
6 Newton Method
with Incomplete Linearization

The Newton method with incomplete linearization is developed for solving
the invariance equation. It is the basis of an iterative construction of the
manifolds of slow motions.

6.1 The Method

Let us come back to the invariance equation (3.3),

∆y = (1 − Py)J(F (y)) = 0 .

One of the most efficient methods to solve this equation is the New-
ton method with incomplete linearization. Let us linearize the vector field J
around F (y):

J(F (y) + δF (y)) = J(F (y)) + (DJ)F (y)δF (y) + o(δF (y)) . (6.1)

Equation of the Newton method with incomplete linearization makes it
possible to determine δF (y) from a linear system:

{
PyδF (y) = 0 ,
(1 − Py)(DJ)F (y)δF (y) = (1 − Py)J(F (y)) . (6.2)

The crucial point here is that the same projector Py is used as in the
equation (3.3), that is, the variation of the projector δP is not computed
(hence, the suggested linearization of equation (3.3) is incomplete). We re-
call that projector Py depends on the tangent space Ty = im(DF )y. If the
thermodynamic projector (5.25) is used here, then Py depends also on 〈|〉F (y)

and on g = (DS)F (y).
Equations of the Newton method with incomplete linearization (6.2) are

not differential equations in y anymore, they do not contain derivatives of the
unknown δF (y) with respect to y (which would be the case if the variation of
the projector δP has been taken into account). The absence of the derivatives
in equation (6.2) significantly simplifies its solving. However, even this is not
the main advantage of the incomplete linearization. More essential is the
fact that iterations of the Newton method with incomplete linearization are
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140 6 Newton Method with Incomplete Linearization

expected to converge to slow invariant manifolds, unlike the usual Newton
method (with “complete linearization”).

In order to clarify this feature of the Newton method with incomplete lin-
earization (6.2), let us consider the case of linear manifolds for linear systems.
Let a linear evolution equation be given in the real Hilbert space:

ẋ = Ax ,

where A is negative definite symmetric operator with a simple spectrum. The
square of the norm is the Lyapunov function,

S(x) = 〈x | x〉 .

The manifolds we consider are lines, l(y) = ye, where e is the unit vector,
and y is a scalar. The invariance equation for such manifolds reads:

e〈e | Ae〉 − Ae = 0 ,

and it is simply the eigenvalue problem for the operator A. Solutions to the
latter equation are eigenvectors ei, corresponding to eigenvalues λi.

Assume that we choose an initial approximation, that is the line l0 = ye0

defined by the unit vector e0. Let the vector e0 be not an eigenvector of A. We
seek another line, l1 = ae1, where e1 is another unit vector, e1 = x1/‖x1‖,
x1 = e0 + δx. The additional condition in (6.2) reads: PyδF (y) = 0, i.e.
〈e0 | δx〉 = 0. Then (6.2) becomes

[1 − e0〈e0 | ·〉]A[e0 + δx] = 0 .

Subject to the additional condition, the unique solution is as follows:

e0 + δx = 〈e0 | A−1e0〉−1A−1e0 .

Upon rewriting the latter expression in the eigen-basis of A, we have:

e0 + δy ∝
∑

i

λ−1
i ei〈ei | e0〉 .

The leading term in this sum corresponds to the eigenvalue with the mini-
mal absolute value. The example indicates that the method (6.2) seeks the
direction of the slowest relaxation. For this reason, the Newton method with
incomplete linearization (6.2) can be recognized as the basis of iterative con-
struction of the manifolds of slow motions.

In an attempt to simplify computations, the question which always can be
asked is as follows: To what extend is the choice of the projector essential in
the equation (6.2)? This question is a valid one, because if we accept that it-
erations converge to a relevant slow manifold, and also that the projection on
the true invariant manifold is insensible to the choice of the projector, should
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one care of the projector on each iteration? In particular, for the moment
parameterizations, can one use in equation (6.2) the projector (5.1)? Experi-
ence gained from some of the problems studied by this method indicates that
this is possible. However, in order to derive physically meaningful equations
of motion along the approximate slow manifolds, one has to use the ther-
modynamic projector (5.25). Otherwise we cannot guarantee the dissipation
properties of these equations of motion.

6.2 Example: Two-Step Catalytic Reaction

We consider here a two-step four-component reaction with one catalyst A2 =
Z (2.98):

A1 +A2 � A3 � A2 +A4 . (6.3)

We assume the Lyapunov function of the form (2.86),G =
∑4

i=1 ci[ln(ci/c
eq
i )−

1]. The kinetic equation for the four-component vector of concentrations,
c = (c1, c2, c3, c4), has the form

ċ = γ1W1 + γ2W2 . (6.4)

Here γ1,2 are stoichiometric vectors,

γ1 = (−1,−1, 1, 0), γ2 = (0, 1,−1, 1) , (6.5)

while functions W1,2 are reaction rates:

W1 = k+
1 c1c2 − k−1 c3, W2 = k+

2 c3 − k−2 c2c4 . (6.6)

Here k±1,2 are reaction rate constants. The system under consideration has
two conservation laws,

c1 + c3 + c4 = B1, c2 + c3 = B2 , (6.7)

or (b1,2, c) = B1,2, where b1 = (1, 0, 1, 1) and b2 = (0, 1, 1, 0). The nonlinear
system (6.4) is effectively two-dimensional, and we consider one-dimensional
manifolds of reduced description.

We have chosen the concentration of the specie A1 as the variable of
reduced description: M = c1, and c1 = (m, c), where m = (1, 0, 0, 0). The
initial manifold c = c0(M) (i.e. c = c0(c1, B1, B2)) was taken as the quasi-
equilibrium approximation, i.e. the vector function c0 is the solution to the
problem:

G → min for (m, c) = c1, (b1, c) = B1, (b2, c) = B2 . (6.8)

The solution to the problem (6.8) can be computed explicitly:
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c01 = c1 , (6.9)
c02 = B2 − φ(c1) ,
c03 = φ(c1) ,
c04 = B1 − c1 − φ(c1) ,

φ(M) = A(c1) −
√
A2(c1) −B2(B1 − c1) ,

A(c1) =
B2(B1 − ceq1 ) + ceq3 (ceq1 + ceq3 − c1)

2ceq3
.

The thermodynamic projector associated with the manifold (6.9) reads:

P 0x =
∂c0

∂c1
(m,x) +

∂c0

∂B1
(b1,x) +

∂c0

∂B2
(b2,x) . (6.10)

Computing ∆0 = (1 − P 0)J(c0) we find that it is not equal to zero, and
thus the quasiequilibrium manifold c0 is not invariant. The first correction,
c1 = c0 + δc, is found from the linear algebraic system (6.2)

(1 − P 0)L′
0δc = −[1 − P 0]J(c0) , (6.11)
δc1 = 0

δc1 + δc3 + δc4 = 0
δc3 + δc2 = 0 , (6.12)

where the symmetric 4× 4 matrix L′
0 has the form (we write 0 instead of c0

in the subscript in order to simplify notations):

L′
0,kl = −γ1k

W+
1 (c0) +W−

1 (c0)
2

γ1l

c0l
− γ2k

W+
2 (c0) +W−

2 (c0)
2

γ2l

c0l
(6.13)

Here we use the self-adjoint linearization1.
The explicit solution c1(c1, B1, B2) to the linear system (6.11) is easily

found, and we do not reproduce it here. The process was iterated. On the
k + 1 iteration, the following projector P k was used:

P kx =
∂ck

∂c1
(m,x) +

∂ck

∂B1
(b1,x) +

∂ck

∂B2
(b2,x) . (6.14)

Note that projector P k (6.14) is thermodynamic only if k = 0. In the process
of finding the corrections to the manifold, the non-thermodynamic projectors
are allowed (we should return to the thermodynamic projector for projection
of the vector field onto ansatz manifold). The linear equation at the k + 1
iteration is thus obtained by replacing c0, P 0, and L′

0 with ck, P k, and L′
k

in all the entries of (6.11) and (6.13).

1 The self-adjoint linearization was introduced in Chap. 2 (2.33), more detailed
discussion follows in Chap. 7 (7.15)
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Once the manifold ck was obtained on the kth iteration, we derived the
corresponding dynamics by introducing the corresponding thermodynamic
projector. The resulting dynamic equation for the variable c1 in the kth
approximation has the form:

(∇G
∣∣
ck
, ∂ck/∂c1)ċ1 = (∇G

∣∣
ck
,J(ck)) . (6.15)

Here [∇G
∣∣
ck

]i = ln[cki/c
eq
i ].

Analytic results were compared with the results of the numerical integra-
tion of the system (6.4). The following set of parameters was used:

k+
1 = 1.0, k−1 = 0.5, k+

2 = 0.4, k−2 = 1.0 ;
ceq1 = 0.5, ceq2 = 0.1, ceq3 = 0.1, ceq4 = 0.4 ,

B1 = 1.0, B2 = 0.2 .

Figure 6.1 demonstrates the quasi-equilibrium manifold (6.9) and the first
two corrections. It should be stressed that we spent no special effort on the
construction of the initial approximation, that is, of the quasi-equilibrium
manifold, have not used any information about the Jacobian field (unlike,
for example, the ILDM [93] or CSP [90] methods) etc. The initial quasi-
equilibrium approximation is in a rather poor agreement with the reduced
description. Therefore, it should be appreciated that the further corrections
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Fig. 6.1. Images of the initial quasi-equilibrium manifold (bold line) and the first
two corrections (solid normal lines) in the phase plane [c1, c3] for two-step catalytic
reaction (6.3). Dashed lines are individual trajectories
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rapidly improve the situation while no small parameter considerations were
used. This confirms our expectation of the advantage of using the iteration
methods instead of methods based on a small parameter expansions for model
reduction problems.

6.3 Example: Non-Perturbative Correction
of Local Maxvellian Manifold
and Derivation of Nonlinear Hydrodynamics
from Boltzmann Equation (1D)

We apply here the method of invariant manifold to a particularly impor-
tant situation when the initial manifold consists of local Maxwellians (5.49)
(the LM manifold). This manifold and its corrections play the central role in
the problem of derivation of hydrodynamics from the Boltzmann equation.
Hence, any method of approximate investigation of the Boltzmann equation
should be tested with the LM manifold. Classical methods (the Chapman-
Enskog and Hilbert methods) use Taylor-type expansions into powers of a
small parameter (the Knudsen number expansion). However, as we have men-
tioned above, the method of invariant manifold, generally speaking, assumes
no small parameters, at least in its formal part where convergency properties
are not discussed. We shall develop an appropriate technique to consider the
invariance equation of the first iteration. This technique involves ideas of the
parametrix expansion of the theory of pseudodifferential and Fourier integral
operators [249,250]. This approach will make it possible to avoid using small
parameters.

We seek a correction to the LM manifold in the form (dependence of
velocity v will be not displayed whenever possible):

f1(n,u, T ) = f0(n,u, T ) + δf1(n,u, T ) . (6.16)

We use the Newton method with incomplete linearization for obtaining the
correction δf1(n,u, T ), because we are interested in a manifold of slow (hy-
drodynamic) motions. We introduce the representation:

δf1(n,u, T ) = f0(n,u, T )ϕ(n,u, T ) . (6.17)

6.3.1 Positivity and Normalization

When seeking corrections, we should be ready to face two problems that
are typical for any method of successive approximations in the Boltzmann
equation theory. Namely, the first of this problems is that the correction

fΩk+1 = fΩk
+ δfΩk+1
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obtained from the linearized invariance equation of the k+1-th iteration may
be not a non-negatively defined function and thus it cannot be used directly in
order to define the thermodynamic projector for the k+1-th approximation.
In order to overcome this difficulty, we can treat the procedure as a process
of correcting the dual variable µf = DfH(f) rather than the process of
immediate correcting the distribution functions.

