**Workshop
"Hilbert's Sixth Problem''**

**University of
Leicester, May 02-04, 2016**

** **

** **

**Hilbert's 6 ^{th}
problem** concerns the axiomatization of
those parts of physics which are ready for a rigorous mathematical approach. D.
Hilbert attracted special attention to the following aspects of this problem: (i) axiomatic treatment of probability
with limit theorems for the foundation of statistical physics, and (ii) the
rigorous theory of limiting processes "which lead from the atomistic view to
the laws of motion of continua".

**The
original Hilbert's formulation**
(in English translation) was: "6. Mathematical Treatment of the Axioms of
Physics. The investigations on the foundations of geometry suggest the problem:
To treat in the same manner, by means of axioms, those physical sciences in
which already today mathematics plays an important part; in the first rank are
the theory of probabilities and mechanics." This is definitely "a programmatic
call" ...(** continued here**)

**Hilbert's 6 ^{th} problem gives a
unique framework** for
collaborations of multiscale analysis with other
fields of the mathematical sciences, from probability, logic and abstract
algebra to mathematical physics.

**The main aims of the workshop are**

1. To facilitate interdisciplinary discussion across key mathematical and physical disciplines involved in solution of Hilbert's sixth problem about the state of the art.

2. To synthetize an integral interdisciplinary point of view on Hilbert's sixth problem and renew the programmatic call in the light of the latest achievements.

3. To provide guidance to early career researchers via an indication of future research directions in Hilbert's sixth problem.

4. To disseminate the modern achievements and renewed programmatic call in a series of review publications.

**The
organizer**

Alexander
Gorban, Dept. of Mathematics, University of Leicester, **ag153@le.ac.uk**

**The
Scientific Committee of the Workshop**

Luigi Accardi, University of Roma Torvergata, Italy,

Alexander Bobylev, Keldysh Institute of Applied Mathematics, Russian Academy
of Sciences, Moscow, Russia,

Pierre Degond,
Chair Professor in Applied Mathematics, Imperial College London, UK,

Marshall
Slemrod, University of Wisconsin, Madison, USA.

Supported by:
** **