussed.6.1. Auxiliary System (a): A1 $ A2  A3;k12 > k32, k23 > k136.1.1. Gluing Cy
lesThe attra
tor is a 
y
le (with only two verti
es)A1 $ A2. This is not a sink, be
ause two outgoingrea
tions exist: A1 ! A3 and A2 ! A3. They arerelatively slow: k31 � k21 and k32 � k12. The limit-ing step in this 
y
le is A2 ! A1 with the rate 
on-stant k12. We have to glue the 
y
le A1 $ A2 intoone new 
omponent A11 and to add a new rea
tionA11 ! A3 with the rate 
onstant (see Fig. 5)k131 = maxfk32; k31k12=k21g : (33)As a result, we get a new system, A11 $ A3 withrea
tion rate 
onstants k131 (forA11 ! A3) and initialk23 (for A11  A3). This 
y
le is a sink, be
auseit has no outgoing rea
tions (the whole system is atrivial example of a sink).6.1.2. Dominant SystemAt the next step, we have to restore and 
ut the
y
les. First 
y
le to 
ut is the result of 
y
le gluing,A11 $ A3. It is ne
essary to delete the limiting step,i.e. the rea
tion with the smallest rate 
onstant. Ifk131 > k23, then we get A11 ! A3. If, inverse, k23 >k131, then we obtain A11  A3.17
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23kFig. 8. Dominant systems for 
ase (a) (de�ned in Fig. 7)After that, we have to restore and 
ut the 
y
lewhi
h was glued into the vertex A11. This is the two-verti
es 
y
le A1 $ A2. The limiting step for this
y
le is A1  A2, be
ause k21 � k12. If k131 > k23,then following the rule visualized by Fig. 6, we getthe dominant system A1 ! A2 ! A3 with rea
tionrate 
onstants k21 for A1 ! A2 and k131 for A2 !A3. If k23 > k131 then we obtainA1 ! A2  A3 withrea
tion rate 
onstants k21 for A1 ! A2 and k23 forA2  A3. All the pro
edure is illustrated by Fig. 8.6.1.3. Eigenvalues and Eigenve
torsThe eigenvalues and the 
orresponding eigenve
-tors for dominant systems in 
ase (a) are representedbelow in zero-one asymptoti
.(i) k131 > k23,the dominant system A1 ! A2 ! A3,�0 = 0 ; r0 � (0; 0; 1) ; l0 = (1; 1; 1) ;�1 � �k21 ; r1 � (1;�1; 0) ; l1 � (1; 0; 0) ;�2 � �k131 ; r2 � (0; 1;�1) ; l2 � (1; 1; 0) ;(34)(ii) k23 > k131,the dominant system A1 ! A2  A3,�0 = 0 ; r0 � (0; 1; 0) ; l0 = (1; 1; 1) ;�1 � �k21 ; r1 � (1;�1; 0) ; l1 � (1; 0; 0) ;�2 � �k23 ; r2 � (0;�1; 1) ; l2 � (0; 0; 1) :(35)Here, the value of k131 is given by formula (33).Analysis of examples provided us by an impor-tant 
on
lusion: the number of di�erent dominantsystems in examples was less than the number ofall possible orderings. For many pairs of 
onstantskij ; klr it is not important whi
h of them is larger.There is no need to 
onsider all orderings of mono-mials. We have to 
onsider only those inequalitiesbetween 
onstants and monomials that appear inthe 
onstru
tion of the dominant systems.

7. Corre
tions to Dominant Dynami
sThe hierar
hy of systems W , W1, W2, ... 
an beused for multigrid 
orre
tion of the dominant dy-nami
s. The simple example of multigrid approa
hgives the algorithm of steady state approximation(Gorban & Radules
u (2008)). For this purpose, onthe way up (
y
le restoration and 
utting, Se
. 5.3.2)we 
al
ulate distribution in restoring 
y
les withhigher a

