
9 Relaxation Methods

The “large stepping” relaxation method for solution of the invariance equa-
tion is developed.

9.1 “Large Stepping” for the Equation
of the Film Motion

Relaxation method is an alternative to the Newton iteration method described
in Chap. 6: The initial approximation to the invariant manifold F0 is moved
with the film extension (4.5),

dFt(y)
dt

= (1 − Pt,y)J(Ft(y)) = ∆F (y) ,

until a fixed point is reached. The advantage of this method is a relative free-
dom in its implementation: equation (4.5) needs not to be solved exactly, one
is interested only in finding fixed points. Therefore, a “large stepping” in the
direction of the defect, ∆F (y) is possible, while the termination point is de-
fined by the condition that the vector field becomes orthogonal to ∆F (y). For
simplicity, let us consider the procedure of termination in the linear approx-
imation. Let F0(y) be the initial approximation to the invariant manifold,
and we seek the first correction,

F1(y) = F0(y) + τ1(y)∆F0(y) ,

where function τ1(y) has the dimension of time, and is found from the condi-
tion that the linearized vector field attached to the points of the new manifold
is orthogonal to the initial defect,

〈∆F0(y)|(1 − Py)[J(F0(y)) + τ1(y)(DxJ)F0(y)∆F0(y)]〉F0(y) = 0 . (9.1)

Explicitly,

τ1(y) = −
〈∆F0(y)|∆F0(y)〉F0(y)

〈∆F0(y)|(DxJ)F0(y)|∆F0(y)〉F0(y)
. (9.2)

Further steps τk(y) are found in the same way. It is clear from the above
that the step of the relaxation method for the film extension is equivalent to
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the Galerkin approximation for solving the iteration of the Newton method
with incomplete linearization. Actually, the relaxation method was first in-
troduced in these terms in [24]. It was implemented in the method of in-
variant grids [105] for the grid-based numerical representations of manifolds
(see Chap. 10). An idea of using the explicit Euler method to approximate
the finite-dimensional inertial manifold was proposed earlier in [25]. In our
approach the special choice of the projector field is important. For recent
development of the numerical Euler-type methods for the solution of the
invariance equation see [28].

The advantage of the equation (9.2) is the explicit form of the size of the
steps τk(y). This method was successfully applied to the closure problem in
the context of the Fokker-Planck equation [24].

9.2 Example: Relaxation Method
for the Fokker-Planck Equation

We address here the problem of closure for the Fokker-Planck equation (FPE)
(2.60) in a general setting. First, we review the maximum entropy principle
as a source of suitable quasiequilibrium initial approximations for closures.
We also discuss a version of the maximum entropy principle, valid for a near-
equilibrium dynamics, and which results in explicit formulas for arbitrary
potential U and diffusion matrix D.

In this Example we consider the FPE of the form (2.60):

∂tW (x, t) = ∂x ·{D · [W∂xU + ∂xW ]} . (9.3)

Here W (x, t) is the probability density over the configuration space x, at the
time t, while U(x) and D(x) are the potential and the positively semi-definite
(y ·D · y ≥ 0) diffusion matrix.

9.2.1 Quasi-Equilibrium Approximations
for the Fokker-Planck Equation

The quasiequilibrium closures are almost never invariants of the true mo-
ment dynamics. For corrections to the quasiequilibrium closures, we apply the
method of invariant manifold, which is carried out (subject to certain approx-
imations explained below) to explicit recurrence formulas for one-moment
near-equilibrium closures for arbitrary U and D. As a by-product, these
formulas provide also a method for computing the lowest eigenvalue of the
problem, which dominates the near-equilibrium FPE dynamics. Results are
tested with model potentials, including the FENE-like potentials [151–153].
A generalization of the present approach to many-moment closures is also
straightforward.
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Let us denote as M the set of linearly independent moments,

{M0,M1, . . . ,Mk}, where Mi[W ] =
∫
mi(x)W (x) dx, m0 = 1 .

