Dominant systems for asymptotic analysis of reaction networks

Dynamic and static limitation in reaction networks, revisited

Alexander Gorban
University of Leicester, UK

Ovidiu Radulescu
University of Rennes, France

Plan

1. Kinetic of linear networks
2. Idea of limitation. Simple examples
3. Model reduction before model creation: constant ordering versus constant values
4. Catalytic cycle with limiting step
5. Auxiliary discrete dynamic systems
6. Cycles surgery
7. Example: prism of reactions
8. Conclusion and outlook

Linear network of chemical reactions

A_{i} are reagents, c_{i} is concentration of A_{i}.
All the reactions are of the type $A_{i} \rightarrow A_{j}$. $k_{j i}>0$ is the reaction $A_{i} \rightarrow A_{j}$ rate constant.

The reaction rates: $w_{j i}=k_{j i} c_{i}$.

$$
\begin{gather*}
\text { Kinetic equation } \\
\dot{c}_{i}=\sum_{j, j \neq i}\left(k_{i j} c_{j}-k_{j i} c_{i}\right) \text { or } \dot{c}=\mathbf{K} c, \tag{1}
\end{gather*}
$$

A linear conservation law is a linear function $b(c)=\sum_{i} b_{i} c_{i}$ whose value is preserved by the dynamics.
Example: $b^{0}=\sum_{i} c_{i}$ is the conservation law.

A set E in concentration space is positively invariant, if any solution $c(t)$ that starts in E at time $t_{0}\left(c\left(t_{0}\right) \in E\right)$ belongs to E for $t>t_{0}$.

The standard simplex $\Sigma=\left\{c \mid c_{i} \geq 0, \sum_{i} c_{i}=1\right\}$ is positively invariant.

- For all eigenvalues λ of $\mathbf{K} R e \lambda \leq 0$, because solutions cannot leave Σ in positive time;
- If $\operatorname{Re} \lambda=0$ then $\lambda=0$, because intersection of Σ with any plain is a polygon, and a polygon cannot be invariant with respect to rotation group;
- The Jordan cell of \mathbf{K} that corresponds to zero eigenvalue is diagonal - because all solutions should be bounded in Σ for positive time.
- The shift in time, operator $\exp (\mathbf{K} t)$, is a contraction in the l_{1} norm for $t>0$: for $t>0$ and any two solutions of (1) $c(t), c^{\prime}(t) \in \Sigma$

$$
\sum_{i}\left|c_{i}(t)-c_{i}^{\prime}(t)\right| \leq \sum_{i}\left|c_{i}(0)-c_{i}^{\prime}(0)\right|
$$

Pseudomonomolecular reactions

$$
\begin{gathered}
\underline{\mathrm{S}}_{j i}+A_{i} \rightarrow A_{j}+\underline{\mathrm{P}}_{j i} \\
k_{j i}=k_{j i}^{0}\left[\underline{\mathrm{~S}}_{j i}\right] \\
\text { where }\left[\underline{\mathrm{S}}_{j i}\right] \text { is concentration of the substrate } \underline{\mathrm{S}}_{j i} \\
{\left[\underline{\mathrm{~S}}_{j i}\right] \gg c_{i}}
\end{gathered}
$$

For example, the Michaelis-Menten system:

$$
\begin{gathered}
\underline{S}+E \rightarrow S E \rightarrow E+P \\
\ldots+E \rightarrow S E \rightarrow E+\ldots \\
E \rightarrow S E \rightarrow E
\end{gathered}
$$

LIMITING STEP

Linear chain of reactions $A_{1} \rightarrow A_{2} \rightarrow \ldots A_{n}$ with reaction rate constants k_{i} (for $A_{i} \rightarrow A_{i+1}$)

Let k_{q} be the smallest constant: $k_{q} \ll k_{i}(i \neq q)$
In time scale $\sim 1 / k_{q}$:
$A_{1}, \ldots A_{q-1}$ transform fast into A_{q},
$A_{q+1}, \ldots A_{n-1}$ transform fast into A_{n}, only two components, A_{q} and A_{n}, are present, the whole chain behaves as a single reaction $A_{q} \xrightarrow{k_{A}} A_{n}$
"Vox populi, vox Dei"

Google gave on 31st December 2006:

- for "quasi-equilibrium" - 301000 links;
- for "quasi steady state" 347000 and for "pseudo steady state" 76200, 423000 together;
- for "slow manifold" 29800 only, and for "invariant manifold" 98100;
- for "singular perturbation" 361000 links;
- for "model reduction" even more, 373000;
- but for "limiting step" - 714000!