ura
y, by exa
t formula (13), or in linearapproximation (15) instead of the simplest zero-oneasymptoti
 (16). Essentially, the way up remains thesame.After termination of the gluing pro
ess, we 
an�nd all steady state distributions by restoring 
y-
les in the auxiliary rea
tion network Vm. LetAmf1; Amf2; ::: be �xed points of �m. The set of steadystates for Vm is the set of all distributions on theset of �xed points fAmf1; Amf2; :::g.Let us take one of the basis distributions, 
mfi = 1,other 
i = 0 on Vm. If the vertexAmfi is a glued 
y
le,then we substitute them by all the verti
es of this 
y-
le. Redistribute the 
on
entration 
mfi between theverti
es of the 
orresponding 
y
le by the rule (13)(or by an approximation). As a result, we get a setof verti
es and a distribution on this set of verti
es.If among these verti
es there are glued 
y
les, thenwe repeat the pro
edure of 
y
le restoration. Termi-nate when there is no glued 
y
les in the support ofthe distribution.The resulting distribution is the approximation toa steady state of W , and the basis of steady statesfor W 
an be approximated by this method.For example, for the system Fig. 8 we have, �rstof all, to 
ompute the stationary distribution in the
y
le A11 $ A3, 
11 and 
3. On the base of the generalformula for a simple 
y
le (13) we obtain:w = 11k131 + 1k23 ; 
11 = wk131 ; 
3 = wk23 : (36)After that, we have to restore the 
y
le glued intoA11. This means to 
al
ulate the 
on
entrations ofA1 and A2 with normalization 
1+
2 = 
11. Formula(13) gives:w0 = 
111k21 + 1k12 ; 
1 = w0k21 ; 
2 = w0k12 : (37)For eigenve
tors, there appear two operations of
orre
tions: (i) 
orre
tion for an a
y
li
 networkwithout bran
hing (43), (45), and (ii) 
orre
tions fora 
y
le with relatively slow outgoing rea
tions (49).18



These 
orre
tions are by-produ
ts of the a

ura
yestimates given in Appendix.8. Con
lusionNow, the idea of limiting step is developed to theasymptotology of multis
ale rea
tion networks. Wefound the main terms of eigenve
tors and eigen-values asymptoti
 on logarithmi
 straight linesln kij = �ij� when � !1. These main terms 
ouldbe represented by a
y
li
 dominant system whi
his a pie
ewise 
onstant fun
tion of the dire
tionve
tors (�ij). This theory gives the analogue ofthe Vishik & Ljusternik (1960) theory for 
hemi
alrea
tion networks. We demonstrated also how to
onstru
t the a

ura
y estimates and the �rst order
orre
tions to eigenvalues and eigenve
tors.There are several ways of using the developed the-ory and algorithms:{ For dire
t 
omputation of steady states and relax-ation dynami
s; this may be useful for 
omplexsystems be
ause of the simpli
ity of the algorithmand resulting formulas and be
ause often we donot know the rate 
onstants for 
omplex networks,and kineti
s that is ruled by orderings rather thanby exa
t values of rate 
onstants may be very use-ful in pra
ti
ally frequent situation when the val-ues of the various rea
tion 
onstants are unknownor poorly known;{ For planning experiments and mining the exper-imental data { the observable kineti
s is moresensitive to rea
tions from the dominant net-work, and mu
h less sensitive to other rea
tions,the relaxation spe
trum of the dominant networkis expli
itly 
onne
ted with the 
orrespondentrea
tion rate 
onstants, and the eigenve
tors(\modes") are sensitive to the 
onstant ordering,but not to exa
t values;{ The steady states and dynami
s of the dominantsystem 
ould serve as a robust �rst approximationin perturbation theory or as a pre
onditioning innumeri
al methods.The next step should be development of asymp-toti
 estimates for networks with modular stru
-ture and time separations between modules, not be-tween individual rea
tions. But now it seems thatthe most important further development should bethe asymptotology of nonlinear rea
tion networks.For multis
ale nonlinear rea
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al behaviour is to be approximatedby the system of dominant networks. These net-
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al Ba
kgrounds of A
-
ura
y EstimationEstimates for Perturbed A
y
li
 NetworksThe famous Gers
hgorin theorem (Mar
us &Min
 (1992), Varga (2004)) gives estimates ofeigenvalues. We need also estimates of eigenve
-tors. Below A = (aij) is a 
omplex n � n matrix,Qi = Pj;j 6=i jajij (sums of non-diagonal elementsin 
olumns).Gers
hgorin theorem (Mar
us & Min
 (1992),p. 146): The 
hara
teristi
 roots ofA lie in the 
losedregion GQ of the z-planeGQ =[i GQi (GQi = fz �� jz � aiij � Qig: (38)AreasGQi are the Gers
hgorin dis
s. (The same esti-mate are valid for sums in rows, Pi. Here and belowwe don't dupli
ate the estimates.)Gers
hgorin disks GQi (i = 1; : : : n) are isolated,if GQi \GQj = ? for i 6= j. If disks GPi (i = 1; : : : n)are isolated, then the spe
trum of A is simple, andea
h Gers
hgorin diskGQi 
ontains one and only oneeigenvalue of A (Mar
us & Min
 (1992), p. 147).We assume that Gers
hgorin disks GQi (i =1; : : : n) are isolated: for all i; j (i 6= j)jaii � ajj j > Qi +Qj : (39)Let us introdu
e the following notations:Qijaiij = "i; " = maxi "i; jaij jjajj j = �ij ; � = maxi;j;i6=j �ij ;gi = minj;j 6=i jaii � ajj jjaiij ; g = mini gi: (40)Usually, we 
onsider "i and �ij as suÆ
iently smallnumbers. In 
ontrary, the diagonal gap g should not21