We assume that there exists a function W ∗(M,x) which extremizes the en-
tropy S (2.61) under the constraints of fixed M . This quasiequilibrium dis-
tribution function may be written as

W ∗ = Weq exp

[
k∑

i=0

Λimi(x) − 1

]
, (9.4)

where Λ = {Λ0, Λ1, . . . , Λk} are Lagrange multipliers. Closed-form equations
for moments M are derived in two steps. First, the quasiequilibrium dis-
tribution (9.4) is substituted into the FPE (9.3) or (2.62) to give a formal
expression:

∂tW
∗ = M̂W∗(δS/δW )

∣∣
W=W∗

, where M̂W∗ is given by (2.62). Second, introducing the quasiequilibrium
projector Π∗,

Π∗• =
k∑

i=0

(∂W ∗/∂Mi)
∫
m(x) • dx ,

and applying Π∗ on both sides of the formal expression, we derive closed
for M in the quasiequilibrium approximation. Further processing requires
explicit solution to the constraints,

∫
W ∗(Λ, x)mi(x) dx = Mi, to get the

dependence of Lagrange multipliers Λ on the moments M . Though typically
the functions Λ(M) are not known explicitly, one general remark about the
moment equations is readily available. Specifically, the moment equations in
the quasiequilibrium approximation have the form:

Ṁi =
k∑

j=0

M∗
ij(M)(∂S∗(M)/∂Mj) , (9.5)

where S∗(M) = S[W ∗(M)] is the quasiequilibrium entropy, and where M∗
ij

is an M -dependent (k + 1) × (k + 1) matrix:

M∗
ij =

∫
W ∗(M,x)[∂xmi(x)] ·D(x) · [∂xmi(x)] dx .

The matrix M∗
ij is symmetric, positive semi-definite, and its kernel is the vec-

tor δ0i. Thus, the quasiequilibrium closure reproduces the gradient structure
on the macroscopic level (2.62), the vector field of quasiequilibrium equations
(9.5) is a transform of the gradient of the quasiequilibrium entropy given by
the symnmetric positive operator.

The following version of the quasiequilibrium closures makes it possible to
derive more explicit results in the general case [233,246–248]: In many cases,
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one can split the set of moments M in two parts, MI = {M0,M1, . . . ,Ml} and
MII = {Ml+1, . . . ,Mk}, in such a way that the quasiequilibrium distribution
can be constructed explicitly for MI as W ∗

I (MI , x). The full quasiequilibrium
problem for M = {MI ,MII} in the “shifted” formulation reads (see the
“triangle entropy method” in Chap. 5): extremize the functional S[W ∗

I +
∆W ] with respect to ∆W , under the constraints MI [W ∗

I + ∆W ] = MI and
MII [W ∗

I +∆W ] = MII . Let us denote as ∆MII = MII −MII(MI) deviations
of the moments MII from their values in the quasiequilibrium state W ∗

I . For
small deviations, the entropy is well approximated with its quadratic part

∆S = −
∫
∆W

[
1 + ln

W ∗
I

Weq

]
dx− 1

2

∫
∆W 2

W ∗
I

dx .

Taking into account the fact that MI [W ∗
I ] = MI , we come to the following

maximizaton problem:

∆S[∆W ] → max, MI [∆W ] = 0, MII [∆W ] = ∆MII . (9.6)

The solution to the problem (9.6) is always explicitly found from a (k+ 1)×
(k + 1) system of linear algebraic equations for Lagrange multipliers. This
triangle entropy method for Boltzmann equations was discussed in details in
Sect. 5.6.

In the remainder of this section we deal solely with one-moment near-
equilibrium closures: MI = M0, (i. e. W ∗

I = Weq), and the set MII contains
a single moment M =

∫
mW dx, m(x) �= 1. We shall specify notations for the

near-equilibrium FPE, writing the distribution function as W = Weq(1+Ψ),
where the function Ψ satisfies an equation:

∂tΨ = W−1
eq ĴΨ , (9.7)

where Ĵ = ∂x·[WeqD·∂x]. The triangle one-moment quasiequilibrium function
reads:

W (0) = Weq

[
1 +∆Mm(0)

]
(9.8)

where
m(0) = [〈mm〉 − 〈m〉2]−1[m− 〈m〉] . (9.9)

Here brackets 〈. . .〉 =
∫
Weq . . . dx denote equilibrium averaging. The super-

script (0) indicates that the triangle quasiequilibrium function (9.8) will be
considered as the initial approximation to the procedure which we address
below. Projector for the approximation (9.8) has the form

Π(0)• = Weq
m(0)

〈m(0)m(0)〉

∫
m(0)(x) • dx . (9.10)

Substituting the function (9.8) into the FPE (9.7), and applying the projector
(9.10) on both the sides of the resulting formal expression, we derive the
equation for M :
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Ṁ = −λ0∆M , (9.11)

where 1/λ0 is an effective relaxation time of the moment M to its equilibrium
value, in the quasiequilibrium approximation (9.8):

