
Neural Networks 84 (2016) 28–38
Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Piece-wise quadratic approximations of arbitrary error functions for
fast and robust machine learning
A.N. Gorban a,∗, E.M. Mirkes a, A. Zinovyev b

a Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK
b Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, F-75005, Paris, France

h i g h l i g h t s

• The quadratic error functionals demonstrate many weaknesses for complex data.
• The back side of the non-quadratic error functionals is cost for optimization.
• New algorithms use Piece-wise Quadratic potentials of SubQuadratic growth (PQSQ).
• PQSQ-based algorithms are as fast as the fast heuristic methods but more accurate.
• PQSQ-based algorithms are computationally efficient for regularized sparse regression.

a r t i c l e i n f o

Article history:
Received 26 May 2016
Received in revised form 10 August 2016
Accepted 19 August 2016
Available online 30 August 2016

Keywords:
Data approximation
Nonquadratic potential
Principal components
Clustering
Regularized regression
Sparse regression

a b s t r a c t

Most of machine learning approaches have stemmed from the application of minimizing the mean
squared distance principle, based on the computationally efficient quadratic optimizationmethods. How-
ever, when faced with high-dimensional and noisy data, the quadratic error functionals demonstrated
many weaknesses including high sensitivity to contaminating factors and dimensionality curse. There-
fore, a lot of recent applications in machine learning exploited properties of non-quadratic error func-
tionals based on L1 norm or even sub-linear potentials corresponding to quasinorms Lp (0 < p < 1). The
back side of these approaches is increase in computational cost for optimization. Till so far, no approaches
have been suggested to deal with arbitrary error functionals, in a flexible and computationally efficient
framework. In this paper, we develop a theory and basic universal data approximation algorithms (k-
means, principal components, principal manifolds and graphs, regularized and sparse regression), based
on piece-wise quadratic error potentials of subquadratic growth (PQSQpotentials).We develop a new and
universal framework to minimize arbitrary sub-quadratic error potentials using an algorithm with guar-
anteed fast convergence to the local or global error minimum. The theory of PQSQ potentials is based on
the notion of the cone of minorant functions, and represents a natural approximation formalism based
on the application of min-plus algebra. The approach can be applied in most of existing machine learning
methods, including methods of data approximation and regularized and sparse regression, leading to the
improvement in the computational cost/accuracy trade-off. We demonstrate that on synthetic and real-
life datasets PQSQ-based machine learning methods achieve orders of magnitude faster computational
performance than the corresponding state-of-the-art methods, having similar or better approximation
accuracy.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Modern machine learning and artificial intelligence methods
are revolutionizing many fields of science today, such as medicine,

∗ Corresponding author.
E-mail addresses: ag153@le.ac.uk (A.N. Gorban), em322@le.ac.uk (E.M. Mirkes),

Andrei.Zinovyev@curie.fr (A. Zinovyev).

http://dx.doi.org/10.1016/j.neunet.2016.08.007
0893-6080/© 2016 Elsevier Ltd. All rights reserved.
biology, engineering, high-energy physics and sociology, where
large amounts of data have been collected due to the emergence of
new high-throughput computerized technologies. Historically and
methodologically speaking, many machine learning algorithms
have been based on minimizing the mean squared error potential,
which can be explained by tractable properties of normal
distribution and existence of computationally efficient methods
for quadratic optimization. However, most of the real-life datasets

http://dx.doi.org/10.1016/j.neunet.2016.08.007
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2016.08.007&domain=pdf
mailto:ag153@le.ac.uk
mailto:em322@le.ac.uk
mailto:Andrei.Zinovyev@curie.fr
http://dx.doi.org/10.1016/j.neunet.2016.08.007

A.N. Gorban et al. / Neural Networks 84 (2016) 28–38 29
are characterized by strong noise, long-tailed distributions,
presence of contaminating factors, large dimensions. Using
quadratic potentials can be drastically compromised by all these
circumstances: therefore, a lot of practical and theoretical efforts
have been made in order to exploit the properties of non-
quadratic error potentials which can be more appropriate in
certain contexts. For example, methods of regularized and sparse
regression such as lasso and elastic net based on the properties
of L1 metrics (Tibshirani, 1996; Zou & Hastie, 2005) found
numerous applications in bioinformatics (Barillot, Calzone, Hupe,
Vert, & Zinovyev, 2012), and L1 norm-basedmethods of dimension
reduction are of great use in automated image analysis (Wright
et al., 2010). Not surprisingly, these approaches come with
drastically increased computational cost, for example, connected
with applying linear programming optimization techniques which
are substantially more expensive compared to mean squared
error-based methods.

In practical applications of machine learning, it would be very
attractive to be able to deal with arbitrary error potentials, includ-
ing those based on L1 or fractional quasinorms Lp (0 < p < 1), in a
computationally efficient and scalable way. There is a need in de-
velopingmethods allowing to tune the computational cost/accuracy
of optimization trade-off accordingly to various contexts.

In this paper, we suggest such a universal framework able
to deal with a large family of error potentials. We exploit the
fact that finding a minimum of a piece-wise quadratic function,
or, in other words, a function which is the minorant of a set of
quadratic functionals, can be almost as computationally efficient as
optimizing the standard quadratic potential. Therefore, if a given
arbitrary potential (such as L1-based or fractional quasinorm-
based) can be approximated by a piece-wise quadratic function,
this should lead to relatively efficient and simple optimization
algorithms. It appears that only potentials of quadratic or
subquadratic growth are possible in this approach: however, these
are the most useful ones in data analysis. We introduce a rich
family of piece-wise quadratic potentials of subquadratic growth
(PQSQ-potentials), suggest general approach for their optimization
and prove convergence of a simple iterative algorithm in the
most general case. We focus on the most used methods of
data dimension reduction and regularized regression: however,
potential applications of the approach can be much wider.

Data dimension reduction by constructing explicit low-
dimensional approximators of a finite set of vectors is one of the
most fundamental approach in data analysis. Starting from the
classical data approximators such as k-means (Lloyd, 1957) and lin-
ear principal components (PCA) (Pearson, 1901), multiple general-
izations have been suggested in the last decades (self-organizing
maps, principal curves, principal manifolds, principal graphs, prin-
cipal trees, etc.) (Gorban, Kegl, Wunsch, & Zinovyev, 2008; Gorban
& Zinovyev, 2009) in order to make the data approximators more
flexible and suitable for complex data structures.

We solve the problem of approximating a finite set of vectors
x⃗i ∈ Rm, i = 1, . . . ,N (dataset) by a simpler object L embedded
into the data space, such that for each point x⃗i an approximation
error err(x⃗i, L) function can be defined.We assume this function in
the form

err(x⃗i, L) = min
y∈L


k

u(xki − yk), (1)

where the upper k = 1, . . . ,m stands for the coordinate index, and
u(x) is a monotonously growing symmetrical function, which we
will be calling the error potential. By data approximation wemean
that the embedment of L in the data space minimizes the error

i

err(x⃗i, L)→ min .

Note that our definition of error function is coordinate-wise (it
is a sum of error potential over all coordinates).
The simplest form of the error potential is quadratic u(x) = x2,
which leads to the most known data approximators: mean point
(L is a point), principal points (L is a set of points) (Flury, 1990),
principal components (L is a line or a hyperplane) (Pearson, 1901).
In more advanced cases, L can possess some regular properties
leading to principal curves (L is a smooth line or spline) (Hastie,
1984), principalmanifolds (L is a smooth low-dimensional surface)
and principal graphs (eg., L is a pluri-harmonic graph embedment)
(Gorban, Sumner, & Zinovyev, 2007; Gorban & Zinovyev, 2009).

