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The paper has two goals:

(1) It presents basic ideas, notions, and methods for reduction of reaction kinetics models: quasi-steady-state, quasi-equilibrium,

slow invariant manifolds, and limiting steps.

(2) It describes briefly the current state of the art and some latest achievements in the broad area of model reduction in chemical

and biochemical kinetics, including new results in methods of invariant manifolds, computation singular perturbation,

bottleneck methods, asymptotology, tropical equilibration, and reaction mechanism skeletonization.
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Introduction
Three eras (or waves) of chemical dynamics can be

associated with their leaders [1]: the van’t Hoff wave

(the first Nobel Prize in Chemistry, 1901), the Semenov–

Hinshelwood wave, and the Aris wave. The problem of

modelling of complex reaction networks was in the focus of

chemical dynamics research since the invention of the

concept of ‘chain reactions’ by Semenov and Hinshel-

wood (the shared Nobel Prize in Chemistry, 1956). Aris’

activity was concentrated on the detailed systematization

of mathematical ideas and approaches for the needs of

chemical engineering. In the engineering context, the

problem of modelling of complex reactions became even

more important.

A mathematical model is an intellectual device that works

[2]. Creation of such working models is impossible with-

out the well developed technology of model reduction.

Therefore, it is not surprising that the model reduction
Current Opinion in Chemical Engineering 2018, 21:48–59 
methods were developed together with the first theories

of complex chemical reactions. Three simple basic ideas

have been invented:

� The Quasi-Equilibrium approximation or QE (a fraction

of reactions approach their equilibrium fast enough

and, after that, remain almost equilibrated).

� The Quasi Steady State approximation or QSS (some of

species, very often these are some of intermediates or

radicals, exist in relatively small amounts; they reach

quickly their QSS concentrations, and then follow, as a

slave, the dynamics of these other species remaining

close to the QSS). The QSS is defined as the steady

state under condition that the concentrations of other

species do not change.

� The limiting steps or bottleneck is a relatively small part

of the reaction network, in the simplest cases it is a

single reaction, which rate is a good approximation to

the reaction rate of the whole network.

More precise formal discussion is presented in the fol-

lowing sections.

In 1980s–1990s the model reduction technology was

enriched by several ideas. Most important of them are:

the Method of Invariant Manifolds (MIM) theory and

algorithms [3�,4�], the special Intrinsic Low Dimensional

Manifold (ILDM) method for approximation of slow

motion [5�], the Computational Singular Perturbation

(CSP) method for the iterative approximation of both

slow and fast motions [6�], and the sensitivity analysis of

complex kinetic systems [7�].

Development of lumping analysis was important for

general understanding of model reduction in chemical

kinetics [8�]. The lumped species is considered as a linear

combination of the original ones. These combinations are

often guessed on the basis of known kinetic properties

and can be improved by iterative methods and observer
www.sciencedirect.com
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theory. The standard examples are: the lumped species

are identified as the sums of species in selected groups (a

very popular approach with many practical applications, e.

g., [9]); the lumped species are the numbers of links and

structural fragments of various types and in different

states (this approach has many applications, from petro-

chemistry [10] and modelling of intracellular networks

[11] to the Internet dynamics [12�]).

The main achievements of this period (1980s–1990s) in

model reduction were summarized in several books and

surveys [13,14,15�,16].

The technological elaboration of these ideas and assimila-

tion of those by the modelling practice took almost thirty

years. Much efforts have been invested into computational

improvements and testing with the systems of various

complexity. Some new ideas were proposed and developed.

The QE, QSS, MIM, and CSP methods can be applied to

any differential equation with explicit or implicit (hid-

den) separation of time. They use the structure of reac-

tion network as a tool for creation of kinetic equations. In

the classical methods, only the limiting step approach (the

bottleneck method) works directly with the reaction

graph. Recently, the model reduction methods which

use the structure of the reaction network, were developed

far enough and attract many different techniques, from

sensitivity analysis to algebraic geometry and tropical

mathematics.

The first step in the next section is a ‘step backwards’, a

brief introduction of the classical methods. Then we

move to modern development.

QE, QSS, MIM and CSP in ODE framework
Formally, the standard models of chemical kinetics are

systems of Ordinary Differential Equations (ODE). The

general framework looks as follows. Let U be a bounded

domain in Rn. Assume that vector fields Ffast(x) and Fslow(x)
are defined and differentiable in a vicinity of U (in real

applications these vector fields are usually analytical, or

even polynomial or rational). Let U be positively invariant

with respect to Ffast(x) and Fslow(x). Consider dynamical

system with the explicit fast–slow time separation:

dx

dt
¼ FslowðxÞ þ 1

e
FfastðxÞ; ð1Þ

where e > 0 is a small parameter. The fast subsystem is

dx

dt
¼ FfastðxÞ: ð2Þ

Here, time t is used to stress that this is the ‘fast time’,

t = t/e. If the fast system (1) converges to an
www.sciencedirect.com 
asymptotically stable fixed point in U and has no fixed

points on the border of U then for sufficiently small e the

slow vector field becomes practically invisible in the

dynamics of (1), that is there is no slow dynamics.