The dual variable µf is:

µf

∣∣
f=f(x, v)

= DfH(f)
∣∣
f=f(x, v)

= DfHx(f)
∣∣
f=f(x, v)

= ln f(v,x) . (6.18)

Then, at the k + 1-th iteration, we obtain a new dual variable µf

∣∣
Ωk+1

:

µf

∣∣
Ωk+1

= µf

∣∣
Ωk

+ δµf

∣∣
Ωk+1

. (6.19)

Due to the relationship µf ←→ f , we have:

δµf

∣∣
Ωk+1

= ϕΩk+1 +O(δf2
Ωk+1

), ϕΩk+1 = f−1
Ωk
δfΩk+1 . (6.20)

Thus, solving the linear invariance equation of the k-th iteration with respect
to the unknown function δfΩk+1 , we find a correction to the dual variable
ϕΩk+1(6.20), and we derive the corrected distributions fΩk+1 as

fΩk+1 = exp(µf

∣∣
Ωk

+ ϕΩk+1) = fΩk
exp(ϕΩk+1) . (6.21)

Functions (6.21) are positive, and they satisfy the invariance equation and
the additional conditions within the accuracy of ϕΩk+1 .

However, the second difficulty which might occur is that functions (6.21)
might have no finite moments (5.43). In particular, this difficulty can be a
result of some approximations used in solving equations. Hence, we have to
“regularize” the functions (6.21) in some way. A sketch of an approach to do
this regularization is as follows: instead of fΩk+1(6.21), we consider functions:

f
(β)
Ωk+1

= fΩk
exp(ϕΩk+1 + ϕreg(β)) . (6.22)

Here ϕreg(β) is a function labeled with β ∈ B, and B is a linear space. Then
we derive β∗ from the condition of matching the macroscopic variables.

For example, corrections to the LM distribution in the Chapman-Enskog
method [70] and the thirteen-moment Grad approximation [201] are not non-
negatively defined functions, while the thirteen-moment quasiequilibrium ap-
proximation [224] has no finite integrals (5.42) and (5.43).

6.3.2 Galilean Invariance of Invariance Equation

In some cases, it is convenient to consider the Boltzmann equation vector field
in a reference system which moves with the flow velocity. In this reference
system, we define the Boltzmann equation vector field as:
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df
dt

= Ju(f),
df
dt

=
∂f

∂t
+ ux,s(f)

∂f

∂xs
;

Ju(f) = −(vs − ux,s(f))
∂f

∂xs
+Q(f, f) . (6.23)

Here ux,s(f) stands for the s-th component of the flow velocity:

ux,s(f) = n−1
x (f)

∫
vsf(v,x) d3v; nx(f) =

∫
f(v,x) d3v . (6.24)

In particular, this form of the Boltzmann equation vector field is convenient
when the initial manifold Ω0 consists of functions fΩ0 which depend explicitly
on (v−ux(f)) (i.e., if functions fΩ0 ∈ Ω0 do not change under velocity shifts:
v → v + c, where c is a constant vector). This is also the case of the LM
manifold.

Substituting Ju(f) (6.23) instead of J(f) (5.44) into all expressions which
depend on the Boltzmann equation vector field, we transfer all procedures
developed above into the moving reference system. In particular, we obtain
the following invariance equation of the first iteration for a general locally
finite dimensional initial approximation f0(a(x),v):

(P 0∗
a(x)(·) − 1)J0

u,lin,a(x)(δf1(a(x),v)) +∆(f0(a(x),v)) = 0 ; (6.25)

where

J0
u,lin,a(x)(g) =

{
n−1

x (f0(a(x)))
∫
vsg d3v

+ ux,s(f0(a(x)))n−1
x (f0(a(x)))

∫
g d3v

}
∂f0(a(x),v)

∂xs

− (vs − ux,s(f0(a(x))))
∂g

∂xs
+ Lf0(a(x),v)(g) ;

∆(f0(a(x),v)) = (P ∗
a(x)(·) − 1)Ju(f0(a(x),v)) .

Here a(x) are coordinates on the manifold at the given space point x, P ∗
a(x)

is the corresponding thermodynamic projector. Additional conditions do not
depend on the vector field, and thus they remain valid for equation (6.25).

6.3.3 Equation of the First Iteration

The equation of the first iteration in the form of (6.20) for the correction
ϕ(n,u, T ) is:

{
Pf0(n,u,T )(·) − 1

}{
−(vs − us)

∂f0(n,u, T )
∂xs

+ f0(n,u, T )Lf0(n,u,T )(ϕ)

−(vs − us)
∂(f0(n,u, T )ϕ)

∂xs
− n−1(f0(n,u, T ))

(∫
vsf0(n,u, T )ϕd3v

+us(f0(n,u, T ))
∫
f0(n,u, T )ϕd3v

)
∂f0(n,u, T )

∂xs

}
= 0 . (6.26)
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Here Pf0(n,u,T ) is the thermodynamic projector on the LM manifold and
f0(n,u, T )Lf0(n,u,T )(ϕ) is the linearized Boltzmann collision integral:

f0(n,u, T )Lf0(n,u,T )(ϕ) =
∫
w(v′,v′

1|v,v1)f0(n,u, T )

×{ϕ′ + ϕ′
1 − ϕ1 − ϕ} d3v′ d3v′

1 d3v1 . (6.27)

Additional condition for equation (6.26) has the form:

Pf0(n,u,T )(f0(n,u, T )ϕ) = 0 . (6.28)

In detail notation:∫
1 · f0(n,u, T )ϕd3v = 0,

∫
vif0(n,u, T )ϕd3v = 0, i = 1, 2, 3 ,

∫
v2f0(n,u, T )ϕd3v = 0 . (6.29)

Eliminating in (6.26) the terms containing
∫
vsf0(n,u, T )ϕd3v and

∫
f0(n,u, T )ϕd3v

with the use of (6.29), we obtain the following form of equation (6.26):

{Pf0(n,u,T )(·) − 1}
(
−(vs − us)

∂f0(n,u, T )
∂xs

(6.30)

+ f0(n,u, T )Lf0(n,u,T )(ϕ) − (vs − us)
∂(f0(n,u, T )ϕ)

∂xs

)
= 0 .

In order to address the properties of equation (6.30), it proves useful to
introduce real Hilbert spaces Gf0(n,u,T ) with scalar products:

(ϕ,ψ)f0(n,u,T ) =
∫
f0(n,u, T )ϕψ d3v . (6.31)

Each Hilbert space is associated with the corresponding LM distribution
f0(n,u, T ).

The projector Pf0(n,u,T ) (5.55) is associated with a projector Πf0(n,u,T )

which acts in the space Gf0(n,u,T ):

Πf0(n,u,T )(ϕ) = f−1
0 (n,u, T )Pf0(n,u,T )(f0(n,u, T )ϕ) . (6.32)

It is an orthogonal projector, because

Πf0(n,u,T )(ϕ) =
4∑

s=0

ψ
(s)
f0(n,u,T )(ψ

(s)
f0(n,u,T ), ϕ)f0(n,u,T ) . (6.33)
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Here ψ(s)
f0(n,u,T ) are given by the expression (5.57).

We can rewrite the equation of the first iteration (6.30) in the form:

Lf0(n,u,T )(ϕ) +Kf0(n,u,T )(ϕ) = Df0(n,u,T ) . (6.34)

Notations used here are:

Df0(n,u,T ) = f−1
0 (n,u, T )∆(f0(n,u, T )) ; (6.35)

Kf0(n,u,T )(ϕ) =
{
Πf0(n,u,T )(·) − 1

}
f−1
0 (n,u, T )(vs − us)

∂(f0(n,u, T )ϕ)
∂xs

.

The additional condition for equation (6.34) is:

(ψ(s)
f0(n,u,T ), ϕ)f0(n,u,T ) = 0, s = 0, . . . , 4 . (6.36)

We list now the properties of the equation (6.34) for usual collision
models [70]:

(a) The linear integral operator Lf0(n,u,T ) is self-adjoint with respect to the
scalar product (·, ·)f0(n,u,T ), and the quadratic form (ϕ,Lf0(n,u,T )(ϕ)) is
negatively definite in imLf0(n,u,T ).

(b) The kernel of Lf0(n,u,T ) does not depend on f0(n,u, T ), and it is the
linear hull of the polynomials ψ0 = 1, ψi = vi, i = 1, 2, 3, and ψ4 = v2.

(c) The right hand side Df0(n,u,T ) is orthogonal to kerLf0(n,u,T ) in the sense
of the scalar product (·, ·)f0(n,u,T ).

(d) The projection operator Πf0(n,u,T ) is the self-adjoint projector onto
kerLf0(n,u,T ):

Πf0(n,u,T )(ϕ) ∈ kerLf0(n,u,T ) (6.37)

Projector Πf0(n,u,T ) projects orthogonally.
(e) The image of the operator Kf0(n,u,T ) is orthogonal to kerLf0(n,u,T ).
(f) Additional condition (6.36) requires the solution of equation (6.34) to be

orthogonal to kerLf0(n,u,T ).

These properties result in the necessary condition for solving the equation
(6.34) with the additional constraint (6.36). This means the following: equa-
tion (6.34), provided with constraint (6.36), satisfies the condition which is
necessary to have the unique solution in imLf0(n,u,T ).
Remark. Because of the differential part of the operator Kf0(n,u,T ), we are
not able to apply the Fredholm alternative to obtain the necessary and suf-
ficient conditions for solvability of equation (6.36). Thus, the condition men-
tioned here is, rigorously speaking, only the necessary condition. Neverthe-
less, we shall continue to develop a formal procedure for solving the equation
(6.34).

To this end, we paid no attention to the dependence of functions, spaces,
operators, etc, on the space variable x. It is useful to rewrite once again
the equation (6.34) in order to separate the local in x operators from the



6.3 Example: Non-Perturbative Correction of Local Maxwellian Manifold 149

differential operators. Furthermore, we shall replace the subscript f0(n,u, T )
with the subscript x in all the expressions. We represent (6.34) as:

Aloc(x,v)ϕ−Adiff

(
x,

∂

∂x
,v

)
ϕ = −D(x,v) ;

Aloc(x,v)ϕ = −{Lx(v)ϕ+ (Πx(v) − 1)rxϕ} ;

Adiff

(
x,

∂

∂x
,v

)
ϕ = (Πx(·) − 1)

(
(vs − us)

∂

∂xs
ϕ

)
;

Πx(v)g =
4∑

s=0

ψ(s)
x (ψ(s)

x , g) ;

ψ(0)
x = n−1/2, ψ(s)

x = (2/n)1/2cs(x,v), s = 1, 2, 3 ,
ψ(4)

x = (2/3n)1/2(c2(x,v) − 3/2); ci(x,v) = (m/2kBT (x))1/2(vi − ui(x)) ,

rx = (vs − us)
(
∂lnn
∂xs

+
m

kBT
(vi − ui)

∂ui

∂xs
+
(
m(v − u)2

2kBT
− 3

2

)
∂lnT
∂xs

)
;

D(x,v) =
{(

m(v − u)2

2kBT
− 5

2

)
(vi − ui)

∂lnT
∂xi

+
m

kBT

(
((vi − ui)(vs − us) −

1
3
δis(v − u)2

)
∂us

∂xi

}
. (6.38)

Here we have omitted the dependence on x in the functions n(x), ui(x), and
T (x). Further, if no confusion might occur, we always assume this depen-
dence, and we shall not indicate it explicitly.