be small, (this is the gap 
ondition). For example, iffor any two diagonal elements aii, ajj either aii �ajj or aii � ajj , then gi & 1 for all i.Let �i 2 GQi be the eigenvalue of A (j�i � a11j <Q1). Let us estimate the 
orresponding right eigen-ve
tor r(i). We take rii = 1 and for j 6= i introdu
ea (n � 1)-dimensional ve
tor ~xi: ~xij = rij(ajj � aii)(i 6= j). For ~xi we get equation(1�B(i))~xi = �~ai (41)where ~ai is a ve
tor of the non-diagonal elementsof the ith 
olumn of A (~aij = aij , j 6= i), and the(n � 1) � (n � 1) matrix Bi has matrix elements(j; l 6= i)b(i)jj = �i � aiiajj � aii ; b(i)jl = ajlall � aii (l 6= j) (42)Due to the Gers
hgorin estimate, jb(i)jj j < Qijajj�aiij .From Eq. (41) we obtain:~xi = �~ai �B(i)(1�B(i))�1~ai: (43)From this de�nition and simple estimates in l1 norm,we get the following estimate of eigenve
tors.Theorem 2. Let the Gers
hgoring disks be iso-lated, and the diagonal gap be big enough: g > n".Then for the ith eigenve
tor of A the following uni-form estimate holds:jrij j � �g + n"2g(g � n") (j 6= 1; rii = 1): � (44)So, if the matrixA is diagonally dominant and thediagonal gap g is big enough, then the eigenve
torsare proven to be 
lose to the standard basis ve
torswith expli
it evaluation of a

ura
y.The �rst 
orre
tion to eigenve
tors is also given byEq. (43). If for the iteration we use the Gers
hgorinestimates for eigenvalue �i � aii, then we 
an writein the next approximation for eigenve
tors (rii =1; j 6= i):rij = � ajiajj � aii � (B(i)nd (1�B(i)nd )�1~ai)jajj � aii (45)where B(i)nd is the non-diagonal part of B(i): it hasthe same non-diagonal elements and zeros on diago-nal. There exists plenty of further simpli�
ations forthis iteration formula. For example, one 
an leavejust the �rst term, that gives the �rst order approx-imation in the power of " (� � ").To apply these estimates to an a
y
li
 networksupplemented by additional rea
tions, we have touse the eigenbasis of this a
y
li
 network (Se
. 4).

Dire
t use of this theorem and estimates for a kineti
matrix K in the standard basis is impossible, thediagonal dominan
e in this 
oordinate system is notlarge, and sums of elements in 
olumns are zero. Toapply this theorem we need two lemmas.Let W be a rea
tion network without bran
hing(a �nite dynami
al system) with n verti
es. Thenthe number of rea
tions in W is n � f , where f isthe number of �xed points (the verti
es without out-going rea
tions). Let � be the set of stoi
hiometri
ve
tors forW .Lemma 1. � forms a basis in the subspa
ef
 j Pi 
i = 0g if and only if the rea
tion networkW is a
y
li
 and 
onne
ted (has only one �xedpoint). �Let us 
onsider a general rea
tion network on theset A1; :::An. For stoi
hiometri
 ve
tor of rea
tionAi ! Al we use notation 
li. Assume that the auxil-iary dynami
al system i 7! �(i) for a given rea
tionnetwork is a
y
li
 and has only one attra
tor, a �xedpoint. For this auxiliary network, we use notation:�i = kji for the only rea
tion Ai ! Aj , or �i = 0.For every rea
tion of the initial network,Ai ! Al,a linear operators Qil 
an be de�ned by its a
tionon the basis ve
tors, 
�(i) i:Qil(
�(i) i) = 
li; Qil(
�(p) p) = 0 for p 6= i: (46)Lemma 2. The kineti
 equation for the wholerea
tion network (9) 
ould be transformed to theformd
dt =Xi 0�1 + Xl; l6=�(i) kli�i Qil1A 
�(i) i�i
i= 0�1 + Xj;l (l6=�(j)) klj�j Qjl1AXi 
�(i) i�i
i= 0�1 + Xj;l (l6=�(j)) klj�j Qjl1A ~K
; (47)
where ~K is kineti
 matrix of the kineti
 equation forthe auxiliary network. �By 
onstru
tion of auxiliary dynami
al system,kli < �i if l 6= �(i), and for rea
tion networks withwell separated 
onstants kli � �i. Noti
e also thatthe matrix Qjl does not depend on rate 
onstantsvalues.For matrix ~K we have the eigenbasis in expli
itform. Let us represent system (47) in this eigenbasisof ~K. Any matrix B in this eigenbasis has the formB = (~bij), ~bij = liBrj =Pqs liqbqsrjs, where (bqs) ismatrix B in the initial basis, li and rj are left and22