Let the fast system (2) be neither globally stable nor

ergodic in U. Assume that it has the conservation laws bi(x)
(i = 1, . . . , k) and for each x0 2 U the fast system on the

set bi(x) = bi(x0) converges to a unique stable fixed point

x*(b), where b is the vector of values bi(x). Then the slow

system describes dynamics of conservation laws b:

db

dt
¼ Dbx¼x�ðbÞ½Fslowðx�ðbÞÞ�; ð3Þ

where Dbx¼x�ðbÞ is differential of b(x) at the point x*(b). For

linear conservation laws Db = b and the slow equations

have the simple form

db

dt
¼ b½Fslowðx�ðbÞÞ�: ð4Þ

The QE manifold is parametrized by the conservation

laws with functions x*(b). It should be stressed that the

slow equations in their natural form (3) and (4) describe

the dynamics of the conservation laws b and not the

dynamics of the selected ‘slow coordinates’. The problem

of projection onto slow manifold is widely discussed

[17�,18,19�]. According to the Tikhonov theorem, dynam-

ics of the general system (1) from an initial state x0 under
the given assumptions can be split in two stages: fast

convergence to the QE manifold x*(b) (the initial layer,
convergence to a small vicinity of x*(x0)), and then slow

motion in a small vicinity of the QE manifolds.

The QE assumption is the separation of reactions onto slow

and fast: Fslow includes all the terms from the slow reactions,

Ffast includesall thetermsfromthefast reactionsandtheslow

manifold x*(b) consists of equilibria of the fast reactions

parametrized by the conservation laws. The

‘thermodynamic’ behaviour of fast reactions (convergence

to equilibrium, which is unique for any given values of the

conservation laws) is essential to application of the Tikhonov

theorem. Slow reactions can be extended by including exter-

nalfluxes, they donotchangethe asymptotic form(3)and (4).

Combining of fast subsystems from the fast reactions is so

popular [20] that a special warning is needed: there exists

another widely used approximation without separation of

reactions into fast and slow (see QSS below).

It should be stressed that the physical and chemical

nature of the convergence to equilibrium of fast reactions

may vary. It may follow from thermodynamic conditions

like principle of detailed balance or semi-detailed bal-

ance. It may have also completely algebraic nature. For
Current Opinion in Chemical Engineering 2018, 21:48–59
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example, any linear (monomolecular or pseudomonomo-

lecular) system tends to a fixed point, which is unique for

any given values of conserved quantities. The mass action

law systems with reactions ‘without interaction of differ-

ent substances’ ariAi !
P

jbrjAj provide us with another

example [21] (here Ai are the components, r is the number

of reaction, and the coefficients are non-negative

integers).

The QSS approximation does not separate the reactions

into slow and fast. Usual application of the QSS is the

slaving dynamics of the active intermediates in combus-

tion (Semenov) or in catalysis (Hinshelwood). The stable

reagents participate in the same reactions as the inter-

mediates do and, therefore, we cannon consider them as

‘slow’ reagents. The nature of small parameter in this case

is very different [22]. It is the smallness of the amount of

intermediates. Let us illustrate this small parameter for

heterogeneous catalytic reactions [23]. We use notations:

V is the volume of reactor, S is the surface of catalyst, Ng is

the vector of amounts of the gas components, Ns is the

vector of amounts of the surface components, cg = Ng/V,
cs = Ns/S. Let us measure V and S in moles (i.e. we use PV/
RT for some average values of the pressure P and tem-

perature T instead of V and the number of moles of active

centres on the surface instead of S) for creation of dimen-

sionless variables. The kinetic equations are:

dN g

dt
¼ SFgðcg; csÞ; dN s

dt
¼ SFsðcg; csÞ;

where Fg and Fs are combined from the reaction rated per

unit surface (mole of active centres). Notice that usually

in the selected units S � V (if the pressure is not

extremely low). Under given V, we can write equations

with a small parameter e ¼ S
V.

dcg
dt

¼ eFgðcg; csÞ; dcs
dt

¼ Fsðcg; csÞ:

After the change to the slow timescale, u ¼ S
V t we get the

slow and fast subsystems:

_c g ¼ Fgðcg; csÞ; _c s ¼ 1

e
Fsðcg; csÞ: ð5Þ

If the fast dynamics of cs tends to the asymptotically stable

fixed point (quasi-steady-state) c�s ðcgÞ for any fixed value

of cg then we return to the previously described situation:

the motion can be separated into two steps: first, cs goes
fast into a small vicinity of c�s ðcgÞ (initial layer) and then cg
slowly changes in vicinity of this manifold.

In the QSS approximation, the smallness of amount of

intermediates is the crucial assumption. There may be
Current Opinion in Chemical Engineering 2018, 21:48–59 
various explanation of this smallness. For example, in

catalysis this is the smallness of the amount of the cata-

lyst. In combustion, the high activity of the intermediates

leads to their short life time.