λ0 = 〈m(0)m(0)〉−1〈∂xm
(0) ·D · ∂xm

(0)〉 . (9.12)

9.2.2 The Invariance Equation for the Fokker-Planck Equation

Both the quasiequilibrium and the triangle quasiequilibrium closures are al-
most never invariants of the FPE dynamics. That is, the moments M of solu-
tions of the FPE (9.3) and the solutions of the closed moment equations like
(9.5), are different functions of time, even if the initial values coincide. These
variations are generally significant even for the near-equilibrium dynamics.
Therefore, we ask for corrections to the quasiequilibrium closures to end up
with the invariant closures. This problem falls precisely into the framework
of the method of invariant manifold [11] (Chap. 6), and we shall apply this
method to the one-moment triangle quasiequilibrium closure approximations,
as a simple example.

First, the invariant one-moment closure is given by an unknown distrib-
ution function W (∞) = Weq[1 + ∆Mm(∞)(x)] which satisfies the invariance
equation

[1 −Π(∞)]Ĵm(∞) = 0 . (9.13)

Here Π(∞) is the projector, associated with function m(∞), and which is
also yet unknown. Equation (9.13) is a formal expression of the invariance
principle for a one-moment near-equilibrium closure: considering W (∞) as a
manifold in the space of distribution functions, parameterized with the values
of the momentM , we require that the microscopic vector field Ĵm(∞) be equal
to its projection, Π(∞)Ĵm(∞), onto the tangent space of the manifold W (∞).

Now we turn our attention to solving the invariance equation (9.13) it-
eratively, beginning with the triangle one-moment quasiequilibrium approxi-
mation W (0) (9.8). We apply the following iteration process to (9.13):

[1 −Π(k)]Ĵm(k+1) = 0 , (9.14)

where k = 0, 1, . . ., and where m(k+1) = m(k) + µ(k+1), and the correction
satisfies the condition 〈µ(k+1)m(k)〉 = 0. The projector is updated after each
iteration, and it has the form

Π(k+1)• = Weq
m(k+1)

〈m(k+1)m(k+1)〉

∫
m(k+1)(x) • dx . (9.15)

Applying Π(k+1) to the formal expression,

Weqm
(k+1)Ṁ = ∆M [1 −Π(k+1)]m(k+1) ,
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we derive the (k + 1)th update of the effective time (9.12):

λk+1 =
〈∂xm

(k+1) ·D · ∂xm
(k+1)〉

〈m(k+1)m(k+1)〉 . (9.16)

Specializing to the one-moment near-equilibrium closures, and following the
general argument of Chap. 6, solutions to the invariance equation (9.13) are
eigenfunctions of the operator Ĵ , while the limit of the iteration process (9.14)
is the eigenfunction which corresponds to the eigenvalue with the minimal
nonzero absolute value.

9.2.3 Diagonal Approximation

In order to obtain more explicit results, we shall now proceed with to an
approximate solution to the problem (9.14) at each iteration. The correction
µ(k+1) satisfyes the condition 〈m(k)µ(k+1)〉 = 0, and can be decomposed as
follows: µ(k+1) = αke

(k) + e
(k)
⊥ . Here e(k) is the defect of the kth approxima-

tion: e(k) = W−1
eq [1 −Π(k)]Ĵm(k) = λkm

(k) +R(k), where

R(k) = W−1
eq Ĵm(k) . (9.17)

The function e
(k)
⊥ is orthogonal to both e(k) and m(k) (〈e(k)e

(k)
⊥ 〉 = 0, and

〈m(k)e
(k)
⊥ 〉 = 0).

Our diagonal approximation (DA) consists in neglecting the part e(k)
⊥ . In

other words, we seek an improvement of the non-invariance of the kth ap-
proximation along its defect, ∆ = e(k). Specifically, we consider the following
ansatz at the kth iteration:

m(k+1) = m(k) + αke
(k) . (9.18)

Substituting the ansatz (9.18) into (9.14), we integrate the latter expression
with the functon e(k) to evaluate the coefficient αk:

αk =
Ak − λ2

k

λ3
k − 2λkAk +Bk

, (9.19)

where functions Ak and Bk are represented by the following equilibrium av-
erages:

Ak = 〈m(k)m(k)〉−1〈R(k)R(k)〉 (9.20)
Bk = 〈m(k)m(k)〉−1〈∂xR

(k) ·D · ∂xR
(k)〉 .