The additional condition for this equation is:

Πx(ϕ) = 0 . (6.39)

Equation (6.38) is linear in ϕ. However, the main difficulty in solving this
equation is caused by the differential in x operator Adiff which does not
commute with the local in x operator Aloc.

6.3.4 Parametrix Expansion

In this subsection we introduce a method to construct approximate solu-
tions of equation (6.37). This procedure involves an expansion similar to the
parametrix expansion in the theory of pseudo-differential (PDO) and Fourier
integral operators (FIO).

Considering ϕ ∈ imLx, we write a formal solution of equation (6.38) as:

ϕ(x,v) =
(
Aloc(x,v) −Adiff

(
x,

∂

∂x
,v

))−1

(−D(x,v)) (6.40)

It is useful to extract the differential operator ∂
∂x from the operator

Adiff(x, ∂
∂x ,v):
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ϕ(x,v) =
(

1 −Bs(x,v)
∂

∂xs

)−1

ϕloc(x,v) . (6.41)

Notations used here are:

ϕloc(x,v) = A−1
loc(x,v)(−D(x,v))

= [−Lx(v) − (Πx(v) − 1)rx]−1(−D(x,v)) ;
Bs(x,v) = A−1

loc(x,v)(Πx(v) − 1)(vs − us) (6.42)
= [−Lx(v) − (Πx(v) − 1)rx]−1(Πx(v) − 1)(vs − us) .

We shall now discuss in more details the properties of the terms in (6.42).
For every x, the function ϕloc(x,v), considered as a function of v, is an

element of the Hilbert space Gx. It gives a solution to the integral equation:

− Lx(v)ϕloc − (Πx(v) − 1)(rxϕloc) = (−D(x,v)) (6.43)

This latter linear integral equation has the unique solution in imLx(v). In-
deed,

kerA+
loc(x,v) = ker(Lx(v) + (Πx(v) − 1)rx)+

= ker(Lx(v))+
⋂

ker((Πx(v) − 1)rx)+

= ker(Lx(v))+
⋂

ker(rx(Πx(v) − 1)) ,

and Gx

⋂
Πx(v)Gx = {0} . (6.44)

Thus, the existence of the unique solution of equation (6.43) follows from the
Fredholm alternative.

Let us consider the operator R(x, ∂
∂x ,v):

R

(
x,

∂

∂x
,v

)
=
(

1 −Bs(x,v)
∂

∂xs

)−1

. (6.45)

One can represent it as a formal series:

R

(
x,

∂

∂x
,v

)
=

∞∑
m=0

[
Bs(x,v)

∂

∂xs

]m

. (6.46)

Here [
Bs(x,v)

∂

∂xs

]m

= Bs1(x,v)
∂

∂xs1

. . . Bsm
(x,v)

∂

∂xsm

. (6.47)

Every term of the type (6.47) can be represented as a finite sum of operators
which are superpositions of the following two operations: of the integral in v
operations with kernels depending on x, and of differential in x operations.
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Our goal is to obtain explicit representation of the operator R(x, ∂
∂x ,v)

(6.45) as an integral operator. If the operator Bs(x,v) would not depend
on x i.e., if no dependence on spatial variables would occur in kernels of
integral operators, in Bs(x,v)), then we could reach our goal via the usual
Fourier transform. However, operators Bs(x,v) and ∂

∂xk
do not commute, and

thus this elementary approach does not work. We shall develop a method to
obtain the required explicit representation using the ideas of PDO and IOF
technique.

We start with the representation (6.46). Our strategy is to transform every
summand (6.47) in order to place integral in v operators Bs(x,v) on the left
of the differential operators ∂

∂xk
. The commutation of every pair ∂

∂xk
Bs(x,v)

yields an elementary transform:

∂

∂xk
Bs(x,v) → Bs(x,v)

∂

∂xk
−
[
Bs(x,v),

∂

∂xk

]
. (6.48)

Here [M,N ] = MN −NM denotes the commutator of operators M and N.
We can represent (6.47) as:

[
Bs(x,v)

∂

∂xs

]m

= Bs1(x,v) . . . Bsm
(x,v)

∂

∂xs1

. . .
∂

∂xsm

+O
([

Bsi
(x,v),

∂

∂xsk

])
. (6.49)

Here O([Bsi
(x,v), ∂

∂xsk
]) denotes the terms which contain one or more pairs

of brackets [·, ·]. The first term in (6.49) contains no brackets. We can continue
this process of selection and extract the first-order in the number of pairs of
brackets terms, the second-order terms, etc. Thus, we arrive at the expansion
into powers of commutator of the expressions (6.47).

In this section we consider explicitly the zeroth-order term of this commu-
tator expansion. Neglecting all the terms with brackets in (6.49), we write:

[
Bs(x,v)

∂

∂xs

]m

0

= Bs1(x,v) . . . Bsm
(x,v)

∂

∂xs1

. . .
∂

∂xsm

. (6.50)

Here the subscript zero indicates the zeroth order with respect to the number
of brackets.

We should now substitute expressions [Bs(x,v) ∂
∂xs

]m0 (6.50) instead of
expressions [Bs(x,v) ∂

∂xs
]m (6.47) into the series (6.46):

R0

(
x,

∂

∂x
,v

)
=

∞∑
m=0

[
Bs(x,v)

∂

∂xs

]m

0

. (6.51)

The action of every summand (6.50) might be defined via the Fourier trans-
form with respect to spatial variables.
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Denote as F the direct Fourier transform of a function g(x,v):

Fg(x,v) ≡ ĝ(k,v) =
∫
g(x,v) exp(−iksxs) dpx . (6.52)

Here p is the spatial dimension. Then the inverse Fourier transform is:

g(x,v) ≡ F−1ĝ(k,v) = (2π)−p

∫
ĝ(k,v) exp(iksxs) dpk . (6.53)

The action of the operator (6.50) on a function g(x,v) is defined as:
[
Bs(x,v)

∂

∂xs

]m

0

g(x,v)

=
(
Bs1(x,v) . . . Bsm

(x,v)
∂

∂xs1

. . .
∂

∂xsm

)
(2π)−p

∫
ĝ(k,v)eiksxs dpk

= (2π)−p

∫
exp(iksxs)[iklBl(x,v)]mĝ(k,v) dpk . (6.54)

Taking into account (6.54) in (6.51) yields the following definition of the
operator R0:

R0g(x,v) = (2π)−p

∫
eiksxs(1 − iklBl(x,v))−1ĝ(k,v) dpk . (6.55)

This is the Fourier integral operator (note that the kernel of this integral
operator depends on k and on x). The commutator expansion introduced
above is a version of the parametrix expansion [249, 250], while expression
(6.55) is the leading term of this expansion. The kernel (1− iklBl(x,v))−1 is
called the main symbol of the parametrix.

The account of (6.55) in the formula (6.41) yields the zeroth-order term
of parametrix expansion ϕ0(x,v):

ϕ0(x,v) = F−1(1 − iklBl(x,v))−1Fϕloc . (6.56)

In detail notation:

ϕ0(x,v) = (2π)−p

∫ ∫
exp(iks(xs − ys))

×(1 − iks[−Lx(v) − (Πx(v) − 1)rx]−1(Πx(v) − 1)(vs − us(x)))−1

×[−Ly(v) − (Πy(v) − 1)ry]−1(−D(y,v)) dpy dpk . (6.57)

We shall now list the steps to calculate the function ϕ0(x,v) (6.57).
Step 1. Solve the linear integral equation

[−Lx(v) − (Πx(v) − 1)rx]ϕloc(x,v) = −D(x,v) . (6.58)

and obtain the function ϕloc(x,v).
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Step 2. Calculate the Fourier transform ϕ̂loc(k,v):

ϕ̂loc(k,v) =
∫
ϕloc(y,v) exp(−iksys) dpy . (6.59)

Step 3. Solve the linear integral equation

[−Lx(v) − (Πx(v) − 1)(rx + iks(vs − us(x))]ϕ̂0(x,k,v) = −D̂(x,k,v) ;
−D̂(x,k,v) = [−Lx(v) − (Πx(v) − 1)rx]ϕ̂loc(k,v) . (6.60)

and obtain the function ϕ̂0(x,k,v).
Step 4. Calculate the inverse Fourier transform ϕ0(x,v):

ϕ0(x,v) = (2π)−p

∫
ϕ̂0(x,k,v) exp(iksxs) dpk . (6.61)

Completing these four steps, we obtain an explicit expression for the zeroth-
order term of parametrix expansion ϕ0(x,v)(6.56).

As we have already mentioned it above, equation (6.58) of Step 1 has the
unique solution in imLx(v). Equation (6.60) of Step 3 has the same property.
Indeed, for every k, the right hand side −D̂(x,k,v) is orthogonal to imΠx(v),
and thus the existence and the uniqueness of the formal solution ϕ̂0(x,k,v)
follows again from the Fredholm alternative.

Thus, in Step 3, we obtain the unique solution ϕ̂0(x,k,v). For every k,
this is a function which belongs to imLx(v). Because the LM distribution
f0(x,v) = f0(n(x),u(x), T (x),v) has no explicit dependency on x, we see
that the inverse Fourier transform of Step 4 gives ϕ0(x,v) ∈ imLx(v).

Equations (6.58)–(6.61) provide us with the scheme of constructing the
zeroth-order term of parametrix expansion. Closing this section, we outline
briefly the way to calculate the first-order term of this expansion.

Consider a formal operator R = (1 −AB)−1. Operator R is defined by a
formal series:

R =
∞∑

m=0

(AB)m . (6.62)

In every term of this series, we want to place operators A on the left to
operators B. In order to do this, we have to commute B with A from left to
right. The commutation of every pair BA yields the elementary transform,
BA → AB− [A,B], where [A,B] = AB−BA. Extracting the terms with no
commutators [A,B] and with a single commutator [A,B], we arrive at the
following representation:

R = R0 +R1 + (terms with more than two brackets) . (6.63)

Here
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R0 =
∞∑

m=0

AmBm ; (6.64)

R1 = −
∞∑

m=2

∞∑
i=2

iAm−i[A,B]Ai−1Bi−1Bm−i . (6.65)

Operator R0 (6.64) is the zeroth-order term of parametrix expansion derived
above. Operator R1 (the first-order term of parametrix expansion) can be
represented as follows:

R1 = −
∞∑

m=1

mAm[A,B]

( ∞∑
i=0

AiBi

)
Bm = −

∞∑
m=1

mAmCBm ,

C = [A,B]R0 . (6.66)

This expression can be considered as an ansatz for the formal series (6.62),
and it gives the most convenient way to calculate R1. Its structure is similar
to that of R0. Continuing in this manner, we can derive the second-order
term R2, etc.

In the next subsection we shall consider in more detail the zero-order term
of parametrix expansion.