The list of variables for QSS exclusion can change in time.

The smallness of concentration can serve as a criterion for

the extension/reduction of this list [19�]. The ‘speed

coefficients’ were introduced recently [24] for ranking

variables according to how quickly their approach their

momentary steady-state. These coefficients are used for a

straightforward choice of variables for QSS elimination,

while preserving dynamic characteristics of the system.

In addition to the different nature of small parameters,

the QSS differs from the QE in one more essential aspect:

for the QE, the fast system is just chemical kinetics of the

set of fast reactions. It has all the thermodynamic proper-

ties expected for the chemical kinetics equations, like

positivity of entropy production. It cannot have bifurca-

tions, oscillations, etc. The slow system in the QE approx-

imation also has the thermodynamic properties. This is a

particular case of the general theorem about the preserva-
tion of the type of dynamics: the QE approximation and the

fast subsystem inherit thermodynamic behaviour from

the original system [25]. This property makes QE a

promising initial approximation for various iterative

model reduction procedures [25].

In the QSS, the fast system can have many steady states,

oscillation, etc. These critical effects in the QSS approach

are considered as the symptoms of physical critical

effects, for example ignition: the original system with

thermodynamic behaviour has no bifurcations but just

high sensitivity, at the same time the fast system in the

QSS approximation has bifurcations.

If the fast system does not converge to equilibrium then

the methods of averaging can work [26]. Instead of partial

equilibria or quasi-steady-states the so-called ‘ergodes’

are used (subsets, on which the fast systems are ergodic).

All the methods of invariant manifold in chemical kinetics

were introduced for generalization and improvement of

the QE and QSS. The earliest prototype was the

Chapman–Enskog method in the kinetic foundation of

fluid dynamics but this method used the Taylor series

expansion in powers of a small parameter. The second

approximation from this series is already singular. The

iterative MIM was developed for the Boltzmann equa-

tions for correcting these singular properties of the

Chapman–Enskog expansion [4�,27��] and for solution

of Hilbert’s 6th Problem [28]. The mathematically rigor-

ous version of the Chapman–Enskog method for finite-

dimensional ODEs was developed by Fenichel [29] and

was used as the prototype in many later works (see the

collection of papers [30]).
www.sciencedirect.com
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Fast equilibria 

Small amounts

αp1 A1

αp2 A2

αpn An

...
...

βp1 A1

βpn An

βp2 A2

Current Opinion in Chemical Engineering

The Michaelis–Menten–Stueckelberg limit: intermediates B are in

fast equilibrium with reagents Ai and are present in small amount

(QSS). This limit results in mass action law for the brutto reactions

between Ai.
Combination of the QE and QSS assumptions (fast partial

equilibria and small amounts of intermediates, for exam-

ple) leads to important general results. It was used in

1913 by Michaelis and Menten. They proved that under

this assumption the intermediates could be completely

excluded from kinetic equations and the resulting kinet-

ics will obey mass action law again. In 1952, Stueckelberg

used this QE+QSS combination for proving the semi-

detailed balance condition for Boltzmann’s equations

(later, this condition was rediscovered and popularized

as the complex balance condition. The detailed review was

presented and the general Michaelis–Menten–Stueckel-

berg asymptotic theorem was formulated and proved in

[31�,32] (see Figure 1).

If there exist no fast equilibria (no QE), then the QSS

approximation alone does not lead to the simple mass

action law after exclusion of the intermediates. Never-

theless, if the mechanism of the intermediates transitions

is linear then the explicit analytic expressions for the QSS

reaction rates are obtained [23]. The simplest of them, for

the enzyme (E)–substrate (S) reaction, S + E ? SE ! E
+ P, is known as the Michaelis–Menten kinetics (pro-

duced by Briggs and Haldane in 1925).

For non-linear reactions between intermediates, they

usually cannot be excluded from the equations analyti-

cally but an equation for the reaction rate can be pro-

duced. The method of kinetic polynomial gives the alge-

braic equation for the reaction rate [33�]. This equation

(the kinetic polynomial) is produced by the exclusion

methods (the constructive algebraic geometry) and is

successfully used in analysis of catalytic reactions.

The MIM aims to find the slow invariant manifold

(Figure 2) [3�,4�,34,19�]. Invariance has simple defini-

tions, both analytic and geometric ones. Consider a
www.sciencedirect.com 
system of ODE, _x ¼ FðxÞ. Imagine that we found such

a (nonlinear) coordinate transformation after that the

vector x is represented as a direct sum x = y � z and

the equations have the form

_y ¼ Fyðy; zÞ; _z ¼ Fzðy; zÞ; ð6Þ

where Fy(0, z) = 0. This means that if y(0) = 0 then y(t)
= 0 for solutions of the system.

The manifold y = 0 is invariant with respect to the system.

Of course, it is not necessary to assume a global transfor-

mation with this property. We can use local transforma-

tions under condition that they define the same manifolds

y = 0 in intersections (to provide gluing of the local

pieces). The definition of slowness is much more sophis-

ticated. It can be done rigorously for systems with existing

slow parameters e using analytical continuations from the

very small values of e or from a vicinity of an attractor (e.g.

a stable fixed point) using separation of the relaxation

modes into fast and slow ones (e.g. separation of the

invariant subspaces of Jacobian by real parts of eigenva-

lues) [27��].

