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Plan1. Kineti of linear networks2. Idea of limitation. Simple examples3. Model redution before model reation:onstant ordering versus onstant values4. Catalyti yle with limiting step5. Auxiliary disrete dynami systems6. Cyles surgery7. Example: prism of reations8. Conlusion and outlook



Linear network of hemial reationsAi are reagents, i is onentration of Ai.All the reations are of the type Ai! Aj.kji > 0 is the reation Ai! Aj rate onstant.The reation rates: wji = kjii.Kineti equation_i = Xj; j 6=i(kijj � kjii) or _ = K; (1)
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A linear onservation law is a linear funtionb() = Pi bii whose value is preserved by thedynamis.Example: b0 = Pi i is the onservation law.A set E in onentration spae is positivelyinvariant, if any solution (t) that starts in E at timet0 ((t0) 2 E) belongs to E for t > t0.The standard simplex � = f j i � 0; Pi i = 1g ispositively invariant.
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� For all eigenvalues � of K Re� � 0, beause solu-tions annot leave � in positive time;� If Re� = 0 then � = 0, beause intersetion of �with any plain is a polygon, and a polygon annotbe invariant with respet to rotation group;� The Jordan ell of K that orresponds to zero eigen-value is diagonal { beause all solutions should bebounded in � for positive time.� The shift in time, operator exp(Kt), is a ontrationin the l1 norm for t > 0: for t > 0 and any twosolutions of (1) (t); 0(t) 2 �Xi ji(t)� 0i(t)j �Xi ji(0)� 0i(0)j: 5



Pseudomonomoleular reationsSji+Ai! Aj +Pjikji = k0ji[Sji℄,where [Sji℄ is onentration of the substrate Sji,[Sji℄� iFor example, the Mihaelis-Menten system:S+E! SE! E+P:::+E! SE! E+ :::E! SE! E
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LIMITING STEPLinear hain of reations A1 ! A2 ! :::An withreation rate onstants ki (for Ai! Ai+1)Let kq be the smallest onstant: kq � ki (i 6= q)In time sale � 1=kq:A1; :::Aq�1 transform fast into Aq,Aq+1; :::An�1 transform fast into An,only two omponents, Aq and An, are present,the whole hain behaves as a single reation Aq !kq An
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\Vox populi, vox Dei"Google gave on 31st Deember 2006:- for \quasi-equilibrium" { 301000 links;- for \quasi steady state" 347000 and for \pseudosteady state" 76200, 423000 together;- for \slow manifold" 29800 only, and for \invariantmanifold" 98100;- for \singular perturbation" 361000 links;- for \model redution" even more, 373000;- but for \limiting step" { 714000!
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To �nd onstants we need to operate with simple mod-els.We need to simplify the unknown model.We have some hypothesis about the network strutureUsually, something is big, and something is small enough,we an guess the onstant ordering (I = (i; j)):kI1 � kI2 � kI3 � :::
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Irreversible Cyle A1! A2! : : : An! A1with reation rate onstants ki (for Ai! :::)Limiting step An! A1with reation rate onstant kn � ki (i < n)The elementary reation rate: wi = kiiThe kineti equation: _i = wi�1 � wi (w0 = wn)In the stationary state all the wi are equal: wi = w.
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Stati limitation in a ylew = b1k1+::: 1kn , where b = Pi i

If kn � ki (i < n) thenw � knb; n � b �1�Pi<n knki � ; i � bknki
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Dynami limitation in a yle, eigenvaluesIf kn=ki is small for all i < n, then the kineti matrixhas one simple zero eigenvalue that orresponds to theonservation law P i = b and n�1 nonzero eigenvalues�i = �ki+ Æi (i < n);where Æi ! 0 when Pi<n knki ! 0.
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Dynami limitation in a yle, eigenvetors:liK = �ili; Kri = �iri; (li; rj) = Æij: for m > 0rii+m � mYj=1 ki+j�1ki+j � ki = kiki+m � ki m�1Yj=1 ki+jki+j � ki;

lii�m � mYj=1 ki�jki�j � ki;lii = rii = 1 and rii�m = lii+m = 0.If ki1 � ki2 � :::� kin = kn thenrii+m � 1;�1; or 0; lij�m � 1; or 0 13