To find constants we need to operate with simple models.

We need to simplify the unknown model.

We have some hypothesis about the network structure
Usually, something is big, and something is small enough, we can guess the constant ordering ($I=(i, j)$):

$$
k_{I_{1}} \ll k_{I_{2}} \ll k_{I_{3}} \ll \ldots
$$

Irreversible Cycle $A_{1} \rightarrow A_{2} \rightarrow \ldots A_{n} \rightarrow A_{1}$
with reaction rate constants k_{i} (for $A_{i} \rightarrow \ldots$)

Limiting step $A_{n} \rightarrow A_{1}$ with reaction rate constant $k_{n} \ll k_{i}(i<n)$

The elementary reaction rate: $w_{i}=k_{i} c_{i}$

The kinetic equation: $\dot{c}_{i}=w_{i-1}-w_{i}\left(w_{0}=w_{n}\right)$

In the stationary state all the w_{i} are equal: $w_{i}=w$.

Static limitation in a cycle

$$
w=\frac{b}{\frac{1}{k_{1}}+\ldots \frac{1}{k_{n}}}, \text { where } b=\sum_{i} c_{i}
$$

If $k_{n} \ll k_{i}(i<n)$ then
$w \approx k_{n} b, c_{n} \approx b\left(1-\sum_{i<n} \frac{k_{n}}{k_{i}}\right), c_{i} \approx b \frac{k_{n}}{k_{i}}$

Dynamic limitation in a cycle, eigenvalues
If k_{n} / k_{i} is small for all $i<n$, then the kinetic matrix has one simple zero eigenvalue that corresponds to the conservation law $\sum c_{i}=b$ and $n-1$ nonzero eigenvalues

$$
\lambda_{i}=-k_{i}+\delta_{i}(i<n),
$$

where $\delta_{i} \rightarrow 0$ when $\sum_{i<n} \frac{k_{n}}{k_{i}} \rightarrow 0$.

Dynamic limitation in a cycle, eigenvectors:

$$
\begin{aligned}
& l^{i} \mathbf{K}=\lambda_{i} l^{i} ; \mathbf{K} r^{i}=\lambda_{i} r^{i} ;\left(l^{i}, r^{j}\right)=\delta_{i j}: \text { for } m>0 \\
& \qquad r_{i+m}^{i} \approx \prod_{j=1}^{m} \frac{k_{i+j-1}}{k_{i+j}-k_{i}}=\frac{k_{i}}{k_{i+m}-k_{i}} \prod_{j=1}^{m-1} \frac{k_{i+j}}{k_{i+j}-k_{i}} ; \\
& \qquad l_{i-m}^{i} \approx \prod_{j=1}^{m} \frac{k_{i-j}}{k_{i-j}-k_{i}} ; \\
& l_{i}^{i}=r_{i}^{i}=1 \text { and } r_{i-m}^{i}=l_{i+m}^{i}=0 \\
& \text { If } k_{i_{1}} \gg k_{i_{2}} \gg \ldots \gg k_{i_{n}}=k_{n} \text { then } \\
& \qquad r_{i+m}^{i} \approx 1,-1, \text { or } 0 ; \quad l_{j-m}^{i} \approx 1, \text { or } 0
\end{aligned}
$$

The main goal

For arbitrary reaction network with well separated constants

$$
k_{I_{1}} \gg k_{I_{2}} \gg k_{I_{3}} \gg \ldots
$$

we build an acyclic reaction network that approximates kinetic of initial network.

Sinks and ergodicity in reaction networks

A nonempty set V of vertices forms a sink, if there are no oriented edges from $A_{i} \in V$ to any $A_{j} \notin V$.
For example, in the reaction graph $A_{1} \leftarrow A_{2} \rightarrow A_{3}$ the one-vertex sets $\left\{A_{1}\right\}$ and $\left\{A_{3}\right\}$ are sinks. A sink is minimal if it does not contain a strictly smaller sink.

For any $c(0) \in \Sigma$ there exists $\lim _{t \rightarrow \infty} \exp (\mathbf{K} t) c(0)$. A linear network is weakly ergodic, if for all $c(0) \in \Sigma$ these limits coincide.