Far from these continuations, there exist two popular

heuristics: one used the eigenspaces of Jacobians in

various states [16], another relies on a special iteration

procedures (a special version of the Newton–Krylov

method) [13]. Both approaches converge to a slow mani-

fold for sufficiently small e or in a vicinity of an asymp-

totically stable equilibrium under some simple technical

conditions (see [13,35,36�]).

A special model reduction method, which utilized the

analytic continuation from a vicinity of a fixed point and

Lyapunov auxiliary theorem was developed [37].

The CSP looks for more than just a slow manifold. It tries

to find the complete slow-fast decomposition, that is to

transform the initial system of ODE _x ¼ FðxÞ into a

decoupled form

_y ¼ FyðyÞ; _z ¼ FzðzÞ; ð7Þ

where the non-diagonal terms (dependence of _y on z and

_z on y) vanish. Of course, this complete decomposition

could be rarely found explicitly (as well as the slow

invariant manifold) but the CSP tends to decrease the

non-diagonal terms iteratively. Again, the definition of

decomposition is simple and straightforward, but the

attribution of slow/fast properties may be complicated

and can be done rigorously for families of systems with a

small parameter or near a stable attractor. Relations

between QE, QSS, and CSP were analysed in a series

of works [38,39]. The classical heuristic for the slow-fast
Current Opinion in Chemical Engineering 2018, 21:48–59
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Slow invariant manifold.
CSP decomposition used the eigenvectors and eigen-

spaces of the Jacobians at all states but very recently

one of the inventors of the CSP proposed a direct iteration

method, which can lead to the same result avoiding

expensive calculations of the eigenvalues and eigenvec-

tors in transient states [40��].

During the last decade much work was done to improve

the computational efficiency and extend the area of

applicability of the MIM and CSP. In particular, a grid-

based computational method for slow invariant manifolds

was elaborated [41].

The method of Reaction–Diffusion Manifolds (REDIM)

[42,43�,44] was developed to extend the MIM for han-

dling the diffusion processes in combustion problems

[43�]. It represents a modification of the Film Equation

[13,14] and of functional iteration technique [3�] to

approximate a slow invariant manifold for a reaction–

diffusion system. Recently, the REDIM method was

improved to be able to generate and to approximate a

slow manifold of arbitrary dimension by employing its

hierarchical structure [43�]. The REDIM was applied for

model reduction in various combustion systems.

The CSP was generalized and implemented as a part of a

general strategy for analysis and reduction of uncertain

chemical kinetic models [45�].
Current Opinion in Chemical Engineering 2018, 21:48–59 
Lumping analysis was reformulated as a particular case of

MIM [46] and computational possibilities of this approach

were tested. The reaction rate constants are usually

defined with uncertainty. A Bayesian automated method

was implemented for robust lumping for systems with

parameter variability [47]. The method works stepwise,

reducing the system’s dimension by one at each step.

The theory and methods of invariant manifolds are used

for modern development of the theory of critical simpli-

fication. In 1944, Lev Landau noticed that near the loss

of stability the amplitude of the emergent ‘principal

motion’ satisfies a very simple equation. It is an example

of the ‘bifurcational parametric simplification’. In chem-

ical kinetics, the concept of ‘critical’ simplification was

proposed in chemical kinetics by Yablonsky and Lazman

for the oxidation of carbon monoxide over a platinum

catalyst using a Langmuir–Hinshelwood mechanism

(see [33�]). The main observation was a simplification

of the mechanism at ignition and extinction points. This

is a very general phenomenon known for various bifur-

cations. For the equations of chemical kinetics, the

theory of critical simplification was developed recently

[48�] using the constructive theory of invariant

manifolds.

Various methods of construction of slow invariant mani-

folds were tested and compared using a simple example
www.sciencedirect.com
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[49�]. Method of invariant grids [41] was employed in this

work for iteratively solving the invariance equation. Vari-

ous initial approximations for the grid are considered such

as QE, Spectral QE, ILDM and Symmetric Entropic

ILDM (proposed earlier [19�]). Slow invariant manifold

was also computed using CSP method. A comparison

between method of invariant grids and CSP is also

reported. Although CSP and the tested MIM are based

on completely different construction of iterations, the

comparison shows very similar results in terms of accuracy

of slow invariant manifold description.

Thermodynamics gives a convenient opportunity to for-

mulate the QE assumption. If the fast reactions obey

thermodynamics then the corresponding thermodynamic

potential is a Lyapunov function: it should change mono-

tonically along the fast motion [23,13,50,51], and QE can

be described as a conditional extremum (i.e. maximum

for entropies and free entropies or minimum for free

energies) of the thermodynamics potential. In this for-

malism the reactions are not needed, only the plane of fast

motion is necessary. This simple idea [19�] gave rise to

many ‘constrained equilibria’ approximations [52�,53�].
For example, a new version of the QE was proposed, the

spectral QE manifold, that consists of partial equilibria in

the planes of fast motions, which are parallel to fast

eigenspaces of Jacobian at equilibrium [54].

