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Linear network of chemical reactions

A; are reagents, c¢; is concentration of A;.
All the reactions are of the type A; — Aj.
kj; > 0 is the reaction A; —+ A; rate constant.
The reaction rates: wj; = kj;¢;.

Kinetic equation

c; = Z (kZ]C] — kacz) or ¢ = K, (1)
J,J71



A linear conservation law is a linear function
b(c) = > ; b;c; whose value is preserved by the
dynamics.

Example: 89 = ¥, ¢; is the conservation law.

A set E in concentration space is positively
invariant, if any solution ¢(¢) that starts in £ at time
to (c(tg) € E) belongs to E for t > tg.

The standard simplex > = {c|c¢; >0, > ;¢c; = 1} is
positively invariant.



For all eigenvalues A of K Re\ < 0, because solu-
tions cannot leave > in positive time;

If ReA = 0 then A = 0, because intersection of >
with any plain is a polygon, and a polygon cannot
be invariant with respect to rotation group;

The Jordan cell of K that corresponds to zero eigen-
value is diagonal — because all solutions should be
bounded in > for positive time.

The shift in time, operator exp(Kt), is a contraction
in the [{ norm for ¢t > 0. for t > O and any two
solutions of (1) ¢(t),c(t) € &

3 lei() — (B < Y 1ei(0) — ¢f(0)).



Pseudomonomolecular reactions

Sji+A; = A;+Py;
qu; — k%[§ji],
where [S;;] is concentration of the substrate Sj;,
[Sji] > ¢

For example, the Michaelis-Menten system:
S+E—-SE—->E+P
...+ E—>SE—>E+ ..
E—-SE—>E



LIMITING STEP
Linear chain of reactions A1 — A> — ...A;, with
reaction rate constants k; (for A; — A;1 1)

Let k, be the smallest constant: k; < k; (i # q)

In time scale ~ 1/kq:

Aq,...A4_1 transform fast into Ag,

Agyq,---Ap—1 transform fast into Ay,

only two components, A; and Ay, are present,

the whole chain behaves as a single reaction A, % A,



“Vox populi, vox Dei”

Google gave on 31st December 2006:

- for “quasi-equilibrium”™ — 301000 links;

- for *“quasi steady state” 347000 and for “pseudo
steady state” 76200, 423000 together;

- for “slow manifold” 29800 only, and for “invariant
manifold” 98100;

- for “singular perturbation” 361000 links;

- for "model reduction’” even more, 373000;

- but for “limiting step” — 714000!



To find constants we need to operate with simple mod-
els.

We need to simplify the unknown model.
We have some hypothesis about the network structure

Usually, something is big, and something is small enough,
we can guess the constant ordering (I = (i,7)):

kll < ka < k[3 < ..



Irreversible Cycle A1 -+ A> — ... Ap — Aq
with reaction rate constants k; (for A; — ...)

Limiting step A, — A1
with reaction rate constant k, < k; (i < n)

The elementary reaction rate: w; = k;c¢;

The Kinetic equation: ¢;, = w;_1 — w; (wg = wy)

In the stationary state all the w; are equal: w; = w.
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Static limitation in a cycle

If kn < k; (1 <n) then
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Dynamic limitation in a cycle, eigenvalues

If kn/k; is small for all ¢ < n, then the kinetic matrix
has one simple zero eigenvalue that corresponds to the
conservation law ) c¢; = b and n—1 nonzero eigenvalues

Ai = —k; +6; (2 <n),

where 9; — 0 when ZKR% — 0.
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Dynamic limitation in a cycle, eigenvectors:

K = M\15 Krt = At (1407) = §;;0 for m > 0

r ~ rrFitji-1 — i " biti
+m = ki-l—j _ k'z' ki-l-m — ki le kz'-l—j — ki’
0 e
i=ri=landri =1, =0

If kil > k‘i2 > 0> k@n = k,, then

riim~1,—-1,0r0; I*  ~1, 0r0
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The main goal

For arbitrary reaction network with well sepa-

rated constants

kr, > ki, > kg > ...

we build an acyclic reaction network that ap-
proximates kinetic of initial network.
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Sinks and ergodicity in reaction networks

A nonempty set V of vertices forms a sink, if there are
no oriented edges from A; € V to any A; ¢ V.