There exist multiple advantages of using quadratic potential
u(x), because it leads to the most computationally efficient
algorithms usually based on the splitting schema, a variant of
expectation–minimization approach (Gorban & Zinovyev, 2009).
For example, k-means algorithm solves the problem of finding the
set of principal points and the standard iterative Singular Value
Decomposition finds principal components. However, quadratic
potential is known to be sensitive to outliers in the dataset.
Also, purely quadratic potentials can suffer from the curse of
dimensionality, not being able to robustly discriminate ‘close’ and
‘distant’ point neighbors in a high-dimensional space (Aggarwal,
Hinneburg, & Keim, 2001).

There exist several widely used ideas for increasing approxi-
mator’s robustness in presence of strong noise in data such as:
(1) using medians instead of mean values, (2) substituting
quadratic norm by L1 norm (e.g. Ding, Zhou, He, & Zha, 2006 and
Hauberg, Feragen, & Black, 2014), (3) outliers exclusion or fixed
weighting or iterative reweighting during optimizing the data ap-
proximators (e.g. Allende, Rogel, Moreno, & Salas, 2004; Kohonen,
2001 and Xu & Yuille, 1995), and (4) regularizing the PCA vectors
by L1 norm (Candès, Li, Ma, & Wright, 2011; Jolliffe, Trendafilov,
& Uddin, 2003; Zou, Hastie, & Tibshirani, 2006). In some works,
it was suggested to utilize ‘trimming’ averages, e.g. in the context
of the k-means clustering or some generalizations of PCA (Cuesta-
Albertos, Gordaliza, & Matrán, 1997; Hauberg et al., 2014). In the
context of regression, iterative reweighting is exploited to mimic
the properties of L1 norm (Lu, Lin, & Yan, 2015). Several algorithms
for constructing PCA with L1 norm have been suggested (Brooks,
Dulá, & Boone, 2013; Ke & Kanade, 2005; Kwak, 2008) and system-
atically benchmarked (Brooks & Jot, 2012; Park & Klabjan, 2014).
Some authors go even beyond linear metrics and suggest that frac-
tional quasinorms Lp (0 < p < 1) can bemore appropriate in high-
dimensional data approximation (Aggarwal et al., 2001).

However, most of the suggested approaches exploiting prop-
erties of non-quadratic metrics either represent useful but still
arbitrary heuristics or are not sufficiently scalable. The standard
approach forminimizing L1-based norm consists in solving a linear
programming task. Despite existence of many efficient linear pro-
gramming optimizer implementations, by their nature these com-
putations are much slower than the iterative methods used in the
standard SVD algorithm or k-means.

In this paper, we provide implementations of the standard
data approximators (mean point, k-means, principal components)
using a PQSQ potential. As an other application of PQSQ-
based framework in machine learning, we develop PQSQ-based
regularized and sparse regression (imitating the properties of lasso
and elastic net).

2. Piecewisequadratic potential of subquadratic growth (PQSQ)

2.1. Definition of the PQSQ potential

Let us split all non-negative numbers x ∈ R≥0 into p + 1
non-intersecting intervals R0 = [0; r1), R1 = [r1; r2), . . . , Rk =

[rk; rk+1), . . . , Rp = [rp;∞), for a set of thresholds r1 < r2 <
· · · < rp. For convenience, let us denote r0 = 0, rp+1 =
∞. Piecewise quadratic potential is a continuous monotonously

30 A.N. Gorban et al. / Neural Networks 84 (2016) 28–38
Fig. 1. Trimmed piecewise quadratic potential of subquadratic growth u(x) (solid
blue line) defined for the majorating function f (x) (red dashed line) and several
thresholds rk . Dotted lines show the parabolas which fragments are used to
construct u(x). The last parabola is flat (ap = 0) which corresponds to trimmed
potential. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

growing function u(x) constructed from pieces of centered at zero
parabolas y = bk + akx2, defined on intervals x ∈ [rk, rk+1),
satisfying y(ri) = f (ri) (see Fig. 1):

u(x) = bk + akx2, if rk ≤ |x| < rk+1, k = 0, . . . , p, (2)

ak =
f (rk)− f (rk+1)

r2k − r2k+1
, (3)

bk =
f (rk+1)r2k − f (rk)r2k+1

r2k − r2k+1
, (4)

where f (x) is a majorating function, which is to be approximated
(imitated) by u(x). For example, in the simplest case f (x) can be a
linear function: f (x) = x, in this case,


k u(x

k) will approximate
the L1-based error function.

Note that accordingly to (3), (4), b0 = 0, ap = 0, bp = f (rp).
Therefore, the choice of rp can naturally create a ‘trimmed’ version
of error potential u(x) such that some data points (outliers) do not
have any contribution to the gradient of u(x), hence, will not affect
the optimization procedure. However, this set of points can change
during minimization of the potential.

The condition of subquadratic growth consists in the require-
ment ak+1 ≤ ak and bk+1 ≥ bk. To guarantee this, the following
simple condition on f (x) should be satisfied:

f ′ > 0, f ′′x ≤ f ′. (5)

Therefore, f (x) is a monotonic concave function of q = x2:

d2f (
√
q)

dq2
=

1
4x2

f ′′(x)−
1
4x3

f ′(x) ≤ 0.

In particular, f (x) should grow not faster than any parabola ax2 +
c, c > 0, which is tangent to f (x).

2.2. Basic approach for optimization

In order to use the PQSQ potential in an algorithm, a set of
p interval thresholds rks , s = 1, . . . , p for each coordinate k =
1, . . . ,m should be provided. Matrices of a and b coefficients de-
fined by (3) and (4) based on interval definitions: aks , b

k
s , s =

0, . . . , p, k = 1, . . . ,m are computed separately for each coordi-
nate k.

Minimization of PQSQ-based functional consists in several basic
steps which can be combined in an algorithm:
(1) For each coordinate k, split all data point indices into non-
overlapping sets Rk

s :

Rk
s = {i : r

k
s ≤ |x

k
i − βk

i | < rks+1}, s = 0, . . . , p, (6)

where β is a matrix which depends on the nature of the
algorithm.

(2) Minimize PQSQ-based functional where each set of points
{xi∈Rk

s
} contributes to the functional quadratically with coef-

ficient aks . This is a quadratic optimization task.
(3) Repeat (1)–(2) till convergence.

3. General theory of the piece-wise convex potentials as the
cone of minorant functions

In order to deal in most general terms with the data
approximation algorithms based on PQSQ potentials, let us
consider a general case where a potential can be constructed from
a set of functions {qi(x)} with only two requirements: (1) that
each qi(x) has a (local) minimum; (2) that the whole set of all
possible qi(x)s forms a cone. In this case, instead of the operational
definition (2) it is convenient to define the potential u(x) as the
minorant function for a set of functions as follows. For convenience,
in this section, xwill notify a vector x⃗ ∈ Rm.

Let us consider a generating cone of functions Q . We remind that
the definition of a cone implies that for any q(x) ∈ Q , p(x) ∈ Q ,
we have αq(x)+ βp(x) ∈ Q , where α ≥ 0, β ≥ 0.

For any finite set of functions

q1(x) ∈ Q , q2(x) ∈ Q , . . . , qs(x) ∈ Q ,

we define the minorant function (Fig. 2):

uq1,q2,...,qs(x) = min(q1(x), q2(x), . . . , qs(x)). (7)

It is convenient to introduce a multiindex

Iq1,q2,...,qs(x)

indicating which particular function(s) qi corresponds to the value
of u(x), i.e.

Iq1,q2,...,qs(x) = {i|uq1,q2,...,qs(x) = qi(x)}. (8)

For a coneQ let us define a set of all possibleminorant functions
M(Q)

M(Q) = {uqi1 ,qi2 ,...,qin |qi1 ∈ Q , qi2 ∈ Q ,

qin ∈ Q , n = 1, 2, 3, . . .}. (9)

Proposition 1. M(Q) is a cone.

Proof. For any two minorant functions

uqi1 ,qi2 ,...,qik
, uqj1 ,qj2 ,...,qjs ∈ M(Q)

we have

αuqi1 ,qi2 ,...,qik
+ βuqj1 ,qj2 ,...,qjs

= u{αqip+βqjr } ∈ M(Q), p = 1, . . . , k, r = 1, . . . , s, (10)

where {αqip + βqjr } is a set of all possible linear combinations of
functions from {qi1 , qi2 , . . . , qik} and {qj1 , qj2 , . . . , qjs}.