Thermodynamics was used for comparing all reversible

reactions by the same measure: entropy production. It

was proposed to exclude almost equilibrated reversible

reactions from the reaction mechanism [55]. The dis-

tance from the reaction equilibrium was measured by

entropy production. The total entropy production

should not change significantly in this procedure. (If

we assume the detailed balance, then the entropy

produced by a reversible reaction measures how far

is it from equilibrium.) This method was used for

defining of the compartments in the composition space

with the different reaction mechanism for hydrogen

combustion [56].

Recently, this method was re-engineered and applied to

auto-ignition of n-heptane with extraction of two skeletal

mechanisms, and for analysis of spatially varying premixed

laminar flames [57�]. For partially irreversible reactions,

there exist special Lyapunov functions as well [58�].

The fast–slow separation in the form (5) may be hidden

and should be revealed. Let us look on the system with

fast–slow separation (Figure 2). Two domains can be

distinguished there: the domain where the system change

is slow and the domain where the change is relatively fast.

Moreover, the fast area is expected to be larger (the

system ‘shrinks’ to the smaller-dimensional manifold of

slow motions). This heuristic idea gave rise to develop-

ment of a Singularly Perturbed Vector Fields (SPVF)
www.sciencedirect.com 
theory [59] and of a Global Quasi-Linearization (GQL)

approach in its framework [60].

In this way, the transformation to the explicitly decom-

posed form (5) is constructed by a linear interpolation of

the system vector field (1) from a randomized sample of

vectors x [59,61�,62,63]. The results of application of the

GQL and the QSS were systematically compared

[64�,65].

The model reduction methods based on the randomized

sampling and principal component analysis are system-

atically used under the name ‘Proper Orthogonal

Decomposition’ (POD) [66]. The POD is an a posteriori,

data dependent projection method. The data points are

either given by samplings from experiments or by trajec-

tories of the physical system extracted from simulations

of the full model (the so-called ‘snapshots’). This point of

view is often translated into the question: ‘Find a sub-

space approximating a given set of data in an optimal

least-squares sense’ [67]. Various linear and non-linear

versions and generalizations of the principal component

analysis are applied for dimensionality reductions of

snapshots [68]. In particular, a modification of the

POD with preservation of some original state variables

is proposed [69].

We can expect intensive development of new model

reduction methods with applications of the classical

and new data mining techniques: independent component

analysis, various methods of clustering, artificial neural

networks, and other machine learning methods. For

example, the profile likelihood approach allows solving

the model reduction problem together with the identifi-

cation problem and analysis of parameter identifiability

and designates likely candidates for reduction. The fol-

lowing references demonstrate some other recent efforts

in this direction [70–75,76�,77].

Reaction networks, limiting steps, and
dominant paths
Most of the methods described above can be applied to

more general systems of ODE than reaction networks.

They exploit the slow-fast separation and some of them

utilize the thermodynamic Lyapunov functions (like QE

[19�]). More rarely, the model reduction methods employ

both the thermodynamic functions and reaction mecha-

nism, like, for example, the method for extraction of

skeletal mechanisms comparing entropy production by

various reversible reactions [57�].

There exists a family of the model reduction methods,

which intensively use the structure of reaction networks.

The oldest, simplest, and, perhaps, the most used method

of model reduction in chemical kinetics is the method of

limiting step — or bottleneck [78].
Current Opinion in Chemical Engineering 2018, 21:48–59
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Consider systems obeying mass action law: the reaction

rate r of the reaction
P

iariAi !
P

ibriAi is rr ¼ kr
Q

i c
ai
i ,

where Ai are the components, index r is a reaction

number, ari and bri are non-negative stoichiometric

coefficients, kr is the reaction rate constant, and ci is
the concentration of Ai. The stoichiometric vector of

the reaction gr has coordinates gri = bri � ari. The

kinetic equations (under constant volume) are

_c ¼
X

r

rrgr;

where k is the reaction number.

A chain of linear irreversible reactions with non-zero rate

constants A1 ! A2 ! . . . ! Am has m non-zero eigen-

values of the kinetic equation matrix, which coincide with

�ki, where ki (i = 1, . . . , m � 1) is the reaction rate

constant of the reaction Ai ! Ai+1. Therefore, the relaxa-

tion rate is determined by the smallest constant. In a

irreversible cycle A1 ! A2 ! . . . ! Am ! A1 the smal-

lest constant determines the stationary reaction rate.

Indeed. in a steady state all the reaction rates in such a

cycle should be equal: kici ¼ kjcj ¼ w. Therefore, in a

steady state ci ¼ w=kj , and w ¼ P
ici=

P
jð1=kjÞ. If

0 < k1 < eki (i 6¼ 1) then

k1
P

ici > w > k1
P

ici=ð1 þ meÞ. If 0 < e � 1/m then

w � k1
P

ici. The relaxation time for an irreversible cycle

with limiting step is inverse second reaction rate constant

[79��]. Indeed, the simple calculations show that for

sufficiently small e the minimal non-zero eigenvalue of

the kinetic matrix is close to the second constant in order.