Finally, putting together (9.16), (9.17), (9.18), (9.19), and (9.20), we arrive
at the following DA recurrence solution:
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m(k+1) = m(k) + αk[λkm
(k) +R(k)] , (9.21)

λk+1 =
λk − (Ak − λ2

k)αk

1 + (Ak − λ2
k)α2

k

. (9.22)

Notice that the stationary points of the DA process (9.22) are the true
solutions to the invariance equation (9.13). What may be lost within the DA
is the convergence to the true limit of the procedure (9.14), i.e. to the minimal
eigenvalue. In a general situation this is highly improbable, though.

In order to test the convergence of the DA process (9.22) we considered
two potentials U in the FPE (9.3) with a constant diffusion matrix D. The
first test was with the square potential U = x2/2, in the three-dimensional
configuration space, since for this potential the spectrum is well-known. We
have considered two examples of the initial one-moment quasiequilibrium
closures with m(0) = x1 + 100(x2 − 3) (example 1), and m(0) = x1 + 100x6x2

(example 2), in (9.9). The result of performance of the DA for λk is presented
in Table 9.1, together with the error δk which was estimated as the norm of
the variance at each iteration: δk = 〈e(k)e(k)〉/〈m(k)m(k)〉. In both examples,
we see a good monotonic convergency to the minimal eigenvalue λ∞ = 1,
corresponding to the eigenfunction x1. This convergence is even striking in the
example 1, where the initial choice was very close to a different eigenfunction
x2−3, and which can be seen in the non-monotonic behavior of the variance.
Thus, we have an example to trust the DA approximation as converging to
the proper object.

Table 9.1. Iterations λk and the error δk for U = x2/2

0 1 4 8 12 16 20
Ex. 1 λ 1.99998 1.99993 1.99575 1.47795 1.00356 1.00001 1.00000

δ 0.16 · 10−4 0.66 · 10−4 0.42 · 10−2 0.24 0.35 · 10−2 0.13 · 10−4 0.54 · 10−7

0 1 2 3 4 5 6
Ex. 2 λ 3.399 2.437 1.586 1.088 1.010 1.001 1.0002

δ 1.99 1.42 0.83 0.16 0.29 · 10−1 0.27 · 10−2 0.57 · 10−3

For the second test, we have taken a one-dimensional potential U =
−50 ln(1 − x2), the configuration space is the segment |x| ≤ 1. Potentials
of this type (a so-called FENE potential) are used in applications of the FPE
to models of polymer solutions [151–153]. Results are given in Table 9.2 for
the two initial functions, m(0) = x2 + 10x4 − 〈x2 + 10x4〉 (example 3), and
m(0) = x2 + 10x8 − 〈x2 + 10x8〉 (example 4). Both examples demonstrate a
stabilization of the λk at the same value after some ten iterations.

In conclusion, we have developed the principle of invariance to obtain mo-
ment closures for the Fokker-Planck equation (9.3), and have derived explicit
results for the one-moment near-equilibrium closures, particularly important
to get information about the spectrum of the FP operator.
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Table 9.2. Iterations λk for U = −50 ln(1 − x2)

0 1 2 3 4 5 6 7 8

Ex. 3 λ 213.17 212.186 211.914 211.861 211.849 211.845 211.843 211.842 211.841

Ex. 4 λ 216.586 213.135 212.212 211.998 211.929 211.899 211.884 211.876 211.871

9.3 Example: Relaxational Trajectories:
Global Approximations

Here we describe semi-analytical approximate methods for nonlinear space-
independent dissipative systems equipped with the entropy functional. The
key point of the analysis is an upper limiting state in the beginning of the
relaxation. Extremal properties of this state are described, and explicit esti-
mations are derived. This limiting state is used to construct explicit approx-
imations of the trajectories. Special effort is paid to accomplish positivity,
smoothness and the entropy growth along the approximate trajectories. The
method is tested for the space-independent Boltzmann equation with various
collision mechanisms.

9.3.1 Initial Layer and Large Stepping

For relaxing systems, it is a common place to distinguish three subsequent
regimes on a way from an initial non-equilibrium state f0(Γ ) to the final
equilibrium state f0(Γ ), where Γ is the phase variable: the early-time relax-
ation immediately after the system leaves the initial state f0, the intermediate
regime, and the final regression to the equilibrium state f0. This model pic-
ture is only approximate. For gases, the early-time relaxation occurs in a
few first collisions of the molecules, and can be singled out from the whole
relaxational process and investigated separately.