Proposition 2. Any restriction of M(Q) onto a linear manifold L is a
cone.

Proof. Let us denote q(x)|L a restriction of q(x) function onto L,
i.e. q(x)|L = {q(x)|x ∈ L}. q(x)|L is a part of Q . Set of all q(x)|L forms
a restrictionQ |L ofQ onto L.Q |L is a cone, hence,M(Q)|L = M(Q |L)
is a cone (Proposition 1).

A.N. Gorban et al. / Neural Networks 84 (2016) 28–38 31
Algorithm 1 Finding local minimum of a minorant function
uq1,q2,...,qn(x)
1: procedureMinimizing minorant function
2: initialize x← x0
3: repeat until stopping criterion has been met:
4: compute multiindex Iq1,q2,...,qs(x)
5: for all i ∈ Iq1,q2,...,qs(x)
6: xi = argmin qi(x)
7: end for
8: select optimal xi :
9: xopt ← argminxiu(xi)

10: x← xopt
11: stopping criterion: check if the multiindex Iq1,q2,...,qs(x) does

not change compared to the previous iteration
12: end repeat:

Definition. Splitting algorithm minimizing

uq1,q2,...,qn(x)

is defined as Algorithm 1.

Theorem 3.1. Splitting algorithm (Algorithm 1) for minimizing
uq1,q2,...,qn(x) converges in a finite number of steps.

Proof. Since the set of functions {q1, q2, . . . , qn} is finite then we
only have to show that at each step the value of the function
uq1,q2,...,qn(x) cannot increase. For any x and the value x′ =
argminqi(x) for i ∈ Iq1,q2,...,qs(x) we can have only two cases:

(1) Either Iq1,q2,...,qs(x) = Iq1,q2,...,qs(x
′) (convergence, and in this

case qi′(x′) = qi(x′) for any i′ ∈ Iq1,q2,...,qs(x
′));

(2) Or uq1,q2,...,qn(x
′) < uq1,q2,...,qn(x) since, accordingly to the

definition (7), qi′(x′) < qi(x), for any i′ ∈ Iq1,q2,...,qs(x
′), i ∈

Iq1,q2,...,qs(x) (see Fig. 2).

Note that in Algorithm 1 we do not specify exactly the way to
find the local minimum of qi(x). To be practical, the cone Q should
contain only functions for which finding a local minimum is fast
and explicit. Evident candidates for this role are positively defined
quadratic functionals q(x) = q0 + (q⃗1, x) + (x, Q2x), where Q2
is a positively defined symmetric matrix. Any minorant function
(7) constructed from positively defined quadratic functions will
automatically provide subquadratic growth, since the minorant
cannot grow faster than any of the quadratic forms by which it is
defined.

Operational definition of PQSQgiven above (2), corresponds to a
particular form of the quadratic functional, with Q2 being diagonal
matrix. This choice corresponds to the coordinate-wise definition
of data approximation error function (1) which is particularly
simple to minimize. This circumstance is used in Algorithms 2, 3.

4. Commonly used data approximators with PQSQ potential

4.1. Mean value and k-means clustering in PQSQ approximation
measure

Mean vector X̄L for a set of vectors X = {xki }, i = 1, . . . ,N, k =
1, . . . ,m and an approximation error defined by potential f (x) can
be defined as a point minimizing the mean error potential for all
points in X:

i


k

f (xki − X̄k)→ min . (11)

For Euclidean metrics L2 (f (x) = x2) it is the usual arithmetic
mean.

For L1 metrics (f (x) = |x|), (11) leads to the implicit equation
#(xki > X̄k) = #(xki < X̄k), where # stands for the number
Fig. 2. Optimization of a one-dimensionalminorant function u(x), defined by three
functions q1(x), q2(x), q3(x) each of which has a local minimum. Each optimization
step consists in determining which qI(x)(x) = u(x) and making a step into the local
minimum of qI(x) .

of points, which corresponds to the definition of median. This
equation can have a non-unique solution in case of even number
of points or when some data point coordinates coincide: therefore,
definition of median is usually accompanied by heuristics used for
breaking ties, i.e. to deal with non-uniquely defined rankings. This
situation reflects the general situation of existence ofmultiple local
minimum and possible non-uniqueness of global minimum of (11)
(Fig. 3).

For PQSQ approximation measure (2) it is difficult to write
down an explicit formula for computing the mean value corre-
sponding to the global minimum of (11). In order to find a point
X̄PQSQ minimizing mean PQSQ potential, a simple iterative algo-
rithm can be used (Algorithm 2). The suggested algorithm con-
verges to the local minimum which depends on the initial point
approximation.

Algorithm 2 Computing PQSQ mean value
1: procedure PQSQ Mean Value
2: define intervals rks , s = 0, . . . , p, k = 1, . . . ,m
3: compute coefficients aks
4: initialize X̄PQSQ

eg., by arithmetic mean
5: repeat till convergence of X̄PQSQ :
6: for each coordinate k
7: define sets of indices

Rk
s = {i : r

k
s ≤ |x

k
i − X̄k

PQSQ | < rks+1},

s = 0, . . . , p
8: compute new approximation for X̄PQSQ :

9: X̄k
PQSQ ←


s=1,...,p aks


i∈Rk

s
xki

s=1,...,p aks |R
k
s |

10: end for
11: goto repeat till convergence

Based on the PQSQ approximation measure and the algorithm
for computing the PQSQ mean value (Algorithm 2), one can con-
struct the PQSQ-based k-means clustering procedure in the usual
way, splitting estimation of cluster centroids given partitioning of
the data points into k disjoint groups, and then re-calculating the
partitioning using the PQSQ-based proximity measure.

4.2. Principal Component Analysis (PCA) in PQSQ metrics

Accordingly to the classical definition of the first principal
component, it is a line best fit to the dataset X (Pearson, 1901). Let

32 A.N. Gorban et al. / Neural Networks 84 (2016) 28–38
Fig. 3. Minimizing the error to a point (finding the mean value) for a set of 4 points (shown by black circles). Solid red line corresponds to L1-based error. Thin blue lines
correspond to PQSQ error potential imitating the L1-based error. Several choices of PQSQ potential for different numbers of intervals (indicated by a number put on top of the
line) is illustrated. On the right panel a zoom of a particular region of the left plot is shown. Neither function (L1-based or PQSQ-based) possesses a unique local minimum.
Moreover, L1-based error function has infinite number of points corresponding to the global minimum (any number between 3 and 4), while PQSQ error function has several
local minimum in [3;4] interval which exact positions are sensitive to the concrete choice of PQSQ parameters (interval definitions). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
us define a line in the parametric form y⃗ = V⃗ν+ δ⃗, where ν ∈ R1 is
the parameter. Then the first principal component will be defined
by vectors V⃗ , δ⃗ satisfying

i


k

u(xki − V kνi − δk)→ min, (12)

where

νi = argmin
s


k

u(xki − V ks− δk). (13)

The standard first principal component (PC1) corresponds to
u(x) = x2 when the vectors V⃗ , δ⃗ can be found by a simple itera-
tive splitting algorithm for Singular Value Decomposition (SVD). If
X does not containmissing values then δ⃗ is the vector of arithmetic
mean values. By contrast, computing L1-based principal compo-
nents (u(x) = |x|) represents a much more challenging op-
timization problem (Brooks et al., 2013). Several approximative
algorithms for computing L1-norm PCA have been recently sug-
gested and benchmarked (Brooks et al., 2013; Brooks & Jot, 2012;
Ke & Kanade, 2005; Kwak, 2008; Park & Klabjan, 2014). To our
knowledge, there have not been a general efficient algorithm sug-
gested for computing PCA in case of arbitrary approximation mea-
sure for some monotonous function u(x).