The simple and widely used idea of the limiting steps was

transformed into calculation of the hierarchical dominant
Figure 3

(a) (b) 

Aj

maxl {kli }kjiAi
C1 C2

Att(C1) Att(C2)

Hierarchical dominant path for linear system: (a) for each component retain

remains only dominant output and the reaction graph becomes a discrete d

(or fixed points); (c) cycles are glued in points, the output reactions are reno

are glued. Then return to the step (a) for the new network. Iterate until all th

points. This hierarchy of networks represents the hierarchical dominant path

eigenvalues of the initial network [78,82,79��].
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paths (Figure 3) for multiscale reaction networks [79��].
Consider linear reaction network Ai ! Aj with reaction

rate constants kji. Assume that in each reaction ‘fork’ there

exists a dominant reaction (Figure 3a): if kji = maxl{kli}
then kqi/kji < e for some small parameter e and any

q 6¼ j. Delete all the non-dominant reactions from the

network. As a result, each component Ai will have only

one outgoing reaction. Thus, the network is transformed

into a discrete dynamical systems, where Ai are states and

reactions are transitions. Every motion in such a dynam-

ical system is attracted by a cycle or a fixed point

(Figure 3b).

This is not the end of the story. Find for every cycle C the

quasi stationary distribution: if we numerate the compo-

nents in the cycle in the order of reactions A1, . . . , Ak

then cQS
i ¼ 1

ki
=
P

j
1
kj
, where ki is the reaction rate constant

of the reaction Ai ! . . . from the cycle. Glue cycles into

new vertices with the constants of outgoing reactions

multiplied by cQS
i (Figure 3c). Iterate the steps a-c of

the analysis. The procedure will converge in the finite

number of steps. We obtain a hierarchical dominant path:

first, reaction converges to cycles (or fixed points), then,

slower, to cycles of cycles, etc. It is proven [79��] that the

eigenvalues and eigenvectors of the initial network are

well approximated by this procedure for sufficiently small

e. This approach was successfully applied to modelling

the mechanisms of microRNA action [80,81�] and other

biochemical reactions [82].

In order to find the dominant subsystems and paths in

nonlinear reaction networks, the methods of tropical

(max,+) algebras were employed [83�,84]. The notion

of tropical equilibration was elaborated that provides

approximate descriptions of the slow invariant manifolds.

Compared to computationally expensive numerical
(c)

Cq

Att(C2)

Ai

Aj

Ai

kji
1A

Aj
kji ci

QS

1QS

C
lc

C
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 the output reaction with maximal reaction rate: in each reaction ‘fork’

ynamic system; (b) this discrete dynamic system converges to cycles

rmalized. A new reaction graph is constructed, where some vertices

e trajectories of the discrete dynamical system converge to fixed

 and provides us with asymptotic formulas for eigenvectors and
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algorithms such as the CSP, the tropical approach is

symbolic. It operates by the orders of magnitude instead

of precise values of the model parameters. The tropical

methods provide identification of metastable regimes,

defined as the low dimensional regions of the phase space

close to which the dynamics is much slower compared to

the rest of the phase space. These metastable regimes

depend on the network topology and on the orders of

magnitude of the kinetic parameters.

The local asymptotics of the algebraic curves are

described by the tropical (or min-plus) systems of equa-

tions on their dominant exponents following the Newton

polygon method. A necessary (tropical) condition of

being a solution is the coincidence of the dominant

orders of growth of at least of two monomials of the

equation. These conditions  provide a system of linear

inequalities in the dominant exponents which one can

handle by means of the known algorithms for linear

programming. Thus, the problem of solving a system

of algebraic equations is reduced to a combinatorial one

of determining the dominant monomials. Since solving

tropical systems is easier in general than solving alge-

braic systems, one can get a benefit in calculating

asymptotics.

Extensive application of this method to biochemical

network models demonstrates that the number of dynam-

ical variables in the minimal models of large biochemical

networks may be rather small and the number of meta-

stable regimes is sub-exponential in the number of vari-

ables and equations [85]. The dynamics of the network

can be described as a sequence of jumps from one

metastable regime to another. A geometrically computed

connectivity graph restricts the set of possible jumps. The

graph theoretical symbolic preprocessing method signifi-

cantly reduces computational complexity of the analysis

of reaction networks and computation of parameter

regions for networks multistationarity [86].

Model reduction is a necessary tool for model composi-

tion in chemistry and biochemistry of large reaction net-

works [87]. The model should be reduced even before its

creation [19�]. The full model can be imagined but its

identification and reliable verification is often impossible.