Considering the beginning of the relaxation, we may expect that it is
dominated by a rate of processes in the initial state. In the case of a dilute
gas, in particular, this rate is given by the Boltzmann collision integral, Q(f),
evaluated in the state f0, and equal to Q0 = Q(f0). The latter expression is
the known function of the phase variable, Q0(Γ ). Put differently, our expec-
tation is that states which the system passes through in the beginning are
close to those on a ray, f(Γ, a):

f(Γ, a) = f0(Γ ) + aQ0(Γ ) , (9.23)

where a ≥ 0 is a scalar variable (we use dimensionless variables). It is clear
that such an approximation can be valid if only a “is not too large”. On the
other hand, nothing tells us ultimatively that a must be “strictly infinitesi-
mal” if we want to obtain at least a moderate by accuracy approximation. In
general, this consideration can be relevant if the parameter a in (9.23) does
not exceed some certain upper value a∗.
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In this Example we give an answer to the following question: what is the
upper limiting state, f∗, the system cannot overcome when driven with the
initial rate Q0? As long as we can consider Q0 as the dominant direction in
the early-time relaxation, the answer amounts to an upper estimate of the
parameter a in (9.23), and thus the limiting state f∗ is:

f∗(Γ ) = f(Γ, a∗) = f0(Γ ) + a∗Q0(Γ ) , (9.24)

where the value a∗ is the subject of the analysis to be performed.
Our approach will be based on the following consideration. Denote as S(f)

the entropy of the state f(Γ ), and as S(a) its value in the state f(Γ, a) (9.23).
A state f(Γ, a′) can be regarded accessible from the initial state f(Γ, 0) =
f0(Γ ) in the course of the Q0-dominated dynamics, if and only if the function
S(a) increases with an increase of the variable a from 0 to a′. The upper
limiting value, a∗, is thus characterized by the following two properties:

1. S(a) increases, as a increases from 0 to a∗.
2. S(a) decreases, as a exceeds a∗.

Assuming the usual convexity properties of the entropy, we conclude that
the state f(Γ, a∗) with these properties is unique.

In the next subsection, “Extremal properties of the limiting state,” we
derive an equation for the limiting state f(Γ, a∗) in two ways: firstly, as a
direct consequence of the two properties just mentioned, and, secondly, as
an equilibrium state of an appropriately chosen kinetic model of the Q0-
dominated relaxation. Next we introduce a method to obtain the explicit
estimate of the function f(Γ, a∗) (details are given in special Subsect. 9.3.5
“Estimations”). With this, we get the answer to the question posed above.

The derivation of the state f(Γ, a∗) plays the key role in the section
“Approximate phase trajectories”. There we aim at constructing explicit ap-
proximations to trajectories of a given space-independent kinetic equation.
Namely, we construct an explicit function f(Γ, a), where parameter a spans
a segment [0, 1], and which satisfies the following conditions:

1. f(Γ, 0) = f0(Γ ).
2. f(Γ, 1) = f0(Γ ).
3. f(Γ, a) is a non-negative function of Γ for each a.
4. C(a) ≡ C(f(a)) = const, where C(f) are linear conserved quantities.
5. S(a) ≡ S(f(a)) is a monotonically increasing function of a.
6. ∂f(Γ, a)/∂a|a=0 = kQ0(Γ ), where k > 0.

Function f(Γ, a) is a path from the initial state f0 to the equilibrium state f0

(conditions 1 and 2). All states of the path make physical sense (condition 3),
conserved quantities remain fixed, and the entropy monotonically increases
along the path (conditions 4 and 5). Finally, condition 6 requires that the path
is tangent to the exact trajectory in their common initial state f0. A function
f(Γ, a) with the properties 1-6 is, of course, not unique but a construction of



256 9 Relaxation Methods

a definite example is a rather non-trivial task. Indeed, the major difficulty is
to take into account the tangency condition 6 together with the rest of the
requirements.