Computing PCA based on PQSQ approximation error is only
slightly more complicated than computing the standard L2 PCA by
SVD. Here we provide a pseudo-code (Algorithm 3) of a simple
iterative algorithm (similar to Algorithm 2) with guaranteed
convergence (see Section 3).

Computation of second and further principal components
follows the standard deflation approach: projections of data points
onto the previously computed component are subtracted from the
dataset, and the algorithm is applied to the residues. However, as it
is the case in any non-quadratic metrics, the resulting components
can be non-orthogonal or even not invariant with respect to the
dataset rotation. Moreover, unlike L2-based principal components,
the Algorithm 3 does not always converge to a unique global
minimum; the computed components can depend on the initial
estimate of V⃗ . The situation is somewhat similar to the standard k-
means algorithm. Therefore, in order to achieve the least possible
approximation error to the linear subspace, V⃗ can be initialized
randomly or by data vectors x⃗i many times and the deepest in PQSQ
approximation error (1) minimum should be selected.

How does the Algorithm 1 serve a more abstract version of
the Algorithms 2, 3? For example, the ‘variance’ function m(x⃗) =
1
N


j u(x⃗j− x⃗) to be minimized in Algorithm 2 uses the generating
Algorithm 3 Computing PQSQ PCA
1: procedure PQSQ First Principal Component
2: define intervals rks , s = 0, . . . , p, k = 1, . . . ,m
3: compute coefficients aks
4: δ⃗← X̄PQSQ

5: initialize V⃗ : eg., by L2-based PC1
6: initialize {νi} : eg., by

νi =


k V

k(xki −δk)
k(V k)2

7: repeat till convergence of V⃗ :
8: normalize V⃗ : V⃗ ← V⃗

∥V⃗∥
9: for each coordinate k

10: define sets of indices
Rk

s = {i : r
k
s ≤ |x

k
i − V kνi − δk

| < rks+1},
s = 0, . . . , p

11: end for
12: for each data point i and coordinate k
13: find all si,k such that i ∈ Rk

si,k
14: if all aksi,k = 0 then ν ′i ← 0 else
15:

ν ′i ←


k a

k
si,kV

k(xki − δk)
k aksi,k(V

k)2

16: end for
17: for each coordinate k

V k
←


s a

k
s


i∈Rk
s
(xki − δk)νi

s aks


i∈Rk
s
(νi)2

18: end for
19: for each i :
20: νi ← ν ′i
21: end for
22: goto repeat till convergence

functions in the form Q = {bkji +


k a
k
ji(x

k
− xkj)

2
}, where i

is the index of the interval in (2). Hence, m(x) is a minorant
function, belonging to the coneM(Q), andmust converge (to a local
minimum) in a finite number of steps accordingly to Theorem 3.1.

4.3. Nonlinear methods: PQSQ-based principal graphs and manifolds

In a series of works, the authors of this article introduced a
family of methods for constructing principal objects based on

A.N. Gorban et al. / Neural Networks 84 (2016) 28–38 33
graph approximations (e.g., principal curves, principal manifolds,
principal trees), which allows constructing explicit non-linear data
approximators (and, more generally, approximators with non-
trivial topologies, suitable for approximating, e.g., datasets with
branching or circular topology) (Gorban et al., 2008; Gorban’
& Rossiev, 1999; Gorban et al., 2007; Gorban & Zinovyev,
2009, 2001a, 2001b, 2005, 2010). The methodology is based on
optimizing a piece-wise quadratic elastic energy functional (see
short description below). A convenient graphical user interface
was developed with implementation of some of these methods
(Gorban, Pitenko, & Zinovyev, 2014).

Let G be a simple undirected graphwith set of vertices Y and set
of edges E. For k ≥ 2 a k-star in G is a subgraph with k+ 1 vertices
y0,1,...,k ∈ Y and k edges {(y0, yi) | i = 1, . . . , k} ⊂ E. Suppose for
each k ≥ 2, a family Sk of k-stars in G has been selected. We call a
graph Gwith selected families of k-stars Sk an elastic graph if, for all
E(i)
∈ E and S(j)

k ∈ Sk, the correspondent elasticity moduli λi > 0
and µkj > 0 are defined. Let E(i)(0), E(i)(1) be vertices of an edge
E(i) and S(j)

k (0), . . . , S(j)
k (k) be vertices of a k-star S(j)

k (among them,
S(j)
k (0) is the central vertex).
For any map φ : Y → Rm the energy of the graph is defined as

Uφ(G) :=

E(i)

λi
φ(E(i)(0))− φ(E(i)(1))

2
+


S(j)
k

µkj

 k
i=1

φ(S(j)
k (i))− kφ(S(j)

k (0))


2

.

For a given map φ : Y → Rm we divide the dataset D into
node neighborhoods K y, y ∈ Y . The set K y contains the data points
for which the node φ(y) is the closest one in φ. The energy of
approximation is:

Uφ

A (G,D) =

y∈Y


x∈Ky

w(x)∥x− φ(y)∥2, (14)

where w(x) ≥ 0 are the point weights. Simple and fast algorithm
for minimization of the energy

Uφ
= Uφ

A (G,D)+ Uφ(G) (15)

is the splitting algorithm, in the spirit of the classical k-means
clustering: for a given system of sets {K y

| y ∈ Y } we minimize
Uφ (optimization step, it is theminimization of a positive quadratic
functional), then for a given φ we find new {K y

} (re-partitioning),
and so on; stop when no change.

Application of PQSQ-based potential is straightforward in this
approach. It consists in replacing (14) with

Uφ

A (G,D) =

y∈Y


x∈Ky

w(x)

k

u(xk − φ(yk)),

where u is a chosen PQSQ-based error potential. Partitioning of the
dataset into {K y

} can be also based on calculating the minimum
PQSQ-based error to y, or can continue enjoying nice properties of
L2-based distance calculation.

5. PQSQ-based regularized regression

5.1. Regularizing linear regression with PQSQ potential

One of the major application of non-Euclidean norm properties
in machine learning is using non-quadratic terms for penalizing
large absolute values of regression coefficients (Tibshirani, 1996;
Zou & Hastie, 2005). Depending on the chosen penalization term,
it is possible to achieve various effects such as sparsity or grouping
coefficients for redundant variables. In a general form, regularized
regression solves the following optimization problem

1
N

N
i=1


yi −

m
k=1

βkxki

2

+ λf (β⃗)→ min, (16)

where N is the number of observations, m is the number of inde-
pendent variables in the matrix {xki }, {yi} are values of the depen-
dent variable (to be predicted), λ is an internal parameter control-
ling the strength of regularization (penalty on the amplitude of re-
gression coefficients β), and f (z⃗) is the regularizer function, which
is f (z⃗) = ∥z⃗∥2L2 for ridge regression, f (z⃗) = ∥z⃗∥L1 for lasso and
f (z⃗) = 1−α

α
∥z⃗∥2L2+α∥z⃗∥L1 for elastic netmethods correspondingly.

Here we suggest to imitate f (x)with a PQSQ potential function,
i.e. instead of (16) solving the problem

1
N

N
i=1


yi −

m
k=1

βkxki

2

+ λ

m
k=1

u(βk)→ min, (17)

where u(β) is a PQSQ potential imitating arbitrary subquadratic
regression regularization penalty.

Solving (17) is equivalent to iteratively solving a system of
linear equations

1
N

m
k=1

βk
N
i=1

xki x
j
i + λaI(β j)β

j

=

N
i=1

yix
j
i, j = 1, . . . ,m, (18)

where aI(β j) constant (where I index is defined from rI ≤ β j < rI+1)
is computed accordingly to the definition of u(x) function (see (3)),
given the estimation of βk regression coefficients at the current
iteration. In practice, iterating (18) converges in a few iterations,
therefore, the algorithm can work very fast and outperform the
widely used least angle regression algorithm for solving (16) in
case of L1 penalties.