6.3.5 Finite-Dimensional Approximations
to Integral Equations

Dealing further only with the zeroth-order term of parametrix expansion
(6.57), we have to solve two linear integral equations, (6.58) and (6.60). These
equations satisfy the Fredholm alternative, and thus they have unique solu-
tions. After the problem is reduced to solving linear integral equations, we
are at the same level of complexity as in the Chapman-Enskog method. The
usual approach is to replace integral operators with some appropriate finite-
dimensional operators.

First we remind some standard objectives of finite-dimensional approxi-
mations, considering equation (6.58). Let pi(x,v), where i = 1, 2, . . ., be a
basis in imLx(v). Every function ϕ(x,v) ∈ imLx(v) can be represented in
this basis as:

ϕ(x,v) =
∞∑

i=1

ai(x)pi(x,v); ai(x) = (ϕ(x,v), pi(x,v))x . (6.67)

Equation (6.58) is equivalent to an infinite set of linear algebraic equations
with respect to unknowns ai(x):

∞∑
i=1

mki(x)ai(x) = dk(x), k = 1, 2, . . . . (6.68)
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Here

mki(x) = (pk(x,v), Aloc(x,v)pi(x,v))x ;
dk(x) = −(pk(x,v),D(x,v))x . (6.69)

For a finite-dimensional approximation of equation (6.68) we use a projection
onto a finite number of basis functions pi(x,v), i = i1, . . . , in. Then, instead
of (6.67), we search for the function ϕfin:

ϕfin(x,v) =
n∑

s=1

ais
(x)pis

(x,v) . (6.70)

Infinite set of equations (6.68) is replaced with a finite set of linear algebraic
equations with respect to ais

(x), where s = 1, . . . , n:

n∑
l=1

misil
(x)ail

(x) = dis
(x), s = 1, . . . , n . (6.71)

There are no a priori restrictions upon the choice of the basis, as well as upon
the choice of its finite-dimensional approximations. Here we use the standard
basis of irreducible Hermite tensors (see, for example, [112,201]). The simplest
finite-dimensional approximation occurs if the finite set of Hermite tensors is
chosen as:

pk(x,v) = ck(x,v)(c2(x,v) − (5/2)), k = 1, 2, 3 ;

pij(x,v) = ci(x,v)cj(x,v) − 1
3
δijc

2(x,v), i, j = 1, 2, 3 ;

ci(x,v) = v−1
T (x)(vi − ui(x)), vT (x) = (2kBT (x)/m)1/2 . (6.72)

It is important to stress here that “good” properties of orthogonality of Her-
mite tensors, as well as of other similar polynomial systems in the Boltzmann
equation theory, have the local in x character, i.e. when these functions are
treated as polynomials in c(x,v) rather than polynomials in v. For example,
functions pk(x,v) and pij(x,v)(6.72) are orthogonal in the sense of the scalar
product (·, ·)x:

(pk(x,v), pij(x,v))x ∝
∫
e−c2(x, v)pk(x,v)pij(x,v) d3c(x,v) = 0 . (6.73)

On the contrary, functions pk(y,v) and pij(x,v) are not orthogonal neither
in the sense of the scalar product (·, ·)y, nor in the sense of the scalar product
(·, ·)x, if y �= x. This distinction is important for constructing the parametrix
expansion. Further, we omit the dependencies on x and v in the dimensionless
velocity ci(x,v)(6.72) if no confusion might occur.

In this section we consider the case of one-dimensional in x equations.
We assume that:
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u1(x) = u(x1) , u2 = u3 = 0 , T (x) = T (x1), n(x) = n(x1) . (6.74)

We write x instead of x1 below. Finite-dimensional approximation (6.72)
requires only two functions:

p3(x,v) = c21(x,v) − 1
3
c2(x,v) , p4(x,v) = c1(x,v)(c2(x,v) − (5/2)) ,

c1(x,v) = v−1
T (x)(v1 − u(x)) , c2,3(x,v) = v−1

T (x)v2,3 . (6.75)

We shall now perform a step-by-step calculation of the zeroth-order term
of the parametrix expansion, in the one-dimensional case, for the finite-
dimensional approximation (6.75).

Step 1. Calculation of ϕloc(x,v) from equation (6.58).
We seek the function ϕloc(x,v) in the approximation (6.75) as:

ϕloc(x,v) = aloc(x)(c21 − (1/3)c2) + bloc(x)c1(c2 − (5/2)) . (6.76)

Finite-dimensional approximation (6.71) of integral equation (6.58) in the
basis (6.75) yields:

m33(x)aloc(x) +m34(x)bloc(x) = αloc(x) ;
m43(x)aloc(x) +m44(x)bloc(x) = βloc(x) . (6.77)

Notations used are:

m33(x) = n(x)λ3(x) +
11
9
∂u

∂x
; m44(x) = n(x)λ4(x) +

27
4
∂u

∂x
;

m34(x) = m43(x) =
vT (x)

3

(
∂lnn
∂x

+
11
2
∂lnT
∂x

)
;

λ3,4(x) = − 1
π3/2

∫
e−c2(x, v)p3,4(x,v)Lx(v)p3,4(x,v) d3c(x,v) > 0 ;

αloc(x) = −2
3
∂u

∂x
; βloc(x) = −5

4
vT (x)

∂lnT
∂x

. (6.78)

Parameters λ3(x) and λ4(x) are easily expressed via the so-called Enskog
integral brackets, and they are calculated in [70] for a wide class of molecular
models.

Solving equation (6.77), we obtain coefficients aloc(x) and bloc(x) in the
expression (6.76):

aloc =
Aloc(x)
Z(x, 0)

; bloc =
Bloc(x)
Z(x, 0)

; Z(x, 0) = m33(x)m44(x) −m2
34(x) ;

Aloc(x) = αloc(x)m44(x) − βloc(x)m34(x) ;
Bloc(x) = βloc(x)m33(x) − αloc(x)m34(x) ;

aloc =
−2

3
∂u

∂x

(
nλ4 +

27
4
∂u

∂x

)
+

5
12
v2

T

∂ lnT
∂x

(
∂ lnn
∂x

+
11
2
∂ lnT
∂x

)
(
nλ3 +

11
9
∂u

∂x

)(
nλ4 +

27
4
∂u

∂x

)
− v2

T

9

(
∂ lnn
∂x

+
11
2
∂ lnT
∂x

)2 ;
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bloc =
−5

4
vT

∂ lnT
∂x

(
nλ3 +

11
9
∂u

∂x

)
+

2
9
vT

∂u

∂x

(
∂ lnn
∂x

+
11
2
∂ lnT
∂x

)
(
nλ3 +

11
9
∂u

x

)(
nλ4 +

27
4
∂u

∂x

)
− v2

T

9

(
∂ lnn
x

+
11
2
∂ lnT
x

)2 .

(6.79)

These expressions complete Step 1.
Step 2. Calculation of Fourier transform of ϕloc(x,v) and its expression

in the local basis.
In this step we make two operations:

(i) The Fourier transformation of the function ϕloc(x,v):

ϕ̂loc(k,v)=
∫ +∞

−∞
exp(−iky)ϕloc(y,v) dy . (6.80)

(ii) The representation of ϕ̂loc(k,v) in the local basis {p0(x,v), . . . , p4(x,v)}:
p0(x,v)=1, p1(x,v)=c1(x,v), p2(x,v)=c2(x,v) − (3/2) , (6.81)
p3(x,v)=c21(x,v) − (1/3)c2(x,v), p4(x,v)=c1(x,v)(c2(x,v) − (5/2)) .

Operation (ii) is necessary for completing Step 3 because there we deal
with x-dependent operators. Obviously, the function ϕ̂loc(k,v) (6.80) is
a finite-order polynomial in v, and thus representation (ii) is exact.

We obtain in (ii):

ϕ̂loc(x, k,v) ≡ ϕ̂loc(x, k, c(x,v)) =
4∑

i=0

ĥi(x, k)pi(x,v) . (6.82)

Here
ĥi(x, k) = (pi(x,v), pi(x,v))−2

x (ϕ̂loc(k,v), pi(x,v))x . (6.83)

Let us introduce notations:

ϑ ≡ ϑ(x, y) = (T (x)/T (y))1/2 , γ ≡ γ(x, y) =
u(x) − u(y)

vT (y)
. (6.84)

Coefficients ĥi(x, k)(6.83) have the following explicit form:

ĥi(x, k) =
∫ +∞

−∞
exp(−iky)hi(x, y) dy;hi(x, y) = Z−1(y, 0)gi(x, y)

g0(x, y) = Bloc(y)(γ3 +
5
2
γ(ϑ2 − 1)) +

2
3
Aloc(y)γ2 ;

g1(x, y) = Bloc(y)(3ϑγ2 +
5
2
ϑ(ϑ2 − 1)) +

4
3
Aloc(y)ϑγ ;

g2(x, y) =
5
3
Bloc(y)ϑ2γ ;

g3(x, y) = Bloc(y)2ϑγ +Aloc(y)ϑ2 ;
g4(x, y) = Bloc(y)ϑ3 . (6.85)
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Here Z(y, 0), Bloc(y) and Aloc(y) are the functions defined in (6.79)
Step 3. Calculation of the function ϕ̂0(x, k,v) from equation (6.60).
Linear integral equation (6.60) is similar to equation (6.58). We search

for the function ϕ̂0(x, k,v) in the basis (6.75) as:

ϕ̂0(x, k,v) = â0(x, k)p3(x,v) + b̂0(x, k)p4(x,v) . (6.86)

Finite-dimensional approximation of the integral equation (6.60) in the basis
(6.75) yields the following equations for unknowns â0(x, k) and b̂0(x, k):

m33(x)â0(x, k) +
[
m34(x) +

1
3
ikvT (x)

]
b̂0(x, k) = α̂0(x, k) ;

[
m43(x) +

1
3
ikvT (x)

]
â0(x, k) +m44(x)b̂0(x, k) = β̂0(x, k) . (6.87)

Notations used here are:

α̂0(x, k) = m33(x)ĥ3(x, k) +m34(x)ĥ4(x, k) + ŝα(x, k) ; (6.88)

β̂0(x, k) = m43(x)ĥ3(x, k) +m44(x)ĥ4(x, k) + ŝβ(x, k) ;

ŝα,β(x, k) =
∫ +∞

−∞
exp(−iky)sα,β(x, y) dy ;

sα(x, y) =
1
3
vT (x)

(
∂lnn
∂x

+ 2
∂lnT
∂x

)
h1(x, y) (6.89)

+
2
3
∂u

∂x
(h0(x, y) + 2h2(x, y)) ;

sβ(x, y) =
5
4
vT (x)

(
∂lnn
∂x

h2(x, y) +
∂lnT
∂x

(3h2(x, y) + h0(x, y))
)

+
2∂u
3∂x

h1(x, y) .

Solving equations (6.87), we obtain functions â0(x, k) and b̂0(x, k) in (6.86):

â0(x, k) =
α̂0(x, k)m44(x) − β̂0(x, k)(m34(x) + 1

3 ikvT (x))
Z(x, 1

3 ikvT (x))
;

b̂0(x, k) =
β̂0(x, k)m33(x) − α̂0(x, k)(m34(x) + 1

3 ikvT (x))
Z(x, 1

3 ikvT (x))
. (6.90)

Here

Z(x,
1
3
ikvT (x)) = Z(x, 0) +

k2v2
T (x)
9

+
2
3
ikvT (x)m34(x)

=
(
nλ3 +

11∂u
9∂x

)(
nλ4 +

27∂u
4∂x

)
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−v2
T (x)
9

(
∂ lnn
∂x

+
11∂lnT

2∂x

)2

+
k2v2

T (x)
9

+
2
9
ikv2

T (x)
(
∂lnn
∂x

+
11∂lnT

2∂x

)
. (6.91)

Step 4. Calculation of the inverse Fourier transform of the function
ϕ̂0(x, k,v).