The simplest function with the properties 1-6, and which depends smoothly
on a, is constructed explicitly in the Subsect. 9.3.3 “Approximate trajecto-
ries” (details of the procedure are given in Subsect. 9.3.5). We also discuss
the question of the time dependence f(Γ, a(t)). In the section “Relaxation of
the Boltzmann gas”, the method is applied to the space-independent nonlin-
ear Boltzmann equation for several collisional mechanisms. In particular, we
compare our approximations with the celebrated BKW-mode [255, 256, 262]
for the Maxwell molecules, and with solutions to the two-dimensional very
hard particles model (VHP) [257,258].

Before to proceeding any further, it is worthwhile to give here a brief com-
ment on the status of the approximate trajectories considered below. It is well
known that the space-independent problem for dissipative kinetic equations
is one of the most developed branches of kinetic theory with respect to ex-
istence and uniqueness theorems [259–261]. The exact treatment of specific
models is also avaiable [263, 286]. On the other hand, there exists a gap of
approximate semi-analytical methods in this problem. This is not surprising
because most of the techniques of the kinetic theory [239] are based on a
small parameter expansions, and this is simply not the case of the initial
layer problem. The present study fills out this gap. Indeed, as the examples
demonstrate, the smooth approximations f(a, Γ ) constructed below provide
a reasonable (and simple) approximation to the exact trajectories.

Moreover, these functions serve for the initial approximation in an iter-
ative method of constructing the exact trajectories for the dissipative sys-
tems [26]. This method, in turn, is based on a more general consideration
of the paper [11] (Chap. 6). We give additional comments on this iterative
method below, as well as we provide an illustration of the correction.

9.3.2 Extremal Properties of the Limiting State

Let us first come to the equation for the limiting state f(Γ, a∗) (9.24) in an
informal way. The two features of the function f(Γ, a∗) indicated above tell
us that this is the state of the entropy maximum on the ray f(Γ, a) (9.23)1.
The extremum condition in this state reads:

DfS|f=f(Γ,a∗)

(
∂f(Γ, a)

∂a

)
=
∫

∂f(Γ, a)
∂a

δS(f)
δf

∣∣∣∣
f=f(Γ,a∗)

dΓ = 0 , (9.25)

where δS/δf denotes the (functional) derivative of the entropy evaluated at
the state f(Γ, a∗). For a particularly interesting case of

1 The entropy S(a) increases when a runs from zero to a∗, and S(a) starts to
decrease when a exceeds a∗.
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SB(f) = −
∫
f(Γ ) ln f(Γ ) dΓ

(the Boltzmann entropy), and
∫
Q(f) dΓ = 0 (conservation of the number of

particles), (9.25) gives:∫
Q0(Γ ) ln {f0(Γ ) + a∗Q0(Γ )} dΓ = 0 . (9.26)

In order to avoid a duplication of formulas, and in a view of the examples
considered below, we shall restrict our consideration to the Boltzmann en-
tropy case. The (unique) positive solution to (9.26) is the value a∗ which
gives the desired upper estimate.

In order to derive (9.26) more formally, an explicit presentation is re-
quired for a model dynamics dominated by Q0. Let us introduce a parti-
tion of the phase space into two domains, Γ+ and Γ−, in such a way that
the function Q0(Γ ) is positive on Γ+, and is negative on Γ−, and thus
Q0(Γ ) = Q+

0 (Γ ) − Q−
0 (Γ ), where both the functions Q+

0 (Γ ) and Q−
0 (Γ )

are positive and concentrated on Γ+ and Γ−, respectively2. Let us consider
the following kinetic equation:

∂tf = k1(Q+
0 (Γ ) −Q−

0 (Γ ))(w−(f) − w+(f)) , (9.27)

where

w−(f) = exp

(∫
Γ−

Q−
0 (Γ ) ln f(Γ, t) dΓ

)
, (9.28)

w+(f) = exp

(∫
Γ+

Q+
0 (Γ ) ln f(Γ, t) dΓ

)
,

and k1 > 0 is an arbitrary positive constant. When supplied with the initial
condition f(Γ, 0) = f0(Γ ), equation (9.27) has a formal solution of the form:

f(Γ, t) = f0(Γ ) + a(t)Q0(Γ ), (9.29)

provided that a(t) is the solution of the ordinary differential equation

da
dt

= k1(w−(a) − w+(a)) ,

with the initial condition a(0) = 0. Here w±(a) = w±(f(a)).
The solution (9.29) describes a relaxation from the initial state f0 to the

equilibrium state f∗, as t tends to infinity3 . The entropy SB monotonically
2 For the Boltzmann collision integral, this partition should not be confused with

the natural representation in the “gain−loss form” as
∫

w(v′
1v

′|v1v)(f ′f ′
1 −

ff1) dv′
1 dv′ dv1.