5.2. Introducing sparsity by ‘black hole’ trick

Any PQSQ potential u(x) is characterized by zero derivative
for x = 0 by construction: u′(x)|x=0 = 0, which means that
the solution of (17) does not have to be sparse for any λ. Unlike
pure L1-based penalty, the coefficients of regression diminish with
increase of λ but there is nothing to shrink them to exact zero
values, similar to the ridge regression. However, it is relatively
straightforward to modify the algorithm, to achieve sparsity of the
regression solution. The ‘black hole’ trick consists in eliminating
from regression training after each iteration (18) all regression
coefficients βk smaller by absolute value than a given parameter
ϵ (‘black hole radius’). Those regression coefficients which have
passed the ‘black hole radius’ are put to zero and do not have any
chance to change their values in the next iterations.

The optimal choice of ϵ value requires a separate study. From
general considerations, it is preferable that the derivative u′(x)|x=ϵ

would not be very close to zero. As a pragmatic choice for the
numerical examples in this article, we define ϵ as the midst of the
smallest interval in the definition of PQSQ potential (see Fig. 4),
i.e. ϵ = r1/2, which guarantees far from zero u′(x)|x=ϵ . It might
happen that this value of ϵ would collapse all βk to zero even
without regularization (i.e., withλ = 0). In this case, the ‘black hole
radius’ is divided by half ϵ ← ϵ/2 and it is checked that for λ = 0
the iterations would leave at list half of the regression coefficients.
If it is not the case then the process of diminishing the ‘black hole
radius’ repeated recursively till meeting the criterion of preserving

34 A.N. Gorban et al. / Neural Networks 84 (2016) 28–38
Fig. 4. ‘Black hole trick’ for introducing sparsity into the PQSQ-based regularized
regression. Here PQSQ function imitates L1 norm (for illustration only three
intervals are used to define PQSQ function). Black hole trick consists in introducing
an ϵ zone (hatched territory on the plot) of the potential in the vicinity of zero
such that any coefficient of regression falling down into this zone is set to zero and
eliminated from further learning. It is convenient to define ϵ as the midst of the
smallest interval as it is shown in this plot.

the majority of regression coefficients. In practice, it requires only
few (very fast) additional iterations of the algorithm.

As in the lasso methodology, the problem (17) is solved for a
range of λ values, calibrated such that the minimal λ would select
themaximumnumber of regression variables, while themaximum
λ value would lead to the most sparse regression (selecting only
one single non-zero regression coefficient).

6. Numerical examples

6.1. Practical choices of parameters

The main parameters of PQSQ are (a) majorating function f (x)
and (b) decomposition of each coordinate range into p + 1 non-
overlapping intervals. Depending on these parameters, various
approximation error properties can be exploited, including those
providing robustness to outlier data points.

When defining the intervals rj, j = 1, . . . , p, it is desirable to
achieve a small difference between f (1x) and u(1x) for expected
argument values 1x (differences between an estimator and the
data point), and choose the suitable value of the potential trimming
threshold rp in order to achieve the desired robustness properties.
If no trimming is needed, then rp should be made larger than
the maximum expected difference between coordinate values
(maximum 1x).

In our numerical experiments we used the following definition
of intervals. For any data coordinate k, we define a characteristic
difference Dk, for example

Dk
= αscale(max

i
(xki)−min

i
(xki)), (19)

where αscale is a scaling parameter, which can be put at 1 (in this
case, the approximating potential will not be trimmed). In case of
existence of outliers, for defining Dk, instead of amplitude one can
use other measures such as the median absolute deviation (MAD):

Dk
= αscalemediani(|xki −median({xki })|); (20)

in this case, the scaling parameter should be made larger,
i.e. αscale = 10, if no trimming is needed.

After defining Dk we use the following definition of intervals:

rkj = Dk j
2

p2
, j = 0, . . . , p. (21)

More sophisticated approaches are also possible to apply such
as, given the number of intervals p and the majorant function
f (x), choose rj, j = 1, . . . , p in order to minimize the maximal
difference

d = max
x
|f (x)− u(x)| → min .

The calculation of intervals is straightforward for a given value of d
and many smooth concave functions f (x) like f (x) = xp (0 < p ≤
1) or f (x) = ln(1+ x).

6.2. Implementation

We provide Matlab implementation of PQSQ approximators (in
particular, PCA) togetherwith theMatlab andR code used to gener-
ate the example figures in this article at ‘PQSQ-DataApproximators’
GitHub repository1 and Matlab implementation of PQSQ-based
regularized regression with build-in imitations of L1 (lasso-
like) and L1&L2 mixture (elastic net-like) penalties at ‘PQSQ-
regularized-regression’ GitHub repository.2 The Java code imple-
menting elastic graph-based non-linear approximator implemen-
tations is available from the authors on request.

6.3. Motivating example: dense two-cluster distribution contami-
nated by sparse noise

We demonstrate the value of PQSQ-based computation of L1-
based PCA by constructing a simple example of data distribution
consisting of a dense two-cluster component superimposed with
a sparse contaminating component with relatively large variance
whose co-variance does not coincide with the dense signal (Fig. 5).
We study the ability of PCA to withstand certain level of sparse
contamination and compare it with the standard L2-based PCA.
In this example, without noise the first principal component
coincides with the vector connecting the two cluster centers:
hence, it perfectly separates them in the projected distribution.
Noise interferes with the ability of the first principal component
to separate the clusters to the degree when the first principal
component starts to match the principal variance direction of the
contaminating distribution (Fig. 5(A), (B)). In higher dimensions,
not only the first but also the first two principal components are
not able to distinguish two clusters, which can hide an important
data structurewhen applying the standard data visualization tools.

In the first test we study a switch of the first principal
component from following the variance of the dense informative
distribution (abscissa) to the sparse noise distribution (ordinate)
as a function of the number of contaminating points, in R2

(Fig. 5(A)–(C)).Wemodeled two clusters as two 100-point samples
fromnormal distribution centered in points [−1; 0] and [1; 0]with
isotropic variancewith the standard deviation 0.1. The sparse noise
distribution was modeled as a k-point sample from the product
of two Laplace distributions of zero means with the standard
deviations 2 along abscissa and 4 along ordinate. The intervals for
computing the PQSQ functional were defined by thresholds R =
{0; 0.01; 0.1; 0.5; 1} for each coordinate. Increasing the number
of points in the contaminating distribution diminishes the average
value of the abscissa coordinate of PC1, because the PC1 starts to be
attracted by the contaminating distribution (Fig. 5(C)). However, it
is clear that on average PQSQ L1-based PCA is able to withstand
much larger amplitude of the contaminating signal (very robust
up to 20–30 points, i.e. 10%–20% of strong noise contamination)
compared to the standard L2-based PCA (which is robust to 2%–3%
of contamination).