The main goal

For arbitrary reation network with well sepa-rated onstants
kI1 � kI2 � kI3 � :::we build an ayli reation network that ap-proximates kineti of initial network.
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Sinks and ergodiity in reation networksA nonempty set V of verties forms a sink, if there areno oriented edges from Ai 2 V to any Aj =2 V .For example, in the reation graph A1  A2 ! A3the one-vertex sets fA1g and fA3g are sinks. A sink isminimal if it does not ontain a stritly smaller sink.For any (0) 2 � there exists limt!1 exp(Kt) (0). Alinear network is weakly ergodi, if for all (0) 2 � theselimits oinide.
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The following properties are equivalent:i) the network is weakly ergodi.ii) for eah two verties Ai; Aj (i 6= j) we an �nd suha vertex Ak that an oriented paths exist from Ai to Akand from Aj to Ak (it might be i= k or j = k).iii) the network has only one minimal sink.iv) there is an unique linear onservation law, namelyb0() = Pqi=1 i (the zero eigenvalue of the matrix K isnot degenerate).
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Integration of orderings1. Auxiliary disrete dynamial systemsFor eah Ai, �i = maxjfkjig, �(i) = argmaxjfkjig;�(i) = i if there is no outgoing reation Ai ! Aj.� determines auxiliary dynamial system on a set A =fAig.Let us deompose this system and �nd the yles Cjwith basins of attration, Att(Cj): A = [jAtt(Cj).
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Integration of orderings2. If all Cj are sinks in the initial network, then letus delete the limited steps from yles Cj. After that,the kinetis of ayli reation network Ai ! A�(i) withonstants �i approximates the proper kinetis uniformlyfor any onstant values under given ordering.Example: a \dominant yle" A1 ! A2 ! :::An! A1, ifall other reations Ai! Aj have onstants kji � ki+1 i.
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Integration of orderings3. If some of Cj are not sinks in the initial network,then we glue yles:A. For eah Ci we introdue a new vertex Ai. The newset of verties, A1 = A [ fA1; A2; :::g n ([iCi).B. For eah Ci, we �nd a normalized stationary distribu-tion due to internal reations of Ci. Due to limitation,�j � �lim i=�j, Aj 2 Ci.C. For eah reation Aj ! Aq (Aj 2 Ci, Aq =2 Ci) wede�ne reation Ai! Aq with the onstant kqj�j .
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We prepared a new reation network. Iterate.After several steps, we get an auxiliary dynami systemwith yles that are sinks. After that, we shall go bak,restore yles, delete limiting steps,... The result is theayli dynami system that approximates kinetis ofinitial system.
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Cyles surgery on the way bak
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Inlusion monomials in the ordering
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Three zero-one laws for multisale linear networksSteady states (for weakly ergodi networks)Limit states (for non-ergodi networks)SINK1::: Ai! :::SINK2From eah vertex almost all ux goes either to SINK1,or to SINK2 (\xor" instead of \or").Relaxation eigenmodes (eigenvetors)
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CONCLUSION- Dominant systems orrespond to faes of the Newtonpolyhedron for the spetral problem;

- We have the algorithm for extration of the dominantsystems from the graph of reations without omputa-tion of determinants;

- This method an be onsidered as development of theVishik-Lyusternik-Lidskii perturbation theory;

- \Integration of orderings" an be used if the reationrate onstants are known only \by orders"; 26



- Dominant systems give the rough and robust approx-imation to solution of kineti equations and an alsoserve for preonditioning purposes in numeris;

- Zero-one laws for multisale systems ause the or-respondent \phase transitions" and generate new phe-nomenology of qualitative behaviour for suh systems;

- Linear systems - disrete dynamis on the set of om-ponents (speies); Nonlinear systems - disrete dynam-is on the set of small reation networks.



Life is not easy. I. Bifurations in fast system
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Life is not easy. II. Slow manifold is not onneted
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Crazy quilt of Dynami Deomposition (total)
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Deomposition (along a trajetory)
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