To obtain the model that works, we have to reduce the

full model before identification. More precisely, model

identification and model reduction should be combined

in one process. There are several attempts of such an

approach. For example, the combination of model reduc-

tion and parameter estimation based on Rao-Blackwel-

lised particle filters decomposition methods was proposed

for non-linear dynamical biochemical networks [88] and

tested successfully on synthetic and experimental data.

Asymptotology [79��] and tropical asymptotics [83,84]

operate by the orders of smallness rather than by
www.sciencedirect.com 
computational accuracy and aim to find the limit

‘skeleton’ of the reaction mechanism (under some addi-

tional conditions like preservation of connectivity or

persistence).

Simultaneously, a new technique for model reduction was

developed on the basis of the idea of controllable accuracy

and error propagation [89]. A geometric error propagation

method creates a hierarchy of increasingly simplified

kinetic schemes containing only important chemical

paths. ‘Importance’ is defined using preset accuracy tar-

gets and user-defined error-tolerance. The proposed tech-

nology operates with large and very large reaction mech-

anisms (hundreds and thousands of reactions). The model

reduction in this technology is intrinsically connected to

model identification and validation procedures: model

reduction is an important component of these operations.

For example, the advanced Directed Relation Graph with

Error Propagation and Sensitivity Analysis (DRGEPSA)

method was developed [90�]. Two skeletal mechanisms

for n-decane were generated by this method from a

detailed reaction mechanism for n-alkanes. The detailed

mechanism included 2115 species and 8157 reactions

[90�].

Another reaction mechanism reduction method, Simula-

tion Error Minimization Connectivity Method (SEM-

CM) produces several consistent mechanisms, which

include the preselected important species [91]. It starts

from the preselected important species and adds strongly

connected sets of species. These strongly connected sets

are identified using the Jacobian (sensitivities).  This

growth of the mechanism is controlled by the simulation

accuracy and is terminated when the required accuracy is

achieved. The method was tested on the reaction mech-

anism with 6874 reactions of 345 species. The reduced

mechanism included 246 reactions of 47 species, and

numerical simulations became two orders faster [91].

Various methods of reaction mechanism ‘surgery’ is now

one of the hottest topics in reduction of large and very

large models in chemical engineering [57�,92–95]. Sur-

prisingly, the geometric details of this analysis seem to be

very close to the geometric methods of asymptotology

and tropical asymptotic.

For large and very large reaction systems, the reaction

graph can be considered as an analogue of a geographic

map of a large area. For such large graphs, lumping is close

to zooming of maps. Zooming provides users by a tool for

work on various levels of model granularity [96] and gives

a possibility to study interaction between processes at

different levels of the hierarchy. The principle of seman-

tic zooming [97�] was used for development tools for

navigations at different levels, similarly to geographic

information systems [98�] (Figure 4).
Current Opinion in Chemical Engineering 2018, 21:48–59
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Figure 4

M-phase
G2-phase

S-phase

G1-late
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Principle of semantic zooming exploited by NaviCell tool [97�] for visualizing complex reaction networks in cancer biology. Semantic zooming can

be considered as a simple application of lumping for gradual hiding the details of complex molecular mechanisms.
Conclusion
Three components of model reduction methodology are

proved to be useful:

� Universal approaches developed for general finite-

dimensional or even infinite dimensional systems (slow

invariant manifolds, geometric singular perturbation

theory, etc.). For them, chemical dynamics is an impor-

tant source of challenges and applications.

� Thermodynamic approaches, which utilize the basic

physical and chemical structures.

� Algebraic approaches based on analysis of reaction

mechanism.

Interaction and mutual enrichment of these techniques

will provide the future development of the efficient

model reduction for better computational performance

and deeper understanding of chemical dynamics.
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Theodoropoulos C (Eds): Model Reduction and Coarse-Graining
Approaches for Multiscale Phenomena. Berlin–Heidelberg–New
York: Springer; 2006.

31.
�

Gorban AN, Shahzad M: The Michaelis–Menten–Stueckelberg
theorem. Entropy 2011, 13:966-1019.

Chemical reaction networks with complex mechanisms are studied under
two assumptions: (i) intermediates are present in small amounts (QSS)
and (ii) they are in equilibrium relations with substrates (QE). Under these
assumptions, the generalized mass action law together with the basic
relations between kinetic factors, are proven. These relations are suffi-
cient for the positivity of the entropy production but hold even without
microreversibility, when the detailed balance is not applicable. No a priori
form of the kinetic law for the chemical reactions is used. The equilibria
are described by thermodynamic relations.

32. Gorban AN, Kolokoltsov VN: Generalized mass action law and
thermodynamics of nonlinear Markov processes. Math Model
Nat Phenom 2015, 10:16-46.

33.
�

Marin G, Yablonsky GS: Kinetics of Chemical Reactions. Decoding
Complexity. Weinheim: John Wiley & Sons; 2011.

A modern textbook in chemical kinetics, experimental and theoretical,
fundamental and applied. In particular, in Chapter 9 the theory of kinetic
polynomials is presented.

34. Singh S, Powers JM, Paolucci S: On slow manifolds of
chemically reactive systems. J Chem Phys 2002, 117:1482-
1496.

35. Kaper HG, Kaper TJ, Zagaris A: Geometry of the computational
singular perturbation method. Math Model Nat Phenom 2015,
10:16-30.