In the second test we study the ability of the first two principal
components to separate two clusters, in R100 (Fig. 5(D)–(F)). As in

1 https://github.com/auranic/PQSQ-DataApproximators.
2 https://github.com/Mirkes/PQSQ-regularized-regression/.

https://github.com/auranic/PQSQ-DataApproximators
https://github.com/Mirkes/PQSQ-regularized-regression/

A.N. Gorban et al. / Neural Networks 84 (2016) 28–38 35
Fig. 5. Comparing L2- and PQSQ L1-based PCA using example of two-cluster distribution (100 black circles and 100 squares) contaminated by sparse noise (red crosses).
(A) Dense two cluster distribution contaminated by sparse distribution (20 points) of large variance. In the presence of noise, the abscissa coordinate x of PC1 Vector is
slightly less than 1. (B) Same as (A) but in the case of strong contamination (60 points). The value of x is much smaller in this case. (C) Average absolute value of the abscissa
coordinate of PC1 |x| (thick lines) shown with standard interval (thin lines) for 100 samples of k contaminating points. (D) Projection of the data distribution on the first two
principal components computed with the standard L2 PCA algorithm. The number of contaminating points is 40. The cluster structure of the dense part of the distribution
is completely hidden as shown in the zoom window. (E) Same as in (D) but computed with PQSQ L1-based algorithm. The cluster structure is perfectly separable. (F) The
value of t-test computed based on the known cluster labels of the dense part of the distribution, in the projections onto the first two principal components of the global
distribution. As in (C), the mean values of 100 contamination samples together with confidence intervals are shown. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
the first test, we modeled two clusters as two 100-point samples
from normal distribution centered in points [−1; 0; . . . ; 0] and
[1; 0; . . . ; 0] with isotropic variance with the standard deviation
0.1 in all 100 dimensions. The sparse noise distribution is modeled
as a k-point sample from theproduct of 100 Laplace distributions of
zero means with the standard deviations 1 along each coordinate
besides the third coordinate (standard deviation of noise is 2) and
the fourth coordinate (standard deviation of noise is 4). Therefore,
the first two principal components in the absence of noise are
attracted by the dimension 1 and noise, while in the presence
of strong noise they are be attracted by dimensions 3 and 4,
hiding the cluster structure of the dense part of the distribution.
The definitions of the intervals were taken as in the first test.
We measured the ability of the first two principal components
to separate clusters by computing the t-test between the two
clusters projected in the 2D-space spanned by the first principal
components of the global distribution (Fig. 5(D)–(F)). As one
can see, the average ability of the first principal components to
separate clusters is significantly stronger in the case of PQSQ L1-
based PCA which is able to separate robustly the clusters even in
the presence of strong noise contamination (up to 80 noise points,
i.e. 40% contamination).

6.4. Performance/stability trade-off benchmarking of L1-based PCA

In order to compare the computation time and the robustness of
PQSQ-based PCA algorithm for the case u(x) = |x|with existing R-
based implementations of L1-based PCAmethods (pcaL1 package),
we followed the benchmark described in Brooks and Jot (2012).
We comparedperformance of PQSQ-based PCAbased onAlgorithm
3 with several L1-based PCA algorithms: L1-PCA* (Brooks et al.,
2013), L1-PCA (Ke & Kanade, 2005), PCA-PP (Croux, Filzmoser, &
Oliveira, 2007), PCA-L1 (Kwak, 2008). As a reference point, we
used the standard PCA algorithm based on quadratic norm and
computed using the standard SVD iterations.
The idea of benchmarking is to generate a series of datasets
of the same size (N = 1000 objects in m = 10 dimensions)
such that the first 5 dimensions would be sampled from a
uniform distribution U(−10, 10). Therefore, the first 5 dimensions
represent ‘true manifold’ sampled by points.

The values in the last 5 dimensions represent ‘noise+outlier’ sig-
nal. The background noise is represented by Laplacian distribution
of zero mean and 0.1 variance. The outlier signal is characterized
bymean valueµ, dimension p and frequencyφ. Then, for each data
point with a probability φ, in the first p outlier dimensions a value
is drawn from Laplace(µ, 0.1). The rest of the values is drawn from
background noise distribution.

As in Brooks and Jot (2012), we have generated 1300 test
sets corresponding to φ = 0.1, with 100 examples for each
combination of µ = 1, 5, 10, 25 and p = 1, 2, 3.

For each test set 5 first principal components V⃗1, . . . , V⃗5 of
unit length were computed, with corresponding point projection
distributions U1, . . . ,U5 and the mean vector C⃗ . Therefore, for
each initial data point x⃗i, we have the ‘restored’ data point

P(x⃗i) =


k=1,...,5

Uk
i V⃗k + C⃗ .

For computing the PQSQ-based PCAweused 5 intervalswithout
trimming. Changing the number of intervals did not significantly
changed the benchmarking results.

Two characteristics were measured: (1) computation time
measured as a ratio to the computation of 5 first principal
components using the standard L2-based PCA and (2) the sum of
absolute values of the restored point coordinates in the ‘outlier’
dimensions normalized on the number of points:

σ =
1
N


i=1,...,N


k=6,...,10

|Pk(x⃗i)|. (22)

Formally speaking, σ is L1-based distance from the point
projection onto the first five principal components to the ‘true’

36 A.N. Gorban et al. / Neural Networks 84 (2016) 28–38
Table 1
Comparing time performance (in seconds, on ordinary laptop) of lasso vs. PQSQ-based regularized regression imitating L1 penalty. Average
acceleration of PQSQ-based method vs. lasso in these 8 examples is 120 fold with comparable accuracy.

Dataset Objects Variables lasso PQSQ Ratio

Breast cancer 47 31 10.50 0.05 233.33
Prostate cancer 97 8 0.07 0.02 4.19
ENB2012 768 8 0.53 0.03 19.63
Parkinson 5875 26 20.30 0.04 548.65
Crime 1994 100 10.50 0.19 56.24
Crime reduced 200 100 17.50 0.17 102.94
Forest fires 517 8 0.05 0.02 3.06
Random regression (1000× 250) 1000 250 2.82 0.58 4.86
Fig. 6. Benchmarking several algorithms for constructing L1-based PCA, using syn-
thetic datasets representing ‘true’ five-dimensional linear manifold contaminated
by noise and outliers (located in other five dimensions). The abscissa is the error of
detecting the ‘true’ manifold by a particular method and the ordinate is the compu-
tational time relative to the standard SVD (L2-based PCA) computation, in logarith-
mic scale. The computational cost of application of linear programming methods
instead of simpler iterative methods is approximately shown by an arrow.

subspace. In simplistic terms, larger values of σ correspond to the
situationwhen the first five principal components do not represent
well the first ‘true’ dimensions having significant loadings into the
‘outlier dimensions’. σ = 0 if and only if the first five components
do not have any non-zero loadings in the dimensions 6, . . . , 10.

The results of the comparison averaged over all 1300 test
sets are shown in Fig. 6. The PQSQ-based computation of PCA
outperforms by accuracy the existing heuristics such as PCA-L1 but
remains computationally efficient. It is 100 times faster than L1-
PCA giving almost the same accuracy. It is almost 500 times faster
than the L1-PCA* algorithm, which is, however, better in accuracy
(due to being robust with respect to strong outliers). One can see
fromFig. 6 that PQSQ-based approach is the best in accuracy among
fast iterative methods. The detailed tables of comparison for all
combinations of parameters are available on GitHub.3 The scripts
used to generate the datasets and compare the results can also be
found there.4

6.5. Comparing performances of PQSQ-based regularized regression
and lasso algorithms

We compared performance of PQSQ-based regularized regres-
sion method imitating L1 penalty with lasso implementation in
Matlab, using 8 datasets from UCI Machine Learning Reposi-
tory (Lichman, 2013), Regression Task section. In the selection of

3 http://goo.gl/sXBvqh.
4 https://github.com/auranic/PQSQ-DataApproximators.
datasets we chose very different numbers of objects and variables
for regression construction (Table 1). All table rows containing
missing values were eliminated for the tests.

We observed up to two orders of magnitude acceleration of
PQSQ-based method compared to the lasso method implemented
in Matlab (Table 1), with similar sparsity properties and approxi-
mation power as lasso (Fig. 7).

While comparing time performances of two methods, we have
noticed that lasso (as it is implemented in Matlab) showed worse
results when the number of objects in the dataset approaches
the number of predictive variables (see Table 1). In order to test
this observation explicitly, we took a particular dataset (‘Crime’)
containing 1994 observations and 100 variables and compared the
performance of lasso in the case of complete table and a reduced
table (‘Crime reduced’) containing only each 10th observation.
Paradoxically, lasso converges almost two times slower in the case
of the smaller dataset, while the PQSQ-based algorithm worked
slightly faster in this case.

It is necessary to stress that here we compare the basic
algorithms without many latest technical improvements which
can be applied both to L1 penalty and its PQSQ approximation (such
as fitting the whole lasso path). Detailed comparison of all the
existent modifications if far beyond the scope of this work.