The following properties are equivalent:
i) the network is weakly ergodic.
ii) for each two vertices $A_{i}, A_{j}(i \neq j)$ we can find such a vertex A_{k} that an oriented paths exist from A_{i} to A_{k} and from A_{j} to A_{k} (it might be $i=k$ or $j=k$).
iii) the network has only one minimal sink.
iv) there is an unique linear conservation law, namely $b^{0}(c)=\sum_{i=1}^{q} c_{i}$ (the zero eigenvalue of the matrix \mathbf{K} is not degenerate).

Integration of orderings

1. Auxiliary discrete dynamical systems

For each $A_{i}, \kappa_{i}=\max _{j}\left\{k_{j i}\right\}, \phi(i)=\arg \max _{j}\left\{k_{j i}\right\}$; $\phi(i)=i$ if there is no outgoing reaction $A_{i} \rightarrow A_{j}$.
ϕ determines auxiliary dynamical system on a set $\mathcal{A}=$ $\left\{A_{i}\right\}$.

Let us decompose this system and find the cycles C_{j} with basins of attraction, $\operatorname{Att}\left(C_{j}\right): \mathcal{A}=\cup_{j} \operatorname{Att}\left(C_{j}\right)$.

Integration of orderings

2. If all C_{j} are sinks in the initial network, then let us delete the limited steps from cycles C_{j}. After that, the kinetics of acyclic reaction network $A_{i} \rightarrow A_{\phi(i)}$ with constants κ_{i} approximates the proper kinetics uniformly for any constant values under given ordering.

Example: a "dominant cycle" $A_{1} \rightarrow A_{2} \rightarrow \ldots A_{n} \rightarrow A_{1}$, if all other reactions $A_{i} \rightarrow A_{j}$ have constants $k_{j i} \ll k_{i+1 i}$.

Integration of orderings

3. If some of C_{j} are not sinks in the initial network, then we glue cycles:
A. For each C_{i} we introduce a new vertex A_{i}. The new set of vertices, $\mathcal{A}^{1}=\mathcal{A} \cup\left\{A^{1}, A^{2}, \ldots\right\} \backslash\left(\cup_{i} C_{i}\right)$.
B. For each C_{i}, we find a normalized stationary distribution due to internal reactions of C_{i}. Due to limitation, $c_{j}^{*} \approx \kappa_{\lim i} / \kappa_{j}, A_{j} \in C_{i}$.
C. For each reaction $A_{j} \rightarrow A_{q}\left(A_{j} \in C_{i}, A_{q} \notin C_{i}\right)$ we define reaction $A^{i} \rightarrow A_{q}$ with the constant $k_{q j} c_{j}^{*}$.

We prepared a new reaction network. Iterate.

After several steps, we get an auxiliary dynamic system with cycles that are sinks. After that, we shall go back, restore cycles, delete limiting steps,... The result is the acyclic dynamic system that approximates kinetics of initial system.

Cycles surgery on the way back

Inclusion monomials in the ordering

$$
\begin{aligned}
& \text { d) } A_{5} \xrightarrow{2}>A_{6}
\end{aligned}
$$

e)

Three zero-one laws for multiscale linear networks

Steady states (for weakly ergodic networks)

Limit states (for non-ergodic networks)
SINK1... $\leftarrow A_{i} \rightarrow \ldots$...SINK2
From each vertex almost all flux goes either to SINK1, or to SINK2 ("xor" instead of "or").

Relaxation eigenmodes (eigenvectors)

CONCLUSION

- Dominant systems correspond to faces of the Newton polyhedron for the spectral problem;
- We have the algorithm for extraction of the dominant systems from the graph of reactions without computation of determinants;
- This method can be considered as development of the Vishik-Lyusternik-Lidskii perturbation theory;
- "Integration of orderings" can be used if the reaction rate constants are known only "by orders";
- Dominant systems give the rough and robust approximation to solution of kinetic equations and can also serve for preconditioning purposes in numerics;
- Zero-one laws for multiscale systems cause the correspondent "phase transitions" and generate new phenomenology of qualitative behaviour for such systems;
- Linear systems - discrete dynamics on the set of components (species); Nonlinear systems - discrete dynamics on the set of small reaction networks.

Life is not easy. I. Bifurcations in fast system

Life is not easy. II. Slow manifold is not connected

Crazy quilt of Dynamic Decomposition (total)

Decomposition (along a trajectory)

