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Two-dimensional elasticity, Green’s
tensors

Now we proceed with the formulation of the problefGreen’s tensor for 2D
elasticity with the Dirichlet boundary conditions. this case we consider the
Isotropic Lameé operator

L(8/0x) = Ay + (A + 1)V (Vi- ) .

Here A andj are elastic moduli.

2

We also have the fundamental soluti@ﬁz[gpq] 0.q=1

whose entries are given by

for the Lamé operator

Yo%, y) = (A4 3p)(drp(N+2p)) " (—log |x — ¥y
A+ )N+ 3p) Hap — ) (@ —yg)Ix —y[72) .




Green’s tensor In a domain with several voids

For Green’s tensor, the first column gives disphaeets corresponding
to a force acting parallel to horizontal axis ahd second column gives
displacements for the case of the force actingliehta the vertical axis
at an arbitrary fixed point in an elastic body.

a) b)
a) Configuration for first column  b) Configuiat for second column



Theorem 1: Green’s tensor for the
two-dimensional solid with several voids

Green’s tensor for the Lamé operatorVh, aslthie representation
N
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uniformly with respect toX,yl W, , where

AW = (N4 3p)(drp(N+ 2u)) Hogel, + H(OW, OW) — ¢




Example 1: The regular part of Green’s tensor. An e lastic half-plane

with five circular voids
We consider the right half-plane with five circulamds. Here the point force acts

at (250, 50) anc A = i = 5.6 x 101 (Cast Iron).
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Figure 1  a) Numerical solution produced in FEMLAB on a mesh containing
66480 elements, b) Computations based on the asymptotic formula for the
first column of ‘H., when ¢ = 0.32.




Example 1: An elastic half-plane with five circular voids
(continued)




Example 1: An elastic half-plane with five circular voids
(continued)







Green’s function in  Wor the operator -D

We first consider Green'’s functloG for thegplacian in the domain
W, . The function G, s a solution of




Green’s functionsin  Vand Cn"

Let G and ") denote Green’s functionstfier Laplacian in the
domains W andC!” | respectively. Tinecfion G solves the

following

and the functiong!) are a solution of

also this formulation is also supplied with thddaling condition at
Infinity




Green’s functionsin  \and Cn"
(continued)

We represenfs ang(® as

where H andh)  are tregular partsof G and g , respectively
For the asymptotic algorithm we need the followimgmma

Here is the limit of Green’s functio®'” at infinity.



Some auxiliary functions

For the asymptotic formula for Ge , we also introduce the function

z(j) and the constant zg)

We also have the following estimate for




Two-dimensional equilibrium potential

Let PS) be thequilibrium potentiaktorresponding to the jth void.
The function P ' is defined as a solution of

Approximation of the equilibrium potential

We shall also make use of the approximation of . We set




Approximation of the equilibrium potential
(continued)




Approximation of the equilibrium potential
(continued)

Associated with the preceding result is the asymmptoentity (which will
be used in the algorithm)




Theorem 3: A uniform asymptotic formula
for G for the operator - in two-dimensions

Green'’s function for the operaterD M\;E admits the representation

uniformly with respect tax,yl W, , where




Proof. The Algorithm

For the asymptotic algorithm we propose that be written as follows

where it is sufficient to seek the approximatidre functions
and which solve

and




Some Remarks

The same algorithm can be applied to the case ofltmensional elasticity.
We use for the remainder estimates the result:




Example 2: The regular part of Green’s function. Th e case of a
large number of holes

We take to be a disk of radius 70 centreti@brigin containing 50 small
disks whose radii not exceed 0.5. The force istemtat the point (-20, 15).




Example 2: The case of a large number of holes
(continued)




Example 2: The case of a large number of holes
(continued)




Example 3: The configuration with holes of relatively
large size

Now we take to be a disk of radius 150, again centred at the origin
with 5 circular holes whose radii where varied throughout this example.

The force now acts at the point (-25, 70)




Example 3: The configuration with holes of
relatively large size (continued)

For the numerical experiments we define , as adovensional
parameter, where IS the maximum radius of all hieées and




Example 3: The configuration with holes of
relatively large size (continued)



Example 3: The configuration with holes of relatively
large size (continued)







Green’s tensor for a 3D elastic solid with
several voids

Now IS a 3x3 matrix, and is defined a®ition of
where IS a 3-dimensional elastic pedrbody (with multiple voids).

As before, we shall use the notation lher tamé operator.



Model problems of 3D elasticity

We once again use the model tensors and defined In and
, respectively. The tensor IS a solutibn o

and the tensors solve the following prable




Model problems of 3D elasticity (continued)

We also represent as

where the fundamental solution of the Lameée
operator in 3-dimensions, whose entries are giyen b

and IS the regular part of Green’s tensor .



Model problems of 3D elasticity (continued)

Also let be the regular part of , then this functsmives

and we have the estimate




The elastic capacitary potential matrix

Let be the elastic capacitary potential matrix far et
defined as a solution of the following problem

We also introduce the elastic capacity matrix of the set
This is a constant symmetric matrix.



The elastic capacitary potential matrix

We also need the following result related to tles®t capacitary potential,
for the asymptotic algorithm in 3D




Theorem 4: A uniform asymptotic formula for
Green’s tensor for the Lamé operator
In 3-dimensions

Green'’s tensor for the Lamé operator in admits the representation

which is uniform with respect to



The Algorithm for 3D elasticity

In a similar way to the case of anti-plane shearepeesent as

where and are matrices which solve thélpros

and




Theorem 5: A uniform asymptotic formula for
Green’s function for the Laplacian in 3D

Green’s function for the operator In admits the representation

which is uniform with respect to



Example: The regular part of Green’s function in 3D. A spherical

body with five spherical voids
We consider a spherical body with five sphericatlgoHere the point

force acts at




Example: The regular part of Green’s function in 3D. A spherical
body with five spherical voids (continued)




Conclusions

For the asymptotic formulae, for Green’s tensors in the
perturbed domain, we may draw these conclusions:

 The new feature of the asymptotic formulae is their uniformity
with respect to the independent spatial variables

« The asymptotic algorithm produces formulae within a theoretical
good degree of accuracy

 The asymptotic formulae give a good approximation to the
benchmark numerical computations, even in the extreme cases
considered (and in some cases are more efficient)

 Numerical results show that the error produced by the
approximation is in agreement with the theoretical prediction



Further Work

Next, we aim to extend this theory to the mixedrmary value problem for
Green’s tensors in elasticity, for the case of wNemamann conditions are
prescribed on the boundaries of the small holdsnath have the Dirichlet

condition on the exterior boundary.
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