The inverse Fourier transform of the function ϕ̂0(x, k,v) (6.86) yields:

ϕ0(x,v) = a0(x)p3(x,v) + b0(x)p4(x,v) . (6.92)

Here

a0(x) =
1
2π

∫ +∞

−∞
exp(ikx)â0(x, k) dk ,

b0(x) =
1
2π

∫ +∞

−∞
exp(ikx)b̂0(x, k) dk . (6.93)

Taking into account expressions (6.79), (6.90)–(6.91), and (6.85), we obtain
finally the explicit expression for the finite-dimensional approximation of the
zeroth-order term of parametrix expansion (6.92):

a0(x) =
1
2π

∫ +∞

−∞
dy
∫ +∞

−∞
dk exp(ik(x− y))Z−1(x,

1
3
ikvT (x))

×{Z(x, 0)h3(x, y) + [sα(x, y)m44(x) − sβ(x, y)m34(x)]

−1
3
ikvT (x)[m34(x)h3(x, y) +m44(x)h4(x, y) + sβ(x, y)]

}
;

b0(x) =
1
2π

∫ +∞

−∞
dy

∫ +∞

−∞
dk exp(ik(x− y))Z−1(x,

1
3
ikvT (x))

×{Z(x, 0)h4(x, y) + [sβ(x, y)m33(x) − sα(x, y)m34(x)]

−1
3
ikvT (x)[m34(x)h4(x, y) +m33(x)h3(x, y) + sα(x, y)]

}
. (6.94)

6.3.6 Hydrodynamic Equations

Now we discuss the utility of obtained results for hydrodynamics.
The correction to the LM manifold f0(n,u, T )(5.49) has the form:

f1(n,u, T ) = f0(n,u, T )(1 + ϕ0(n,u, T )) (6.95)

Here the function ϕ0(n,u, T ) is given explicitly by expressions (6.92)–(6.94).
The usual form of closed hydrodynamic equations for n,u, and T , where

the traceless stress tensor σik and the heat flux vector qi are expressed via
hydrodynamic variables, will be obtained if we substitute the function (6.95)
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into balance equations of the density, of the momentum, and of the energy. For
the LM approximation, these balance equations result in the Euler equation
of the nonviscid liquid (i.e. σik(f0) ≡ 0, and qi(f0) ≡ 0). For the correction f1

(6.95), we obtain the following expressions of σ = σxx(f1) and q = qx(f1) (all
other components are equal to zero in the one-dimensional situation under
consideration):

σ =
1
3
na0 , q =

5
4
nb0 . (6.96)

Here a0 and b0 are given by expression (6.94).
From the geometrical viewpoint, hydrodynamic equations with the stress

tensor and the heat flux vector (6.96) have the following interpretation: we
take the corrected manifold Ω1 which consists of functions f1 (6.95), and we
project the Boltzmann equation vectors Ju(f1) onto the tangent spaces Tf1

using the quasiequilibrium projector Pf0 (5.55).

6.3.7 Nonlocality

Expressions (6.94) include nonlocal spatial dependence, and, hence, the cor-
responding hydrodynamic equations are nonlocal. This nonlocality enters
in two different ways. The first source of nonlocality might be called a
frequency-response nonlocality, and it enters through explicit non-polynomial
k-dependence of integrands in (6.94). This latter dependence has the form:

∫ +∞

−∞

A(x, y) + ikB(x, y)
C(x, y) + ikD(x, y) + k2E(x, y)

exp(ik(x− y)) dk . (6.97)

Integration over k in (6.97) can be completed via auxiliary functions.
The second type of nonlocal contributions might be called correlative

nonlocality, and it is due to the terms (u(x) − u(y)) (the difference of flow
velocities in points x and y) and via T (x)/T (y) (the ratio of temperatures in
distant points x and y).

6.3.8 Acoustic Spectra

The frequency-response nonlocality in hydrodynamic equations is relevant to
small perturbations of the uniform equilibrium. The stress tensor σ and the
heat flux q(6.96) are:

σ = −(2/3)n0T0R

(
2ε
∂u

∂ξ

′

− 3ε2
∂2T

∂ξ2

)
;

q = −(5/4)T 3/2
0 n0R

(
3ε
∂T

∂ξ

′

− (8/5)ε2
∂2u

∂ξ2

)
. (6.98)

Here
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R =
(

1 − (2/5)ε2
∂2

∂ξ2

)
− 1 . (6.99)

In (6.98), we have expressed parameters λ3 and λ4 via the viscosity coeffi-
cient µ of the Chapman-Enskog method [70] (it is easy to see from (6.78)
that λ3 = λ4 ∝ µ−1 for spherically symmetric models of a collision), and
we have used the following notations: T0 and n0 are the equilibrium tem-
perature and density, ξ = (ηT 1/2

0 )−1n0x is the dimensionless coordinate,
η = µ(T0)/T0, u

′ = T
−1/2
0 δu, T ′ = δT/T0, n

′ = δn/n0, and δu, δT, δn are the
deviations of the flux velocity, of the temperature and of the density from
their equilibrium values u = 0, T = T0 and n = n0. We also used the system
of units with kB = m = 1.

In the linear case, the parametrix expansion degenerates, and its zeroth-
order term (6.61) gives the exact solution to equation (6.38).

The dispersion relationship for the approximation (6.98) is:

ω3 + (23k2/6D)ω2 +
{
k2 + (2k4/D2) + (8k6/5D2)

}
ω + (5k4/2D) = 0 ;

D = 1 + (4/5)k2 . (6.100)

Here k is the wave vector.
The acoustic spectrum given by the dispersion relationship (6.100) con-

tains no nonphysical short-wave instability, unlike the Burnett approximation
(Fig. 6.2). The regularization of the Burnett approximation [43, 44] gives a
similar result. Both of these approximations predict a limit of the decrement
Reω for short waves. These issues will be addressed in more detail in Chap. 8.

6.3.9 Nonlinearity

Nonlinear dependence on ∂u
∂x , on ∂lnT

∂x , and on ∂lnn
∂x appears already in the

local approximation ϕloc(6.79). In order to outline some features of this non-
linearity, we represent the zeroth-order term of the expansion of aloc(6.79)
into powers of ∂lnT

∂x and ∂lnn
∂x :

aloc = −2
3
∂u

∂x

(
nλ3 +

11
9
∂u

∂x

)−1

+O

(
∂lnT
∂x

,
∂lnn
∂x

)
. (6.101)

This expression describes the asymptotic of the “purely nonlinear” contribu-
tion to the stress tensor σ(6.96) for a strong divergency of a flow. The account
of nonlocality yields instead of (6.98):

a0(x) = − 1
2π

∫ +∞

−∞
dy

∫ +∞

−∞
dk exp(ik(x− y))

2
3
∂u

∂y

(
nλ3 +

11
9
∂u

∂y

)−1

×
[(

nλ3 +
11
9
∂u

∂x

)(
nλ4 +

27
4
∂u

∂x

)
+
k2v2

T

9

]−1
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– –

–

Fig. 6.2. Acoustic dispersion curves for approximation (6.98) (solid line), for second
(the Burnett) approximation of the Chapman-Enskog expansion [72] (dashed line)
and for the regularization of the Burnett approximation via partial summing of the
Chapman-Enskog expansion [43,44] (punctuated dashed line). Arrows indicate the
direction of increase of k2

×
[(

nλ3 +
11
9
∂u

∂x

)(
nλ4 +

27
4
∂u

∂x

)

+
4
9

(
nλ4 +

27
4
∂u

dy

)
∂u

∂x
v−2

T (u(x) − u(y))2 − 2
3
ik
∂u

∂x
(u(x) − u(y))

]

+O
(
∂ lnT
∂x

,
∂ lnn
∂x

)
. (6.102)

Both expressions, (6.101) and (6.102) become singular when

∂u

∂y
→
(
∂u

∂y

)∗
= −9nλ3

11
. (6.103)

Hence, the stress tensor (6.97) becomes infinite if ∂u
∂y tends to ∂u

∂y

∗
in any point

y. In other words, the flow becomes “infinitely viscous” when ∂u
∂y approaches

the negative value − 9nλ3
11 . This infinite viscosity threshold prevents a transfer

of the flow into nonphysical region of negative viscosity if ∂u
∂y > ∂u

∂y

∗
because

of the “infinitely strong damping” at ∂u
∂y

∗
. This peculiarity was detected in
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[43, 44] as a result of partial summation of the Chapman-Enskog expansion.
In particular, partial summing for the simplest nonlinear situation [45, 233]
yields the following expression for the stress tensor σ:

σ = σIR + σIIR ; σIR = −4
3

(
1 − 5

3
ε2

∂2

∂ξ2

)−1
(
ε
∂u

∂ξ

′

+ ε2
∂2θ′

∂ξ2

)
;

θ′ = T ′ + n′ ; σIIR =
28
9

(
1 +

7
3
ε
∂u′

∂ξ

)−1
∂2u′

∂ξ2
. (6.104)

Notations here follow (6.98) and (6.99). Expression (6.104) might be con-
sidered as a scetch of the “full” stress tensor defined by a0(6.94). It takes
into account both the frequency-response and the nonlinear contributions
(σIR and σIIR, respectively) in a simple form of a sum. However, the su-
perposition of these contributions in (6.94) is more complicated. Moreover,
the explicit correlative nonlocality of expression (6.94) was detected neither
in [45], nor in numerous examples of partial summation [233].

Nevertheless, approximation (6.104) contains the peculiarity of viscosity
similar to that in (6.101) and (6.102). In dimensionless variables and ε = 1,
expression (6.104) predicts the infinite threshold at velocity divergency equal
to −(3/7), rather than −(9/11) in (6.101) and (6.102). Viscosity tends to zero
as the divergency tends to positive infinity in both approximations. A physical
interpretation of these phenomena was given in [45]: large positive values of ∂u

∂x
means that the gas diverges rapidly, and the flow becomes nonviscid because
the particles retard to exchange their momentum. On contrary, its negative
values (such as −(3/7) for (6.104) and −(9/11)) for (6.101) and (6.102))
describe a strong compression of the flow. Strong deceleration results in a
“solid fluid” limit with an infinite viscosity (Fig. 6.3).

Thus, hydrodynamic equations for approximation (6.95) are both nonlin-
ear and nonlocal. This result is not surprising, accounting for the integro-
differential nature of equation (6.38).

It is important that no small parameters were used neither when we were
deriving equation (6.38) nor when we were obtaining the correction (6.95).