3 The equilibrium state f∗ of the model kinetic equation (9.27) is not the global
equilibrium f0, exept for the BGK model of the collision integral.



258 9 Relaxation Methods

increases along this solution up to the value S∗
B = SB(f∗) in the state f∗.

Substituting f∗ = f0 + a∗Q0 into the right-hand side of (9.27), we derive the
equation for the equilibrium state f∗ in the form of the detailed balance:

w−(a∗) = w+(a∗) . (9.30)

The latter equation is precisely (9.26). Note that the parameter k1 in (9.27)
does not appears in the final result (9.26) since it is responsible only for the
rate of the approach to the equilibrium state f∗ due to the dynamics (9.27)
but not for the location of this state on the ray (9.23).

Let us discuss the idea behind the model dynamics presented by (9.27).
As long as we disregard any change of Q in the beginning of the relaxation,
the function Q0(Γ ) represents a distinguished direction of relaxation in the
space of states. The partition of the phase space Γ+ ∪ Γ− corresponds then
to specification of the gain (Γ+) and of the loss (Γ−) of the phase density,
while the factors w+ and w− (9.28),

w±(f) ∼ exp

{
−
∫

Γ±

Q±
0 (Γ )

δS(f)
δf(Γ )

dΓ

}
, (9.31)

are the rates of the gain and and of the loss in the current state f , respectively.
Equation (9.27) implements these processes in the familiar “gain minus loss”
form, while the state f∗ corresponds to the balance of the gain and of the
loss (9.30). One can also observe a formal analogy of the structure of (9.27)
with that of the so-called Marcelin-De Donder equations of chemical kinetics
[81,245] (see Chap. 2).

Thus, the limiting state f∗ = f0 + a∗Q0 is described as the equilibrium
state of the kinetic equation (9.27), and solves (9.26). Note that the parameter
a∗ is correctly defined by (9.26), independently of the partition introduced in
the (9.27). The existence of the model relaxational equation (9.27) guarantees
that f∗ is a physical state (f∗ is a non-negative function).

In order to complete the analysis, we have to learn to solve the one-
dimensional nonlinear equation (9.26). In general, a method of successive
approximation is required to find the solution a∗ as a limit of a sequence
a∗1, a

∗
2, . . .. Some care should be taken in order to get all the approximations

a∗i not greater than the unknown exact value a∗, since only the states f(a, Γ )
with a ≤ a∗ are relevant. Moreover, what one actually needs in computations
is some definite approximation a∗1 ≤ a∗. In Subsect. 9.3.5, a corresponding
method is developed, which is based on the partition of Q0 introduced above.
In particular, the first approximation a∗1 reads:

a∗1 =
1 − exp{−σ0/q}
α+ β exp{−σ0/q}

, (9.32)

where q, σ0, α, and β are numerical coefficients:
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σ0 = −
∫
Q0(Γ ) ln f0(Γ ) dΓ , (9.33)

q =
∫

Γ+

Q+
0 (Γ ) dΓ =

∫
Γ−

Q−
0 (Γ ) dΓ ,

α = sup
Γ∈Γ−

Q−
0 (Γ )
f0(Γ )

,

β =
∫

Γ+

(Q+
0 (Γ ))2

qf0(Γ )
dΓ .

In the latter expressions, σ0 is the entropy production in the initial state, q
is the normalization factor, α and β reflect the maximal loss and the total
gain of the phase density in the initial state, respectively. Finiteness of the
parameters collected in (9.33) gives a restriction on the initial state f0 for
wich the estimate (9.32) is valid.

9.3.3 Approximate Trajectories

In this subsection we shall demonstrate how to use the states f∗ (9.24)
in the problem of constructing the approximate trajectories of the space-
independent relaxational equations

∂tf = Q(f) . (9.34)

Here Q(f) is a kinetic operator (the collision integral in the case of the Boltz-
mann equation). We assume that (9.34) describes a relaxation to the global
equilibrium state f0(Γ ), and the entropy SB(f) increases monotonically along
the solutions. Let c1(Γ ), . . . ck(Γ ) be the conserved densities, i.e.

∫
ciQ(f) dΓ = 0 .