36.
�

Wu X, Kaper TJ: Analysis of the approximate slow invariant
manifold method for reactive flow equations. J Math Chem
2017, 55:1-30.

Approximate Slow Invariant Manifold method is carefully analysed for
reaction–diffusion equations with slow and fast reaction kinetics. The
second-order errors were precisely evaluated. The results were also
illustrated with a simple benchmark model.

37. Kazantzis N, Kravaris C, Syrou L: A new model reduction method
for nonlinear dynamical systems. Nonlinear Dyn 2010, 59:183-
194.

38. Goussis DA: Quasi steady state and partial equilibrium
approximations: their relation and their validity. Combust
Theory Model 2012, 16:869-926.

39. Goussis DA: Model reduction: when singular perturbation
analysis simplifies to partial equilibrium approximation.
Combust Flame 2015, 162:1009-1018.

40.
��

Lam SH: An efficient implementation of computational
singular perturbation. Combust Sci Technol 2018, 190:157-163.

An efficient formulation of computational singular perturbation without
calculation of Jacobian eigenvectors and eigenvalues is proposed and
tested on simple example.

41. Gorban AN, Karlin IV, Zinovyev AY: Invariant grids for reaction
kinetics. Physica A 2004, 333:106-154.

42. Bykov V, Maas U: The extension of the ILDM concept to
reaction–diffusion manifolds. Combust Theory Model 2007,
11:839-862.

43.
�

Neagos A, Bykov V, Maas U: Adaptive hierarchical construction
of reaction–diffusion manifolds for simplified chemical
kinetics. Proc Combust Inst 2017, 36:663-672.

The concept of slow manifold was successfully implemented for reaction-
–diffusion equations. The method of Reaction–Diffusion Invariant Mani-
folds (REDIM) was developed.

44. Strassacker C, Bykov V, Maas U: REDIM reduced modeling of
quenching at a cold wall including heterogeneous wall
reactions. Int J Heat Fluid Flow 2018, 69:185-193.

45.
�

Galassia RM, Valorani M, Najm HN, Safta C, Khalil M, Ciottoli PP:
Chemical model reduction under uncertainty. Combust Flame
2017, 179:242-252.

CSP is employed to generate simplified kinetic mechanisms, starting from
a detailed reference mechanism with uncertainty. Uncertainty is modelled
by random rate constants.
Current Opinion in Chemical Engineering 2018, 21:48–59

http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0055
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0055
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0055
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0060
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0060
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0065
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0065
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0070
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0070
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0070
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0075
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0075
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0080
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0080
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0080
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0085
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0085
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0085
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0090
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0090
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0090
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0095
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0095
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0110
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0110
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0110
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0125
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0125
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0125
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0100
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0100
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0105
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0105
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0115
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0115
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0115
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0120
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0120
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0120
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0140
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0140
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0130
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0130
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0130
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0135
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0135
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0160
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0160
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0165
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0165
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0165
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0145
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0145
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0150
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0150
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0150
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0155
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0155
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0170
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0170
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0170
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0175
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0175
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0175
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0180
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0180
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0180
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0185
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0185
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0185
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0190
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0190
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0190
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0195
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0195
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0195
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0200
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0200
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0205
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0205
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0210
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0210
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0210
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0215
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0215
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0215
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0220
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0220
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0220
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0225
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0225
http://refhub.elsevier.com/S2211-3398(18)30001-7/sbref0225


58 Reaction engineering and catalysis
46. Okeke BE, Roussel MR: An invariant-manifold approach to
lumping. Math Model Nat Phenom 2015, 10:149-167.

47. Dokoumetzidis A, Aarons L: A method for robust model order
reduction in pharmacokinetics. J Pharmacokinet Pharmacodyn
2009, 36:613.

48.
�

Gol’dshtein V, Krapivnik N, Yablonsky GS: About bifurcational
parametric simplification. Math Model Nat Phenom 2015,
10:168-185.

The conjecture that “maximal bifurcational parametric simplification”
corresponds to the “maximal bifurcation complexity” is studied using
the method of invariant manifold. The results are illustrated with the basic
multiplicity bifurcation of steady state and applied to the Langmuir
mechanism.

49.
�

Chiavazzo E, Gorban AN, Karlin IV: Comparison of invariant
manifolds for model reduction in chemical kinetics. Commun
Comput Phys 2007, 2:964-992.

A comparison of various methods of construction of slow invariant mani-
folds using a simple Michaelis-Menten catalytic reaction is presented.
Various initial approximations for the grid are tested such as QE, Spectral
QE, ILDM and symmetric entropic version of ILDM. A comparison between
the method of invariant grids and and CSP is also reported.

50. Hangos KM: Engineering model reduction and entropy-based
Lyapunov functions in chemical reaction kinetics. Entropy
2010, 12:772-797.

51. Hangos KM, Magyar A, Szederkényi G: Entropy-inspired
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