6.4 Example: Non-Perturbative Derivation
of Linear Hydrodynamics
from the Boltzmann Equation (3D)

In this example we shall discuss a bit more about the linear hydrodynamics
obtained by the Newtom method with incomplete linearization. Using the
Newton method instead of power series, a model of linear hydrodynamics is
derived from the Boltzmann equation for regimes where the Knudsen number
is of order unity. The model demonstrates no violation of stability of acoustic
spectra in contrast to the Burnett hydrodynamics.
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Fig. 6.3. Dependency of viscosity on compression for approximation (6.101) (solid
line), for partial summing (6.104) (punctuated dashed line), and for the Burnett
approximation [45,233] (dashed line). The latter changes the sign at a regular point
and, hence, nothing prevents the flow to transfer into the nonphysical region

The Knudsen number ε (a ratio between the mean free path, lc, and
a scale of hydrodynamic flows, lh) is a smalness parameter when hydrody-
namics is derived from the Boltzmann equation [239]. The Chapman–Enskog
method [70] derives the Navier-Stokes hydrodynamic equations as the first-
order correction to the Euler hydrodynamics at ε → 0, and it also derives for-
mal corrections of order ε2, ε3, . . . (known as the Burnett and super-Burnett
corrections). These corrections are important outside the strictly hydrody-
namic domain ε � 1, and has to be considered for an exension of hydro-
dynamic description into a highly nonequilidrium domain ε ≤ 1. Not much
is known about high-order in ε hydrodynamics, especially in nonlinear case.
Nonetheless, in linear case, some definite information can be obtained. On
the one hand, experiments on sound propagation in noble gases are consid-
erably better explained with the Burnett and super-Burnett hydrodynamics
rather than with the Navier-Stokes approximation alone [241]. On the other
hand, direct calculation shows non-physical behavior of the Burnett hydro-
dynamics for ultra-short waves: acoustic waves increase instead of decay [72].
The latter failure of the Burnett approximation cannot be ignored. For the
Navier-Stokes approximation no such violation is observed.

These two results indicate that, at least in a linear regime, it makes sense
to consider hydrodynamics at ε ∼ 1, but the Chapman-Enskog method of
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deriving such hydrodynamics is problematic. The problem of constructing
solutions to the Boltzmann equation valid when ε is of order one is one of
the main open problems of classical kinetic theory [239].

The main idea of the present example is to formulate the problem of
a finding a correction to the Euler hydrodynamics in such a fashion that
expansions in ε do not appear as a necessary element of analysis. This will be
possible by using the Newton method instead of Taylor expansions to get such
correction. Resulting hydrodynamic equations do not exhibit the mentioned
violation.

The starting point is the set of local Maxwell distribution functions (LM)
f0(n,u, T ;v), where v is the particle’s velocity, and n, u, and T are local
number density, average velocity, and temperature. We write the Boltzmann
equation as before in the co-moving reference frame (6.23):

df
dt

= J(f), J(f) = −(v − u)i · ∂if +Q(f, f) , (6.105)

where d/dt = ∂/∂t+ ui · ∂i is the material derivative, ∂i = ∂/∂xi, while Q is
the Boltzmann collision integral.

On the one hand, calculating right hand site of (6.105) in the LM-states,
we obtain J(f0), a time derivative of the LM-states due to the Boltzmann
equation. On the other hand, calculating a time derivative of the LM-states
due to the Euler dynamics, we obtain P0J(f0), where P0 is the thermody-
namic projector operator onto the LM manifold (see [11] and (5.55)):

P0J =
f0

n

{∫
J dc + 2ci ·

∫
ciJ dc +

2
3

(
c2 − 3

2

)∫ (
c2 − 3

2

)
J dc

}
,

(6.106)
Since the LM functions are not solutions to the Boltzmann equation (6.105)
(except for constant n, u, and T ), a difference ∆(f0) between J(f0) and
P0J(f0) is not equal to zero (5.59):

∆(f0) = J(f0) − P0J(f0) (6.107)

= −f0

{
2(∂iuk)

(
cick − 1

3
δikc

2

)
+ vT

∂iT

T
ci

(
c2 − 5

2

)}
.

here c = v−1
T (v − u), and vT =

√
2kBT/m is the thermal velocity. Note

that the latter expression gives the complete invariance defect of the lin-
earized local Maxwell approximation, and it is neither big nor small by itself.
An unknown hydrodynamic solution of (6.105), f∞(n,u, T ;v), satisfies the
following invariance equation:

∆(f∞) = J(f∞) − P∞J(f∞) = 0 , (6.108)

where P∞ is an unknown projecting operator. Both P∞ and f∞ are unknown
in (6.108), but, nontheless, one is able to consider a sequence of corrections
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{f1, f2, . . .}, {P1, P2, . . .} to the initial approximation f0 and P0. Above it
was shown, how to ensure the H-theorem on every step of approximations
by choosing appropriate projecting operators Pn. In the present illustrative
example we do not consider projectors other than P0.

Let us apply the Newton method with incomplete linearization to (6.108)
with f0 as initial approximation for f∞ and with P0 as an initial approxima-
tion for P∞. Writing f1 = f0 + δf , we get the first iteration:

L(δf/f0) + (P0 − 1)(v − u)i∂iδf +∆(f0) = 0 , (6.109)

where L is a linearized collision integral.

L(g)

=f0(v)
∫
w(v′

1,v
′;v1,v)f0(v1){g(v′

1) + g(v′)−g(v1) − g(v)}dv′
1 dv′ dv1 .

(6.110)

Here w is a probability density of velocities change, (v,v1) ↔ (v′,v′
1), of

a pair of molecules after their encounter. When deriving (6.109), we have
accounted P0L = 0, and an additional condition which fixes the same values
of n, u, and T in states f1 as in LM states f0:

P0δf = 0 . (6.111)

Equation (6.109) is basic in what follows. Note that it contains no Knud-
sen number explicitly. Our strategy will be to treat equation (6.109) in such a
way that the Knudsen number will appear explicitly only at the latest stage
of computations.

The two further approximations will be adopted. The first concerns a
linearization of (6.109) about the global equilibria F0. The second concerns
a finite-dimensional approximation of integral operator in (6.109) in velocity
space. It is worthwhile noting here that none of these approximations concerns
an assumption about the smallness of the Knudsen number.

Following the first of the approximations mentioned, denote as δn, δu, and
δT deviations of hydrodynamic variables from their equilibrium values n0,
u0 = 0, and T0. Introduce also dimensionless variables ∆n = δn/n0, ∆u =
δu/v0

T , and ∆T = δT/T0, where v0
T is a heat velocity in equilibria, and a

dimensionless relative velocity ξ = v/v0
T . Correction f1 in the approximation,

linear in deviations from F0, reads:

f1 = F0(1 + ϕ0 + ϕ1) ,

where
ϕ0 = ∆n+ 2∆uiξi +∆T (ξ2 − 3/2)

is a linearized deviation of LM from F0, and ϕ1 is an unknown function. The
latter is to be obtained from a linearized version of (6.109).
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Following the second approximation, we seek ϕ1 in a form:

ϕ1 = Ai(x)ξi

(
ξ2 − 5

2

)
+Bik(x)

(
ξiξk − 1

3
δikξ

2

)
+ . . . (6.112)

where dots denote terms of an expansion of ϕ1 in velocity polynomials, or-
thogonal to ξi(ξ2 − 5/2) and ξiξk − 1/3δikξ

2, as well as to 1, to ξ, and to
ξ2. These terms do not contribute to shear stress tensor and heat flux vec-
tor in hydrodynamic equations. Independency of functions A and B from ξ2

amounts to the first Sonine polynomial approximation of viscosity and heat
transfer coefficients. Thus, we consider a projection onto a finite-dimensional
subspace spanned by ξi(ξ2 − 5/2) and ξiξk − 1/3δikξ

2. Our goal is to derive
functions A and B from a linearized version of (6.109). Knowing A and B,
we get the following expressions for shear stress tensor σ and heat flux vector
q:

σ = p0B, q =
5
4
p0v

0
TA , (6.113)

where p0 is equilibrium pressure of ideal gas.
Linearizing (6.109) near F0, using an ansatz for ϕ1 cited above, and turn-

ing to Fourier transform in space, we derive:

5p0

3η0
ai(k) + iv0

T bij(k)kj = −5
2
iv0

T kiτ(k) ; (6.114)

p0

η0
bij(k) + iv0

T kiaj(k) = −2iv0
T kiγj(k) ,

where i =
√
−1, k is the wave vector, η0 is the first Sonine polynomial

approximation of shear viscosity coefficient, a(k), b(k), τ(k) and γ(k) are
Fourier transforms of A(x), B(x), ∆T (x), and ∆u(x), respectively, and the
over-bar denotes a symmetric traceless dyad:

aibj = 2aibj −
2
3
δijasbs .

Introducing a dimensionless wave vector f = [(v0
T η0)/(p0)]k, solution to

(6.114) may be written:

blj(k) = −10
3
iγl(k)fj [(5/3) + (1/2)f2]−1 (6.115)

+
5
3
i(γs(k)fs)flfj [(5/3)+(1/2)f2]−1[5 + 2f2]−1− 15

2
τ(k)flfj [5 + 2f2]−1 ;

al(k) = −15
2
iflτ(k)[5 + 2f2]−1

−[5 + 2f2]−1[(5/3) + (1/2)f2]−1[(5/3)fl(γs(k)fs) + γl(k)f2(5 + 2f2)] .

Considering z-axis as a direction of propagation and denoting kz as k, γ
as γz, we obtain from (6.114) the k-dependence of a = az and b = bzz:
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a(k) = −
3
2p

−1
0 η0v

0
T ikτ(k) + 4

5p
−2
0 η2

0(v0
T )2k2γ(k)

1 + 2
5p

−2
0 η2

0(v0
T )2k2

, (6.116)

b(k) = −
4
3p

−1
0 η0v

0
T ikγ(k) + p−2

0 η2
0(v0

T )2k2τ(k)
1 + 2

5p
−2
0 η2

0(v0
T )2k2

.

Using expressions for σ and q cited above, and also using (6.116), it is
an easy matter to close the linearized balance equations (given in Fourier
terms):

1
v0

T

∂tν(k) + ikγk = 0 , (6.117)

2
v0

T

∂tγ(k) + ik(τ(k) + ν(k)) + ikb(k) = 0 ,

3
2v0

T

∂τ + ikγ(k) +
5
4
ika(k) = 0 .

The equations (6.117), together with expressions (6.116), complete our
derivation of hydrodynamic equations.

To this end, the Knudsen number was not penetrating our derivations.
Now it is worthwhile to introduce it. The Knudsen number will appear most
naturally if we turn to dimensionless form of (6.116). Taking lc = v0

T η0/p0

(lc is of order of a mean free path), and introducing a hydrodynamic scale
lh, so that k = κ/lh, where κ is a not-dimensional wave vector, we obtain in
(6.116):

a(κ) = −
3
2 iεκτ(κ) + 4

5ε
2κ2γκ

1 + 2
5ε

2κ2
, (6.118)

b(κ) = −
4
3 iεκγ(κ) + ε2κ2τ(κ)

1 + 2
5ε

2κ2
,

where ε = lc/lh. Considering the limit ε → 0 in (6.118), we come back to
the familiar Navier-Stokes expressions: σNS

zz = − 4
3η0∂zδuz, qNS

z = −λ0∂zδT ,
where λ0 = 15kBη0/4m is the first Sonine polynomial approximation of heat
conductivity coefficient.

Since we were not assuming smallness of the Knudsen number ε while
deriving (6.118), we can write ε = 1. With all the approximations mentioned
above, (6.117) and (6.116) (or, equivalently, (6.117) and (6.118)) may be
considered as a model of a linear hydrodynamics at ε of order one. The most
interesting feature of this model is a non-polynomial dependence on κ. This
amounts to that share stress tensor and heat flux vector depend on spatial
derivatives of δu and of δT to arbitrary high order.