For comparing approximation power of the PQSQ-based
regularized regression and lasso, we used two versions of PQSQ
potential for regression coefficients: with and without trimming.
In order to represent the results, we used the ‘Number of non-
zero parameters vs. Fraction of Variance Unexplained (FVU)’ plots
(see two representative examples at Fig. 7). We suggest that this
type of plot is more informative in practical applications than the
‘lasso plot’ used to calibrate the strength of regularization, since
it is a more explicit representation for optimizing the accuracy vs.
complexity ratio of the resulting regression.

From our testing, we can conclude that PQSQ-based regularized
regression has similar properties of sparsity and approximation
accuracy compared to lasso. It tends to slightly outperform lasso
(to give smaller FVU) in case of N ≈ P . Introducing trimming
in most cases does not change the best FVU for a given number
of selected variables, but tends to decrease its variance (has a
stabilization effect). In some cases, introducing trimming is the
most advantageous method (Fig. 7(B)).

The GitHub ‘PQSQ-regularized-regression’ repository contains
exact dataset references and more complete report on comparing
approximation ability of PQSQ-based regularized regression with
lasso.5

7. Conclusion

In this paper we develop a new machine learning framework
(theory and application) allowing one to deal with arbitrary
error potentials of not-faster than quadratic growth, imitated by

5 https://github.com/Mirkes/PQSQ-regularized-regression/wiki.

http://goo.gl/sXBvqh
https://github.com/auranic/PQSQ-DataApproximators
https://github.com/Mirkes/PQSQ-regularized-regression/wiki

A.N. Gorban et al. / Neural Networks 84 (2016) 28–38 37
Fig. 7. Number of non-zero regression coefficients vs. FVU plot for two example real-life datasets (A–Breast cancer Wisconsin dataset from UC Irvine Machine Learning
Repository, B—original prostate cancer example from the seminal lasso paper Tibshirani, 1996). Each cross shows a particular solution of the regularized regression problem.
Solid lines show the best (minimal) obtained FVU within the same number of selected variables.
Table 2
List of methods which can use PQSQ-based error potentials.

Data approximation/Clustering/Manifold learning

Principal component analysis Includes robust trimmed version of PCA, L1-based PCA, regularized PCA, and many other PCA modifications
Principal curves and manifolds Provides possibility to use non-quadratic data approximation terms and trimmed robust version
Self-organizing maps Same as above
Principal graphs/trees Same as above
k-means Can include adaptive error potentials based on estimated error distributions inside clusters

High-dimensional data mining

Use of fractional quasinorms
Lp (0 < p < 1)

Introducing fractional quasinorms in existing data-mining techniques can potentially deal with the curse of
dimensionality, helping to better distinguish close from distant data points (Aggarwal et al., 2001)

Regularized and sparse regression

Lasso Application of PQSQ-based potentials leads to speeding up in case of large and N ≈ P datasets
Elastic net Same as above
piece-wise quadratic function of subquadratic growth (PQSQ error
potential).

We develop methods for constructing the standard data ap-
proximators (mean value, k-means clustering, principal compo-
nents, principal graphs) for arbitrary non-quadratic approximation
error with subquadratic growth and regularized linear regres-
sion with arbitrary subquadratic penalty by using a piecewise-
quadratic error functional (PQSQ potential). These problems can
be solved by applying quasi-quadratic optimization procedures,
which are organized as solutions of sequences of linear problems
by standard and computationally efficient algorithms.

The suggested methodology have several advantages over
existing ones:

(a) Scalability: the algorithms are computationally efficient and
can be applied to large data sets containing millions of
numerical values.

(b) Flexibility: the algorithms can be adapted to any type of data
metrics with subquadratic growth, even if the metrics cannot
be expressed in explicit form. For example, the error potential
can be chosen as adaptive metrics (Wu, Jin, Hoi, Zhu, & Yu,
2009; Yang & Jin, 2006).

(c) Built-in (trimmed) robustness: choice of intervals in PQSQ can
be done in the way to achieve a trimmed version of the
standard data approximators, when points distant from the
approximator do not affect the error minimization during the
current optimization step.

(d) Guaranteed convergence: the suggested algorithms converge
to local or global minimum just as the corresponding
predecessor algorithms based on quadratic optimization and
expectation/minimization-based splitting approach.

In theoretical perspective, using PQSQ-potentials in datamining
is similar to existing applications of min-plus (or, max-plus)
algebras in non-linear optimization theory, where complex non-
linear functions are approximated by infimum (or supremum)
of finitely many ‘dictionary functions’ (Gaubert, McEneaney, &
Qu, 2011; Magron, Allamigeon, Gaubert, & Werner, 2015). We
can claim that just as using polynomes is a natural framework
for approximating in rings of functions, using min-plus algebra
naturally leads to introduction of PQSQ-based functions and the
cones of minorants of quadratic dictionary functions.

One of the application of the suggested methodology is
approximating the popular in data mining L1 metrics. We show by
numerical simulations that PQSQ-based approximators perform as
fast as the fast heuristical algorithms for computing L1-based PCA
but achieve better accuracy in a previously suggested benchmark
test. PQSQ-based approximators can be less accurate than the
exact algorithms for optimizing L1-based functions utilizing linear
programming; however, they are several orders of magnitude
faster. PQSQ potential can be applied in the task of regression,
replacing the classical Least Squares or L1-based Least Absolute
Deviation methods. At the same time, PQSQ-based approximators
can imitate a variety of subquadratic error potentials (not limited
to L1 or variations), including fractional quasinorms Lp (0 < p < 1).
We demonstrate that the PQSQ potential can be easily adapted to
the problems of sparse regularized regression with non-quadratic
penalty on regression coefficients (including imitations of lasso
and elastic net). On several real-life dataset examples we show
that PQSQ-based regularized regression can perform two orders
of magnitude faster than the lasso algorithm implemented in the
same programming environment.

To conclude, in Table 2we list possible applications of the PQSQ-
based framework in machine learning.

Acknowledgment

This study was supported in part by Big Data Paris Science et
Lettre Research University project ‘PSL Institute for Data Science’.

38 A.N. Gorban et al. / Neural Networks 84 (2016) 28–38
References
Aggarwal, C. C., Hinneburg, A., & Keim, D. A. (2001). On the surprising behavior of

distance metrics in high dimensional space. In Database theory - ICDT 2001, 8th
international conference (pp. 420–434). Springer.

Allende, H., Rogel, C., Moreno, S., & Salas, R. (2004). Robust neural gas for the
analysis of data with outliers. In Computer science society. SCCC 2004. 24th
International conference of the Chilean (pp. 149–155). IEEE.

Barillot, E., Calzone, L., Hupe, P., Vert, J.-P., & Zinovyev, A. (2012). CRC mathemtical
and computational biology, Computational systems biology of cancer . Chapman &
Hall.

Brooks, J., Dulá, J., & Boone, E. (2013). A pure L1-normprincipal component analysis.
Computational Statistics & Data Analysis, 61, 83–98.

Brooks, J., & Jot, S. (2012). PCAL1: An implementation in R of three methods
for L1-norm principal component analysis, Optimization Online preprint,
http://www.optimization-online.org/DB_HTML/2012/04/3436.html.

Candès, E. J., Li, X., Ma, Y., &Wright, J. (2011). Robust principal component analysis?
Journal of the ACM , 58, 11.

Croux, C., Filzmoser, P., & Oliveira, M. R. (2007). Algorithms for projection–pursuit
robust principal component analysis. Chemometrics and Intelligent Laboratory
Systems, 87, 218–225.

Cuesta-Albertos, J., Gordaliza, A., Matrán, C., et al. (1997). Trimmed k-means: An
attempt to robustify quantizers. The Annals of Statistics, 25, 553–576.

Ding, C., Zhou, D., He, X., & Zha, H. (2006). R1-PCA: rotational invariant L1-
norm principal component analysis for robust subspace factorization. In ICML
(pp. 281–288).

