Langevin equations for slow degrees of freedom of Hamiltonian systems

R.S.MacKay University of Warwick

Outline

- 1. Introduction
- 2. Assumptions
- 3. Aim
- 4. Strategy
- 5. Overdamped case
- 6. Quantum degrees of freedom
- 7. Kinetics out of chemical equilibrium
- 8. Conclusion/Comments

1. Introduction

- Suppose a Hamiltonian system consisting of some slow degrees of freedom coupled to a high-dimensional chaotic system (e.g. conformations of a biomolecule coupled to vibrations, water movement etc).
- Would like to derive a Langevin equation for the slow degrees of freedom (i.e. an effective Hamiltonian + damping + noise).
- Precursors: Ford,Kac&Mazur; Zwanzig;
 Ott; Wilkinson; Berry&Robbins; Jarzynski...

2. Assumptions

- Gallavotti-Cohen "chaotic hypothesis": chaotic Hamiltonian systems can be treated as if mixing Anosov on each energy level.
- Anosov condition is unlikely to hold, but it allows some nice theory, aspects of which are likely to hold more generally.
- A low-dimensional mechanical example:

The triple linkage

Assumptions in detail

- Symplectic manifold (M,ω) , dim M = 2m
- Hamiltonian H, vector field X(H), flow φ_t
- Poisson map $\pi: M \to N = R^{2n}$ locally, n << m
- for each Z in N, $\pi^{-1}(Z)$ is a symplectic submanifold of M; then the restriction H_Z of H to $\pi^{-1}(Z)$ defines constrained dynamics X(H_Z) preserving volume $\Omega = \omega^{\wedge(m-n)}$, value of H, and "ergode" μ on H_Z⁻¹(E) def by $\mu \wedge dH = \Omega$.
- $V_j = \{H, Z_j \pi\}$ are slow compared to $X(H_Z)$.
- $X(H_Z)$ is mixing Anosov on $H_Z^{-1}(E)$; in particular, autocorrelation of deviation ζ of V from its mean decays on short time ε compared to significant change in Z
- Size of ζ is of order $\varepsilon^{-1/2}$ on slow timescale.

3. Aim

to show the distribution of paths $\pi \varphi_t(Y)$ for random Y wrt μ on $(\pi xH)^{-1}(Z_0, E_0)$ is close to that for the solutions of a stochastic ODE

 $dZ = (J-\beta D) \nabla F dt + \sigma dW, Z(0)=Z_0,$

with J representing the Poisson bracket on N, F = free energy function on N, β = inverse temperature, W a multidimensional Wiener process, Einstein-Sutherland relation D+D^T = $\sigma\sigma^{T}$, and Klimontovich interpretation.

4. Strategy:

(a) Zeroth order mean velocity

- Let $W_Z(E) = \int_{H \le E} \Omega$ on $\pi^{-1}(Z)$
- Anosov-Kasuga adiabatic invariant for slow Z when $H^{-1}(E)$ ergodic: $W_{Z(t)}(E(t)) \approx w_0$.
- Let $\lambda = \mu/W_Z$ '(E), normalised ergode
- $\lambda(V) = J \nabla f$, where $f(Z) = W_Z^{-1}(w_0)$, "microcanonical free energy".
- Alternatively, start in canonical ensemble $dv = e^{-\beta(H-F)} \Omega(dY)$ on $\pi^{-1}(Z)$ ("monode") and find $v(V) = J\nabla F$, but not obvious how to continue.

(b) Fluctuations

- The fluctuations ζ(t) from the mean can be approximated by a multidimensional white noise σ dW/dt with covariance
 σσ^T = ∫ds λ(ζ(t)ζ(s)) = D+D^T.
- Proofs at various levels, e.g. Melbourne&Nicol for the strongest.
- Refinement of π to make correlations decay as rapidly as possible could be useful to increase accuracy.

(c) Correction to λ

- If Z(t) is varied slowly, the measure on π⁻¹(Z(t)) starting with λ for given w₀ at t=-∞ lags behind that for t.
- Ruelle's formula for 1st order change in SRB for t-dependent mixing Anosov system:
 δ<O(t)> =∫^t ds <d(Oφ_{ts})δX_s> for any observable O (φ_{ts}= flow from s to t).
- In particular (assuming w₀ conserved), find $\delta < V > = (W'D)'/W' J dZ/dt \approx -\beta D\nabla F$, with $D_{ij} = \int^t ds \lambda(\zeta_i(s)\zeta_j(t)), \zeta = V - \lambda(V) along$ constrained orbits, $\beta = (logW')' = 1/T$.

(d) Put together

- Adding the preceding ingredients yields
 V = (J-βD) ∇f + σ dW/dt
 to first order.
- Now remove constraint of externally imposed Z(t): hope to get
 dZ/dt = V = (J-βD) ∇f + σ dW/dt,
 but have to examine correlations.

(e) Micro to canonical

- For m large, f ≈ F+cst, canonical free energy, because
- $\nabla F = \int e^{-\beta E} W_Z'(E) \nabla f dE / \int e^{-\beta E} W_Z'(E) dE$ and $e^{-\beta E} W_Z'(E)$ is sharply peaked around E_0 for which (logW')' = β (large deviation theory)
- If σ depends on Z, Klimontovich interpretation is necessary to make $e^{-\beta F} \omega^{n}$ stationary

5. Overdamped case

- If N=T*L, H(Q,P,z) = $P^TM^{-1}P/2 + h(Q,z)$ then F(Q,P) = $P^TM^{-1}P/2 + G(Q)$ and D has PP-block only and indpt of P
- If motion of Q is slow on time T|MD⁻¹| then P relaxes onto a slow manifold and get further reduction to

 $dQ = -TD^{-1}\nabla G dt + 2T\sigma^{-T} dW on L$

6. Quantum DoF

- Quantum Mechanics is Hamiltonian: for Hermitian operator h on complex Hilbert space U, take M = P(U) with Fubini-Study form, and H(ψ) = $\langle \psi | h \psi \rangle / \langle \psi | \psi \rangle$; gives Schrodinger evolution i d ψ /dt = h ψ .
- Or take M = (dual of) Lie algebra of Hermitian operators on U with inner product <A,B> = Tr AB and its Lie-Poisson bracket, and H(A) = Tr hA; gives von Neumann dA/dt = -i [h,A].
- So can incorporate quantum DoF, e.g. electrons in rhodopsin conformation change.
- Not Anosov, but maybe not really required.

7. Kinetics out of chemical equilibrium

- N can be a covering space, e.g. base= conformation of myosin, decks differ by number of ATP
- Need to adapt for constant pressure

8. Conclusion/Comments

- Mathematical justification of the Langevin equation looks possible.
- Can probably extend to some non-Anosov fast dynamics, e.g. partial hyperbolicity + accessibility may suffice for Ruelle formula.
- Main interest may be ways in which the above program can fail, e.g. no gap in spectrum of timescales.