right eigenve
tors of ~K (27), (28). In eigenbasis of ~Kthe estimates of eigenvalues and estimates of eigen-ve
tors are mu
hmore eÆ
ient than in original 
oor-dinates: the system is strongly diagonally dominant.Transformation to this basis is an e�e
tive pre
ondi-tioning for the perturbation theory that uses auxil-iary kineti
s as a �rst approximation to the kineti
sof the whole system.Estimates for Perturbed Ergodi
 SystemsLet us 
onsider a strongly 
onne
ted networkwith kineti
 matrix K. The 
orresponding kinet-i
s is ergodi
 and there exists unique normalizedsteady state 
�i > 0,Pi 
�i = 1. For ea
h i we de�ne�i = Pj kji. The number ��i is the iith diagonalelement of unperturbed kineti
 matrix K.Let this network be perturbed by outgoing rea
-tions Ai ! 0. The perturbation has the \loss form":the perturbedmatrix isK�diag("i�i), perturbationof ea
h diagonal element is relatively small (diag isthe diagonal matrix).The perturbations "i�i are relatively small withrespe
t to �i, but not obligatory small with respe
tto other rate 
onstants.First, we do not assume anything about value of"i � 0 and make the following transformation. Foran arbitrary normalized ve
tor r (ri � 0,Pi ri = 1)we add to the network rea
tions Ai ! Aj with rea
-tion rates qji = rj"i�i. We use Q(r) for the kineti
matrix of this additional network. Simple algebragivesQ(r) + diag("i�i) = ["1�1r; "2�2r; :::"n�nr℄= r("1�1; "2�2; :::"n�n): (48)Here, in the right hand side we have a matrix, all
olumns of whi
h are proportional to the ve
tor r,this is a produ
t of r on the ve
tor-rawof 
oeÆ
ients.We represent the perturbed matrix in the formK�diag("i�i) = K +Q(r) � (Q(r) + diag("i�i)).Theorem 3. There exists su
h normalized posi-tive r� that (K +Q(r�))r� = 0. This r� is an eigen-ve
tor of the perturbed network with the eigenvalue� =Pi r�i "i�i, and, at the same time, it is a steady-state for the network with kineti
 matrixK+Q(r�).To prove existen
e it is suÆ
ient to mention, thatfor any r the network with kineti
 matrix K +Q(r)has unique positive normalized steady state 
�(r),whi
h depends 
ontinuously on r. The map r 7!
�(r) has a �xed point r� (the Brouwer �xed pointtheorem). �

This representation allows us to produ
e usefulestimates, for example, when the unperturbed sys-tem is a 
y
le, we �nd jr�i � 
�i j < 3"j
�i j under 
on-dition " < 0:25, where " = P "i. Formula for the�rst 
orre
tion gives (r� = 
�i + Æri, w = ki
�i ):Æri = viki ; vi = v + w iXj=1("
�j � "j);v = wn nXi=1 i("
�i � "i): (49)For more 
omplex networks, the expli
it formulasfor 
orre
tions 
ould be produ
ed on the base of thenetwork graphs, similar to the steady-state formu-las, presented, for example, by Yablonskii, Bykov,Gorban, & Elokhin (1991).So, the asymptoti
 analysis gives good approxi-mation of eigenve
tors and eigenvalues for kineti
matrix. The 
ondition number is big (unbounded)but these estimates work even better when the 
on-stants be
ome more separated. Nevertheless, some
aution is needed: the error is proven to be small,but the residuals (the values kKr� �rk for approx-imations of r and �) may be not small (Gorban &Radules
u (2008)).
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