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Domain and notations

Scaled variables: for 



Two-dimensional elasticity, Green’s     
tensors

Now we proceed with the formulation of the problem of Green’s tensor for 2D 
elasticity with the Dirichlet boundary conditions. In this case we consider the 
isotropic Lamé operator

Here         and         are elastic moduli.

We also have the fundamental solution                           for the  Lamé operator 
whose entries are given by
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Green’s tensor in a domain with several voids

For Green’s tensor, the first column gives displacements corresponding 
to a force acting parallel to horizontal axis and the second column gives 
displacements for the case of the force acting parallel to the vertical axis 
at an arbitrary fixed point in an elastic body.

a) b)
a) Configuration for first column     b) Configuration for second column



Theorem 1: Green’s tensor for the 
two-dimensional solid with several voids

Green’s tensor for the Lamé operator in         admits the representation

uniformly with respect to                   , where

eW

eWÎyx,



Example 1: The regular part of Green’s tensor. An e lastic half-plane 
with five circular voids
We consider the right half-plane with five circular voids. Here the point force acts 
at (250, 50) and (Cast Iron).



Example 1: An elastic half-plane with five circular voids
(continued)



Example 1: An elastic half-plane with five circular voids
(continued)
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Green’s function in      for the operator

We first consider Green’s function          for the Laplacian in the domain   
. The function           is a solution of         

eW D-

eG
eW eG



Green’s functions in      and

Let       and          denote Green’s functions for the Laplacian in the 
domains         and           , respectively. The function      solves the 
following

and the functions        are a solution of

also this formulation is also supplied with the following condition at 
infinity
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Green’s functions in      and
(continued)

We represent       and         as 

where       and         are the regular partsof       and           , respectively.
For the asymptotic algorithm we need the following Lemma

Here           is the limit of Green’s function            at infinity.
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Some auxiliary functions

For the asymptotic formula for         , we also introduce the function
and the constant

We also have the following estimate for  

eG
)( jz )( j
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Two-dimensional equilibrium potential

Let           be the equilibrium potentialcorresponding to the jth void. 
The function          is defined as a solution of

)( jPe )( jPe

Approximation of the equilibrium potential

We shall also make use of the approximation of            . We set 

.



Approximation of the equilibrium potential
(continued)



Approximation of the equilibrium potential 
(continued)

Associated with the preceding result is the asymptotic identity (which will 
be used in the algorithm)



Theorem 3: A uniform asymptotic formula 
for      for the operator         in two-dimensions

Green’s function for the operator          in          admits the representation

uniformly with respect to                 , where 

eW

eWÎyx,
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Proof: The Algorithm

For the asymptotic algorithm we propose that           be written as follows

where it is sufficient to seek the approximation  the functions 
and                      which solve

and 



Some Remarks

The same algorithm can be applied to the case of two dimensional elasticity.
We use for the remainder estimates the result:



Example 2: The regular part of Green’s function. Th e case of a 
large number of holes

We take        to be a disk of radius 70 centred at the origin containing 50 small 
disks whose radii not exceed 0.5. The force is located at the point (-20, 15).

�



Example 2: The case of a large number of holes
(continued)



Example 2: The case of a large number of holes
(continued)



Example 3: The configuration with holes of relatively 
large size

Now we take         to be a disk of radius 150,  again centred at the origin 
with 5 circular holes whose radii where varied throughout this example. 
The force now acts at the point (-25, 70)

�



Example 3: The configuration with holes of 
relatively large size (continued)

For the numerical experiments we define , as a non-dimensional 
parameter, where is the maximum radius of all the  holes and 



Example 3: The configuration with holes of 
relatively large size (continued)



Example 3: The configuration with holes of relatively 
large size (continued)
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Green’s tensor for a 3D elastic solid with 
several voids

Now            is a 3x3 matrix, and is defined as a solution of

where            is a 3-dimensional elastic perturbed body (with multiple voids).
As before, we shall use the notation          for the Lamé operator.



Model problems of 3D elasticity

We once again use the model tensors        and          defined in           and       
, respectively. The tensor          is a solution of 

and the tensors          solve the following problem



Model problems of 3D elasticity (continued)

We also  represent         as 

where                                           is the fundamental solution of the Lamé
operator in 3-dimensions, whose entries are given by    

and          is the regular part of Green’s tensor        .



Model problems of 3D elasticity (continued)

Also let be the regular part of , then this function solves

and we have the estimate



The elastic capacitary potential matrix

Let be the elastic capacitary potential matrix for the set                , 
defined as a solution of the following problem

We also introduce the elastic capacity matrix              of the set               . 
This is a constant symmetric matrix. 



The elastic capacitary potential matrix

We also need the following result related to the elastic capacitary potential,
for the asymptotic algorithm in 3D



Theorem 4: A uniform asymptotic formula for 
Green’s tensor for the Lamé operator 
in 3-dimensions

Green’s tensor for the Lamé operator in                   admits the representation

which is uniform with respect to                                .   



The Algorithm for 3D elasticity                      

In a similar way to the case of anti-plane shear we represent as  

where          and are matrices which solve the problems   

and



Theorem 5: A uniform asymptotic formula for 
Green’s function for the Laplacian in 3D

Green’s function for the operator            in                   admits the representation

which is uniform with respect to                                . 



Example: The regular part of Green’s function in 3D. A spherical 
body with five spherical voids
We consider a spherical body with five spherical voids. Here the point 
force acts at                                    .



Example: The regular part of Green’s function in 3D. A spherical 
body with five spherical voids (continued)



Conclusions

For the asymptotic formulae, for Green’s tensors in the 
perturbed domain, we may draw these conclusions:

• The new feature of the asymptotic formulae is their uniformity 
with respect to the independent spatial variables

• The asymptotic algorithm produces formulae within a theoretical 
good degree of accuracy

• The asymptotic formulae give a good approximation to the 
benchmark numerical computations, even in the extreme cases 
considered (and in some cases are more efficient)

• Numerical results show that the error produced by the 
approximation is in agreement with the theoretical prediction



Further Work

Next, we aim to extend this theory to the mixed boundary value problem for 
Green’s tensors in elasticity, for the case of when Neumann conditions are 
prescribed on the boundaries of the  small holes and with have the Dirichlet
condition on the exterior boundary. 

Acknowledgements

I would like to thank my supervisors Sasha Movchan and Vladimir Maz’ya
for all their help and guidance throughout the work, also the EPSRC for their
funding. I am also grateful to my family for all their support throughout my 
research.



References

1. Maz’ya V. G., Movchan A. B., Nieves M. J.: Uniform asymptotic 
formulae for Green’s tensors in elastic singularly perturbed domains, 
Journal of Asymptotic Analysis  (accepted for publication)

2. Maz’ya V. G., Movchan A. B., Nieves M. J: Uniform asymptotic       
formulae for Green’s tensors in elastic singularly perturbed domains 
with multiple voids, Quarterly Journal of Applied Mechanics  (to 
appear)

3. Maz’ya V. G., Movchan A. B.: Uniform asymptotic formulae for   
Green’s kernels in regularly and singularly perturbed domains, C. R. 
Acad. Sci. Paris. Ser. I 343, 185--190, (2006).

4. Maz'ya, V. G., Movchan A. B.: Uniform asymptotic formulae for 
Green's functions in singularly perturbed domains, Journal of 
Computational and Applied Mathematics (2006), 
doi.10.1016/j.cam.2006.10.038.