To find out a result of the non-polynomial behavior (6.118), it is most
informative to calculate a dispersion relation for plane waves. Let us introduce
a dimensionless frequency λ = ωlh/v

0
T , where ω is a complex frequency of a
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Fig. 6.4. Attenuation rate of sound waves. Dotts: the Burnett approximation.
Bobylev’s instability occurs when the curve intersects the horizontal axis. Solid :
First iteration of the Newton method on the invariance equation

wave ∼exp(ωt+ikz) (Reω is a damping rate, and Imω is a circular frequency).
Making use of (6.117) and (6.118), writing ε = 1, we obtain the following
dispersion relation λ(κ):

12(1+
2
5
κ2)2λ3+23κ2(1+

2
5
κ2)λ2+2κ2(5+5κ2+

6
5
κ4)λ+

15
2
κ4(1+

2
5
κ2) = 0 .

(6.119)
Figure 6.4 presents a dependence Reλ(κ2) for acoustic waves obtained

from (6.119) and for the Burnett approximation [72]. The violation in the
latter occurs when the curve crosses the horizontal axis. In contrast to the
Burnett approximation [72], the acoustic spectrum (6.119) is stable for all κ.
Moreover, Reλ(κ2) demonstrates a finite limit, as κ2 → ∞.

A discussion of results concerns the following two items:

1. The approach used avoids expansion into powers of the Knudsen number,
and thus we obtain a hydrodynamics valid (at least formally) for moderate
Knudsen numbers as an immediate correction to the Euler hydrodynamics.
This is in a contrast to the usual treatment of high-order hydrodynamics as
“(the well established) Navier-Stokes approximation + high-order terms”.
The Navier-Stokes hydrodynamics is recovered a posteriori, as a limiting
case, but not as a necessary intermediate step of computations.

2. Linear hydrodynamics derived is stable for all k, same as the Navier-Stokes
hydrodynamics alone. The (1+αk2)−1 “cut-off”, as in (6.116) and (6.118),
was earlier found in a “partial summing” of Enskog series [42,43].
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Thus, we come to the following two conclusions:

1. A positive answer is given to the question of whether is it possible to con-
struct solutions of the Boltzmann equation valid for the Knudsen number
of order one.

2. Linear hydrodynamics derived can be used as a model for ε = 1 without
a violation of acoustic spectra at large k.

6.5 Example: Dynamic Correction
to Moment Approximations

6.5.1 Dynamic Correction or Extension of the List of Variables?

Considering the Grad moment ansatz as a suitable first approximation to a
closed finite-moment dynamics, the correction is derived from the Boltzmann
equation. The correction consists of two parts, local and nonlocal. Locally cor-
rected thirteen-moment equations are demonstrated to contain exact trans-
port coefficients. Equations resulting from the nonlocal correction give a
microscopic justification to some phenomenological theories of extended hy-
drodynamics.

A considerable part of the modern development of nonequilibrium ther-
modynamics is based on the idea of extension of the list of relevant variables.
Various phenomenological and semi-phenomenological theories in this domain
are known under the common title of the extended irreversible thermodynam-
ics (EIT) [235]. With this, the question of a microscopic justification of the
EIT becomes important. Recall that a justification for some of the versions
of the EIT was found witin the well known Grad moment method [201].

Originally, the Grad moment approximation was introduced for the pur-
pose of solving the Boltzmann-like equations of the classical kinetic theory.
The Grad method is used in various kinetic problems, e.g., in plasma and in
phonon transport. We mention also that Grad equations assist in understand-
ing asymptotic features of gradient expansions, both in linear and nonlinear
domains [40,42,205,219,233].

The essence of the Grad method is to introduce an approximation to the
one-particle distribution function f which would depend only on a finite num-
ber N of moments, and, subsequently, to use this approximation to derive a
closed system of N moment equations from the kinetic equation. The number
N (the level at which the moment transport hierarchy is truncated) is not
specified in the Grad method. One particular way to choose N is to obtain an
estimation of the transport coefficients (viscosity and heat conductivity) suf-
ficiently close to their exact values provided by the Chapman–Enskog method
(CE) [70]. In particular, for the thirteen-moment Grad approximation it is
well known that transport coefficients are equal to the first Sonine polynomial
approximation to the exact CE values. Accounting for higher moments with
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N > 13 can improve this approximation (good for neutral gases but poor for
plasmas [231]). However, what should be done, starting with the thirteen-
moment approximation, to come to the exact CE transport coefficients is an
open question. It is also well known [204] that the Grad method provides
a poorly converging approximation when applied to strongly nonequilibrium
problems (such as shock and kinetic layers).

Another question comes from the approximate character of the Grad equa-
tions, and is discussed in frames of the EIT: while the Grad equations are
strictly hyperbolic at any level N (i.e., predicting a finite speed of propaga-
tion), whether this feature will be preserved in the further corrections.

These two questions are special cases of a more general one, namely,
how to derive a closed description with a given number of moments? Such
a description is sometimes called mesoscopic [251] since it occupies an in-
termediate level between the hydrodynamic (macroscopic) and the kinetic
(microscopic) levels of description.

Here we aim at deriving the mesoscopic dynamics of thirteen moments
[21] in the simplest case when the kinetic description satisfies the linearized
Boltzmann equation. Our approach will be based on the two assumptions:

(i) The mesoscopic dynamics of thirteen moments exists, and is invariant
with respect to the microscopic dynamics,

(ii) The thirteen-moment Grad approximation is a suitable first approxima-
tion to this mesoscopic dynamics.

The assumption (i) is realized as the invariance equation for the (unknown)
mesoscopic distribution function. Following the assumption (ii), we solve the
invariance equation iteratively, taking the Grad approximation for the input
approximation, and consider the first iteration (further we refer to this as to
the dynamic correction, to distinguish from constructing another ansatz). We
demonstrate that the correction results in the exact CE transport coefficients.
We also demonstrate how the dynamic correction modifies the hyperbolicity
of the Grad equations. A similar viewpoint on derivation of hydrodynamics
was earlier developed in [11] (see previous examples). We shall return to a
comparison below.

6.5.2 Invariance Equation
for Thirteen-Moment Parameterization

We denote as n0, u0 = 0, and p0 the equilibrium values of the hydrodynamic
parameters (n is the number density, u is the average velocity, and p = nkBT
is the pressure). The global Maxwell distribution function F is

F = n0(vT )−3π−3/2 exp(−c2) ,

where vT =
√

2kBT0m−1 is the equilibrium thermal velocity, and c = v/vT

is the peculiar velocity of a particle. The near-equilibrium dynamics of the
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distribution function, f = F (1 + ϕ), is due to the linearized Boltzmann
equation:

∂tϕ = Ĵϕ ≡ −vT ci∂iϕ+ L̂ϕ ,

L̂ϕ =
∫
wF (v1)[ϕ(v′

1) + ϕ(v′) − ϕ(v1) − ϕ(v)] dv′
1 dv′ dv1 ,

where L̂ is the linearized collision operator, and w is the probability density
of pair encounters. Furthermore, ∂i = ∂/∂xi, and summation convention in
two repeated indices is assumed.

Let n = δn/n0, u = δu/vT , p = δp/p0 (p = n + T , T = δT/T0), be
dimensionless deviations of the hydrodynamic variables, while σ = δσ/p0

and q = δq/(p0vT ) are dimensionless deviations of the stress tensor σ, and
of the heat flux q. The linearized thirteen-moment Grad distribution function
is f0 = F (c) [1 + ϕ0], where

ϕ0 = ϕ1 + ϕ2 , (6.120)
ϕ1 = n+ 2uici + T

[
c2 − (3/2)

]
,

ϕ2 = σikcick + (4/5)qici
[
c2 − (5/2)

]
.

The overline denotes a symmetric traceless dyad. We use the following con-
vention:

aibk = aibk + akbi −
2
3
δikalbl ,

∂ifk = ∂ifk + ∂kfi −
2
3
δik∂lfl .

The thirteen-moment Grad’s equations are derived in two steps: first, the
Grad’s distribution function (6.120) is inserted into the linearized Boltzmann
equation to give a formal expression, ∂tϕ0 = Ĵϕ0, second, projector P0 is
applied to this expression, where P0 = P1 +P2, and operators P1 and P2 act
as follows:

P1J =
F

n0

{
X0

∫
X0J dv +Xi

∫
XiJ dv +X4

∫
X4J dv

}
, (6.121)

P2J =
F

n0

{
Yik

∫
YikJdv + Zi

∫
ZiJdv

}
.

Here X0 = 1, Xi =
√

2ci, where i = 1, 2, 3, X4 =
√

2/3
(
c2 − 3

2

)
, Yik =√

2cick, and Zi = 2√
5
ci
(
c2 − 5

2

)
. The resulting equation,

P0[F∂tϕ0] = P0[F Ĵϕ0] ,

is a compressed representation for the thirteen-moment Grad equations for
the macroscopic variables M13 = {n,u, T,σ, q}.
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Now we turn our attention to the main purpose of this example, and
derive the dynamic invariance correction to the thirteen-moment distribu-
tion function (6.120). The assumption (i) [existence of closed dynamics of
thirteen moments] implies the invariance equation for the true mesoscopic
distribution function, f̃(M13, c) = F [1 + ϕ̃(M13, c)], where we have stressed
that this function depends parametrically on the same thirteen macroscopic
parameters, as the original Grad approximation. The invariance condition for
f̃(M13, c) reads [11]:

(1 − P̃ )[F Ĵϕ̃] = 0 , (6.122)

where P̃ is the projector associated with f̃ . Generally speaking, the projector
P̃ depends on the distribution function f̃ [11,231]. In the following, we use the
projector P0 (6.121) which will be consistent with our approximate treatment
of (6.122).

Following the assumption (ii) [Grad’s distribution function (6.120) is a
good initial approximation], the Grad’s function f0, and the projector P0,
are chosen as the input data for solving the equation (6.122) iteratively. The
dynamic correction amounts to the first iterate. Let us consider these steps
in a more detail.

Substituting ϕ0 (6.120) and P0 (6.121) instead of ϕ and P in the equation
(6.122), we get: (1 − P0)[F Ĵϕ0] ≡ ∆0 �= 0, which demonstrates that (6.120)
is not a solution to the equation (6.122). Moreover, ∆0 splits in two natural
pieces: ∆0 = ∆loc

0 +∆nloc
0 , where

∆loc
0 = (1 − P2)[FL̂ϕ2] , (6.123)

∆nloc
0 = (1 − P0)[−vTFci∂iϕ0] .