For example, in the reaction graph Ay «< A, — Az
the one-vertex sets {A1} and {A3} are sinks. A sink is
minimal if it does not contain a strictly smaller sink.

For any ¢(0) € X there exists lim;_ o exp(Kt)c(0). A
linear network is weakly ergodic, if for all ¢(0) € X these
limits coincide.
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T he following properties are equivalent:

i) the network is weakly ergodic.

ii) for each two vertices A;, A; (¢ # j) we can find such
a vertex A; that an oriented paths exist from A; to A,
and from A; to Ay (it might be i =k or j = k).

iii) the network has only one minimal sink.

iv) there is an unique linear conservation law, namely
b9(c) = 27_; ¢; (the zero eigenvalue of the matrix K is
not degenerate).
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Integration of orderings

1. Auxiliary discrete dynamical systems

For each A;, k; = max;{k;;}, ¢(i) = argmax,{k;;},
¢(z) =1 if there is no outgoing reaction A; — A;.

¢ determines auxiliary dynamical system on a set A =

{A;}

Let us decompose this system and find the cycles C)
with basins of attraction, Att(C;): A = U;Att(C;).
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Integration of orderings

2. If all C’j are sinks in the initial network, then let
us delete the limited steps from cycles Cj. After that,
the kinetics of acyclic reaction network A; — A ;) with
constants k; approximates the proper kinetics uniformly
for any constant values under given ordering.

Example: a “dominant cycle” Ay — A — ...Ap, — A1, If
all other reactions A; —+ A; have constants kj; < k;41;-
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Integration of orderings

3. If some of C; are not sinks in the initial network,
then we glue cycles:

A. For each C; we introduce a new vertex A;. The new
set of vertices, Al = Au{Al, A% .1\ (U;C;).

B. For each Cj;, we find a normalized stationary distribu-
tion due to internal reactions of C;. Due to limitation,
C;'f ~ Klim i/K’jv Aj e C;.

C. For each reaction A; — Ay (A4; € C;, Aqg & C;) we

define reaction A* — A, with the constant kqjc;f.
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We prepared a new reaction network. Iterate.

After several steps, we get an auxiliary dynamic system
with cycles that are sinks. After that, we shall go back,
restore cycles, delete limiting steps,... The result is the

acyclic dynamic system that approximates Kinetics of
initial system.
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Cycles surgery on the way back
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Inclusion monomials in the ordering

>> [Tk >>

AN

kp >>kp >>..>> k[j >> ..
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li A
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Three zero-one laws for multiscale linear networks
Steady states (for weakly ergodic networks)

Limit states (for non-ergodic networks)
SINK1... + A; — ...SINK2

From each vertex almost all flux goes either to SINK1,
or to SINK2 (“xor"” instead of “or").

Relaxation eigenmodes (eigenvectors)
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CONCLUSION
- Dominant systems correspond to faces of the Newton
polyhedron for the spectral problem;

- We have the algorithm for extraction of the dominant
systems from the graph of reactions without computa-
tion of determinants;

- This method can be considered as development of the
Vishik-Lyusternik-Lidskii perturbation theory;

- “Integration of orderings” can be used if the reaction
rate constants are known only “by orders”;
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- Dominant systems give the rough and robust approx-
imation to solution of kinetic equations and can also
serve for preconditioning purposes in Nnumerics;

- Zero-one laws for multiscale systems cause the cor-
respondent “phase transitions” and generate new phe-
nomenology of qualitative behaviour for such systems;

- Linear systems - discrete dynamics on the set of com-
ponents (species); Nonlinear systems - discrete dynam-
ics on the set of small reaction networks.



Life is not easy.

I. Bifurcations in fast system

Fast
directions

Fast
directions

ansatz
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Life is not easy. II. Slow manifold is not connected

Fast u
directions

Ilz,slow
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Crazy quilt of Dynamic Decomposition (total)
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Decomposition (along a trajectory)
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