Flury, B. (1990). Principal points. Biometrika, 77, 33–41.
Gaubert, S., McEneaney, W., & Qu, Z. (2011). Curse of dimensionality reduction in

max-plus based approximation methods: theoretical estimates and improved
pruning algorithms, Arxiv Preprint http://arxiv.org/abs/1109.5241.

Gorban, A., Kegl, B.,Wunsch, D., & Zinovyev, A. (Eds.) (2008). LNCSE:Vol. 58. Principal
manifolds for data visualisation and dimension reduction. Springer.

Gorban, A.N., Pitenko, A., & Zinovyev, A. (2014). ViDaExpert: user-friendly tool for
nonlinear visualization and analysis of multidimensional vectorial data, ArXiv
Preprint http://arxiv.org/abs/1406.5550.

Gorban’, A., & Rossiev, A. (1999). Neural network iterative method of principal
curves for datawith gaps. Journal of Computer and Systems Sciences International
c/c of Tekhnicheskaia Kibernetika, 38, 825–830.

Gorban, A. N., Sumner, N. R., & Zinovyev, A. Y. (2007). Topological grammars for data
approximation. Applied Mathematics Letters, 20, 382–386.

Gorban, A. N., & Zinovyev, A. (2009). Principal graphs and manifolds. In E. S. Olivas,
J. D. M. Guererro, M. M. Sober, J. R. M. Benedito, & A. J. S. Lopes (Eds.), Handbook
of research on machine learning applications and trends: Algorithms, methods and
techniques.

Gorban, A., & Zinovyev, A. (2001a). Visualization of data by method of elastic maps
and its applications in genomics, economics and sociology, IHES Preprints.

Gorban, A., & Zinovyev, A. Y. (2001b). Method of elastic maps and its applications
in data visualization and data modeling. International Journal of Computing
Anticipatory Systems, CHAOS, 12, 353–369.

Gorban, A., & Zinovyev, A. (2005). Elastic principal graphs and manifolds and their
practical applications. Computing , 75, 359–379.
Gorban, A. N., & Zinovyev, A. (2010). Principal manifolds and graphs in practice:
from molecular biology to dynamical systems. International Journal of Neural
Systems, 20, 219–232.

Hastie, T. (1984). Principal curves and surfaces. (Ph.D. Thesis), California: Stanford
University.

Hauberg, S., Feragen, A., & Black, M.J. (2014). Grassmann averages for scalable
robust pca. In 2014 IEEE conference on computer vision and pattern recognition
(pp. 3810–3817).

Jolliffe, I. T., Trendafilov, N. T., & Uddin, M. (2003). A modified principal component
technique based on the lasso. Journal of Computational and Graphical Statistics,
12, 531–547.

Ke, Q., & Kanade, T. (2005). Robust l 1 norm factorization in the presence of outliers
and missing data by alternative convex programming. In IEEE computer society
conference on Computer vision and pattern recognition:Vol. 1 (pp. 739–746). IEEE.

Kohonen, T. (2001). Springer series in information sciences: Vol. 30. Self-organizing
maps. Berlin: Springer.

Kwak, N. (2008). Principal component analysis based on L1-norm maximization.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 30, 1672–1680.

Lichman, M. (2013). University of California, Irvine (UCI) Machine Learning
Repository, http://archive.ics.uci.edu/ml.

Lloyd, S. (1957). Last square quantization in pcm’s. Bell Telephone Laboratories
Paper ,.

Lu, C., Lin, Z., & Yan, S. (2015). Smoothed low rank and sparse matrix recovery by
iteratively reweighted least squares minimization. IEEE Transactions on Image
Processing , 24, 646–654.

Magron, V., Allamigeon, X., Gaubert, S., & Werner, B. (2015). Formal proofs for
nonlinear optimization, Arxiv Preprint arXiv:1404.7282.

Park, Y.W., & Klabjan, D. (2014). Algorithms for L1-norm principal component
analysis. Tutorial, http://dynresmanagement.com/uploads/3/3/2/9/3329212/
algorithms_for_l1pca.pdf.

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space.
Philosophical Magazine, 2, 559–572.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B. Statistical Methodology, 267–288.

Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T. S., & Yan, S. (2010). Sparse
representation for computer vision and pattern recognition. Proceedings of the
IEEE, 98, 1031–1044.

Wu, L., Jin, R., Hoi, S.C., Zhu, J., & Yu, N. (2009). Learning Bregman distance
functions and its application for semi-supervised clustering. In Advances in
neural information processing systems (pp. 2089–2097).

Xu, L., & Yuille, A. L. (1995). Robust principal component analysis by self-
organizing rules based on statistical physics approach. IEEE Transactions on
Neural Networks, 6, 131–143.

Yang, L., & Jin, R. (2006). Distance metric learning: A comprehensive survey: 2.
Michigan State Universiy.

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 67,
301–320.

Zou, H., Hastie, T., & Tibshirani, R. (2006). Sparse principal component analysis.
Journal of Computational and Graphical Statistics, 15, 265–286.

http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref1
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref2
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref3
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref4
http://www.optimization-online.org/DB_HTML/2012/04/3436.html
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref6
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref7
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref8
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref10
http://arxiv.org/abs/1109.5241
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref12
http://arxiv.org/abs/1406.5550
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref14
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref15
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref16
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref18
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref19
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref20
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref21
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref23
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref24
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref25
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref26
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref28
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref29
http://dynresmanagement.com/uploads/3/3/2/9/3329212/algorithms_for_l1pca.pdf
http://dynresmanagement.com/uploads/3/3/2/9/3329212/algorithms_for_l1pca.pdf
http://dynresmanagement.com/uploads/3/3/2/9/3329212/algorithms_for_l1pca.pdf
http://dynresmanagement.com/uploads/3/3/2/9/3329212/algorithms_for_l1pca.pdf
http://dynresmanagement.com/uploads/3/3/2/9/3329212/algorithms_for_l1pca.pdf
http://dynresmanagement.com/uploads/3/3/2/9/3329212/algorithms_for_l1pca.pdf
http://dynresmanagement.com/uploads/3/3/2/9/3329212/algorithms_for_l1pca.pdf
http://dynresmanagement.com/uploads/3/3/2/9/3329212/algorithms_for_l1pca.pdf
http://dynresmanagement.com/uploads/3/3/2/9/3329212/algorithms_for_l1pca.pdf
http://dynresmanagement.com/uploads/3/3/2/9/3329212/algorithms_for_l1pca.pdf
http://dynresmanagement.com/uploads/3/3/2/9/3329212/algorithms_for_l1pca.pdf
http://dynresmanagement.com/uploads/3/3/2/9/3329212/algorithms_for_l1pca.pdf
http://dynresmanagement.com/uploads/3/3/2/9/3329212/algorithms_for_l1pca.pdf
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref32
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref33
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref34
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref36
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref37
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref38
http://refhub.elsevier.com/S0893-6080(16)30111-3/sbref39

	Piece-wise quadratic approximations of arbitrary error functions for fast and robust machine learning
	Introduction
	Piecewise quadratic potential of subquadratic growth (PQSQ)
	Definition of the PQSQ potential
	Basic approach for optimization

	General theory of the piece-wise convex potentials as the cone of minorant functions
	Commonly used data approximators with PQSQ potential
	Mean value and k -means clustering in PQSQ approximation measure
	Principal Component Analysis (PCA) in PQSQ metrics
	Nonlinear methods: PQSQ-based principal graphs and manifolds

	PQSQ-based regularized regression
	Regularizing linear regression with PQSQ potential
	Introducing sparsity by `black hole' trick

	Numerical examples
	Practical choices of parameters
	Implementation
	Motivating example: dense two-cluster distribution contaminated by sparse noise
	Performance/stability trade-off benchmarking of L1 -based PCA
	Comparing performances of PQSQ-based regularized regression and lasso algorithms

	Conclusion
	Acknowledgment
	References