Here we have accounted for P1[FL̂ϕ] = 0, and L̂ϕ1 = 0. The first piece of
(6.123), ∆loc

0 , can be termed local because it does not account for spatial
gradients. Its origin is twofold. In the first place, recall that we are per-
forming our analysis in a non-local-equilibrium state (the thirteen-moment
Grad’s approximation is not a zero point of the Boltzmann collision integral,
hence L̂ϕ0 �= 0). In the second place, specializing to the linearized case under
consideration, functions cc and c[c2 − (5/2)], in general, are not the eigen-
functions of the linearized collision integral, and hence P2[FL̂ϕ0] �= FL̂ϕ0,
resulting in ∆loc

0 �= 02.
The nonlocal part may be written as:

∆nloc
0 = −vTF (Π1|krs∂kσrs +Π2|ik∂kqi +Π3∂kqk) , (6.124)

where Π are velocity polynomials:

2 Except for Maxwell molecules (interaction potential U ∼ r−4) for which L̂ϕ0 �= 0
but P2[FL̂ϕG] = FL̂ϕ0. Same goes for the relaxation time approximation of the

collision integral (L̂ = −τ−1).
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Π1|krs = ck
[
crcs − (1/3)δrsc

2
]
− (2/5)δkscrc

2 ,

Π2|ik = (4/5)
[
c2 − (7/2)

] [
cick − (1/3)δikc

2
]
,

Π3 = (4/5)
[
c2 − (5/2)

] [
c2 − (3/2)

]
− c2 .

We seek the dynamic correction of the form:

f = F [1 + ϕ0 + φ] .

Substituting ϕ = ϕ0 +φ, and P = P0, into (6.122), we derive an equation for
the correction φ:

(1 − P2)[FL̂(ϕ2 + φ)] = (1 − P0)[vTFci∂i(ϕ0 + φ)] . (6.125)

The equation (6.125) should be supplied with the additional condition,
P0[Fφ] = 0.

6.5.3 Solution of the Invariance Equation

Let us apply the usual ordering to solve (6.125), introducing a small pa-
rameter ε, multiplying the collision integral L̂ with ε−1, and expanding
φ =

∑
n ε

nφ(n). Subject to the additional condition, the resulting sequence
of linear integral equations is uniquely soluble. Let us consider the first two
orders in ε.

Because ∆loc
0 �= 0, the leading correction is of the order ε0, i.e. of the same

order as the initial approximation ϕ0. The function φ(0) is due the following
equation:

(1 − P2)[FL̂(ϕ2 + φ(0))] = 0 , (6.126)

subject to the condition, P0[Fφ(0)] = 0. The equation (6.126) has the unique
solution: ϕ2 + φ(0) = σikY

(0)
ik + qiZ

(0)
i , where functions, Y (0)

ik and Z
(0)
i , are

solutions to the integral equations:

L̂Y
(0)
ik = bYik , L̂Z

(0)
i = aZi , (6.127)

subject to the conditions, P1[FY(0)] = 0 and P1[FZ(0)] = 0. Factors a and b
are:

a = π−3/2

∫
e−c2

Z
(0)
i L̂Z

(0)
i dc ,

b = π−3/2

∫
e−c2

Y
(0)
ik L̂Y

(0)
ik dc .

Now we are able to notice that the equation (6.127) coincides with the CE
equations [70] for the exact transport coefficients (viscosity and temperature
conductivity). Emergency of these well known equations in the present con-
text is important and rather unexpected: when the moment transport equa-
tions are closed with the locally corrected function f loc = F (1+ϕ0 +φ(0)), we
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come to a closed set of thirteen equations containing the exact CE transport
coefficients.

Let us analyze the next order (ε1), where ∆nloc
0 comes into play. To sim-

plify matters, we neglect the difference between the exact and the approxi-
mate CE transport coefficients. The correction φ(1) is due to the equation,

(1 − P2)[FL̂φ(1)] +∆nloc
0 = 0 , (6.128)

the additional condition is: P0[Fφ(1)] = 0. The problem (6.128) reduces to
three integral equations of a familiar form:

L̂Ψ1|krs = Π1|krs , L̂Ψ2|ik = Π2|ik , L̂Ψ3 = Π3 , (6.129)

subject to conditions: P1[FΨ1|krs] = 0, P1[FΨ2|ik] = 0, and P1[FΨ3] = 0.
Integral equations (6.129) are of the same structure as are the integral equa-
tions appearing in the CE method, and the methods to handle them are well
developed [70]. In particular, a reasonable and simple approximation is to
take Ψα|... = −AαΠα|.... Then

φ(1) = −vT (A1Π1|krs∂kσrs +A2Π2|ik∂kqi +A3Π3∂kqk) , (6.130)

where Aα are the approximate values of the kinetic coefficients, and which
are expressed via matrix elements of the linearized collision integral:

A−1
α ∝ −

∫
exp(−c2)Πα|...L̂Πα|... dc > 0 . (6.131)

The evaluation can be extended to a computational scheme for any given
molecular model (e.g., for the Lennard-Jones potential), in the manner of
the transport coefficients computations in the classical Chapman–Enskog
method.

6.5.4 Corrected Thirteen-Moment Equations

To summarize the results of the dynamic correction, we quote first the un-
closed equations for the variables M13 = M13 = {n,u, T,σ, q}:

(1/v0
T )∂tn+ ∂iui = 0 , (6.132)

(2/v0
T )∂tui + ∂i(T + n) + ∂kσik = 0 , (6.133)

(1/v0
T )∂tT + (2/3)∂iui + (2/3)∂iqi = 0 , (6.134)

(1/v0
T )∂tσik + 2∂iuk − (2/3)∂iqk + ∂lhikl = Rik , (6.135)

(2/vT )∂tqi − (5/2)∂ip− (5/2)∂kσik + ∂kgik = Ri . (6.136)

Terms spoiling the closure are: the higher moments of the distribution func-
tion,
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hikl = 2π−3/2

∫
e−c2

ϕcickcldc ,

gik = 2π−3/2

∫
e−c2

ϕcickc
2 dc ,

and the scattering rates,

Rik =
2
vT

π−3/2

∫
e−c2

cickL̂ϕdc ,

Ri =
2
vT

π−3/2

∫
e−c2

cic
2L̂ϕdc .

Grad’s distribution function (6.120) provides the zeroth-order closure ap-
proximation to both the higher-order moments and the scattering rates:

R
(0)
ik = −µ−1

0 σik, R
(0)
i = −λ−1

0 qi , (6.137)

∂lh
(0)
ikl = (2/3)δik∂lql + (4/5)∂iqk ,

∂lg
(0)
lk = (5/2)∂k(p+ T ) + (7/2)∂lσlk ,

where µ0 and λ0 are the first Sonine polynomial approximations to the vis-
cosity and the temperature conductivity coefficients [70], respectively.

The local correction improves the closure of the scattering rates:

Rik = −µ−1
CEσik, Ri = −λ−1

CEqi , (6.138)

where the subscript CE corresponds to the exact Chapman–Enskog values of
the transport coefficients.

The nonlocal correction adds the following terms to the higher-order mo-
ments:

∂lglk = ∂lg
(0)
lk −A3∂k∂lql −A2∂l∂lqk , (6.139)

∂lhikl = ∂lh
(0)
ikl −A1∂l∂lσik ,

where Ai are the kinetic coefficients derived above.
In order to illustrate what changes in Grad equations with the nonlocal

correction, let us consider a model with two scalar variables, T (x, t) and
q(x, t) (a simplified case of the one-dimensional corrected thirteen-moment
system where one retains only the variables responsible for heat conduction):

∂tT + ∂xq = 0, ∂tq + ∂xT − a∂2
xq + q = 0 . (6.140)

Parameter a ≥ 0 controls “turning on” the nonlocal correction. Using
{q(k, ω), T (k, ω)} exp(ωt+ ikx), we come to a dispersion relation for the two
roots ω1,2(k). Without the correction (a = 0), there are two domains of k:
for 0 ≤ k < k−, dispersion is diffusion-like (Reω1,2(k) ≤ 0, Imω1,2(k) = 0),
while as k ≥ k−, dispersion is wave-like (ω1(k) = ω∗

2(k), Imω1(k) �= 0). For
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Fig. 6.5. Attenuation Reω1,2(k) (lower pair of curves), frequency Imω1,2(k) (upper
pair of curves). Dashed lines – Grad case (a = 0), drawn lines – dynamic correction
(a = 0.5)

a between 0 and 1, the dispersion modifies in the following way: The wave-
like domain becomes bounded, and exists for k ∈]k−(a), k+(a)[, while the
diffusion-like domain consists of two pieces, k < k−(a) and k > k+(a).

The dispersion relation for a = 1/2 is shown in Fig. 6.5. As a increases to
1, the boundaries of the wave-like domain, k−(a) and k+(a), move towards
each other, and collapse at a = 1. For a > 1, the dispersion relation becomes
purely diffusive (Imω1,2 = 0) for all k.

6.5.5 Discussion: Transport Coefficients,
Destroying the Hyperbolicity, etc.

1. Considering the thirteen-moment Grad’s ansatz as a suitable approxima-
tion to the closed dynamics of thirteen moments, we have found that the
first correction leads to the exact Chapman–Enskog transport coefficients.
Further, the nonlocal part of this correction extends the Grad equations
with terms containing spatial gradients of the heat flux and of the stress
tensor, destroying the hyperbolic nature of Grad’s moment system. Cor-
responding kinetic coefficients are explicitly derived for the Boltzmann
equation.

2. Extension of Grad equations with terms like in (6.139) was mentioned
in the EIT [252]. These derivations were based on phenomenological and
semi-phenomenological argument. In particular, the extension of the heat
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flux with appealing to nonlocality effects in dense fluids. Here we have
derived the similar contribution from the simplest (i.e. dilute gas) kinetics,
in fact, from the assumption about existence of the mesoscopic dynamics.
The advantage of using the simplest kinetics is that corresponding kinetic
coefficients (6.131) become a matter of a computation for any molecular
model.

3. When the invariance principle is applied to derive hydrodynamics (closed
equations for the variables n, u and T ) then [11] the local Maxwellian flm

is chosen as the input distribution function for the invariance equation. In
the linear domain, flm = F [1 + ϕ1], and the projector is Plm = P1, see
(6.120) and (6.121). When the latter expressions are substituted into the
invariance equation (6.122), we obtain ∆lm = ∆nloc

lm = −vTF{2∂iukcick +
∂iTci[c2 − (5/2)]}, while ∆loc

lm ≡ 0 because the local Maxwellians are zero
points of the Boltzmann collision integral. Consequently, the dynamic cor-
rection begins with the order ε, and the analog of the equation (6.128)
reads:

L̂φ
(1)
lm = vT {2∂iukcick + ∂iTci[c2 − (5/2)]} ,

subject to a condition, P1[Fφ
(1)
lm ] = 0. The latter is the familiar Chapman-

Enskog equation, resulting in the Navier-Stokes correction to the Euler
equations [70]. Thus, the nonlocal dynamic correction is related to the
thirteen-moment Grad equations entirely in the same way as the Navier-
Stokes are related to the Euler equations.

4. Let us discuss briefly the further corrections. The first local correction
(the functions Y1 and Z1 in (6.127)) is not the limiting point of our
iterational procedure. When the latter is continued, the subsequent lo-
cal corrections are found from integral equations, L̂Yn+1 = bn+1Yn, and
L̂Zn+1 = an+1Z n. Thus, we are led to the following two eigenvalue prob-
lems: L̂Y∞ = b∞Y∞, and L̂Z∞ = a∞Z∞, where a∞ and b∞ are the
closest to zero eigenvalues among all the eigenvalue problems with the
given tensorial structure [248].

5. Approach of this example [21] can be extended to derive dynamic correc-
tions to other (non-moment) approximations of interest in the kinetic the-
ory. The above analysis has demonstrated, in particular, the importance
of the local correction, generically relevant to an approximation which
is not a zero point of the collision integral. Very recently, this approach
was successfully applied to improve the nonlinear Grad’s thirteen-moment
equations [253].
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