Then the quantities Ci(f) =
∫
cif dΓ are conserved along the solution. As-

sume that the set of conserved densities c1(Γ ), . . . ck(Γ ) is full. In this case

ln f0(Γ ) =
k∑
1

aici(Γ ) ,

where ai are some numbers. A standard example of (9.34) is the space-
independent Boltzmann equation which we consider below.

Let f(Γ, t) be the solution to (9.34) with the initial condition f(Γ, 0) =
f0(Γ ). The trajectory of this solution can be represented as a function f(Γ, a),
where a varies from 0 to 1. For each a, the function f(Γ, a) is a non-negative
function of Γ , and
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f(Γ, 0) = f0(Γ ) , f(Γ, 1) = f0(Γ ) ,∫
ci(Γ )f(Γ, a) dΓ = const , ∂af(Γ, a)|a=0 ∝ Q0(Γ ) . (9.35)

In other words, as a varies from zero to one, the states f(Γ, a) follow the solu-
tion f(Γ, t) as t varies from zero to infinity. Since the entropy increases with
time on the solution f(Γ, t), the function SB(a) = SB(f(a)) is a monoton-
ically increasing function of the variable a. This condition, as well as the
conditions (9.35), must be met by any method of constructing an approxi-
mation to the trajectory f(Γ, a) (see the conditions 1-6 in the Introduction).

The simplest approximation based on the function f∗ of the preceding
section can be constructed as follows:

f(Γ, a) =
{

(1 − 2a)f0(Γ ) + 2af∗(Γ ) for 0 ≤ a ≤ 1
2

2(1 − a)f∗(Γ ) + (2a− 1)f0(Γ ) for 1
2 ≤ a ≤ 1 . (9.36)

This approximation amounts to the two-step relaxation from the initial state
f0 to the equilibrium state f0 through the intermediate state f∗ (9.24). The
first step (parameter a increases from 0 to 1/2) is the relaxation directed
along Q0 up to the state f∗ (9.24). The second step (parameter a increases
from 1/2 to 1) is the linear relaxation from f∗ towards the equilibrium state.
The last step can be viewed as the trajectory of a solution to the equation,

∂tf = −k2(f − f0) , (9.37)

with the initial condition f∗ (9.24). In kinetic theory, equation of the form
(9.37) is known as the BGK-model (2.17). The entropy increase along the
second step is due to the well known properties of the equation (9.37).

Expression (9.36) demonstrates the advantage of using the state f∗ for
the purpose of approximating the trajectory: all the conditions (9.35) are
obviously satisfied, and also we do not worry about the entropy increase.
Thus, all the conditions 1-6 mentioned in the Introduction are satisfied by
the approximation (9.36) due to the features of the state f∗. For explicit
expressions the estimate (9.32) can be used.

A disadvantage of the two-step approximation (9.36) is its non-smoothness
at a = 1/2. This can be improved as follows: Let us consider a triangle T
formed by the three states, f0, f∗, and f0, i.e. a closed set of convex linear
combinations of these functions4. This object allows to use a geometrical lan-
guage. A simple consequence of the properties of the state f∗ is that all the
elements of the triangle T are non-negative functions, and if f belongs to T
then Ci(f) = Ci(f0), where i = 1, . . . , k (all the conservation laws are fixed
in the triangle). Therefore, a better approximation to the trajectory can be
constructed as a smooth curve inscribed into the triangle T in such a way
that:
4 The state f belongs to T if f = a1f0 + a2f

∗ + a3f
0, where ai ≥ 0, and a1 + a2 +

a3 = 1.
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1. It begins in the state f0 at a = 0;
2. It is tangent to the side Lf0f∗ = {f |f = a1f0 + a2f

∗, a1 ≥ 0, a2 ≥ 0, a1 +
a2 = 1} in the state f0;

3. It ends in the equilibrium state f0 at a = 1.

Notice that the approximation (9.36) corresponds to the path from f0 to f0

over the two sides of the triangle T : firstly, over the segment between f0 and
f∗, and, secondly, over the segment between f∗ and f0.

The simplest form of such a smooth curve reads (the MDD spline):

fg(Γ, a) = f0 + (1 − a2){ag(f∗ − f0) + f0 − f0} , (9.38)

where g, 0 < g ≤ 1, is a parameter which has to be determined in a way that
the entropy SB(a), calculated in the states (9.38), is monotonically increasing
function of a. The explicit sufficient method to estimate the value of para-
meter g in (9.38) is rather non-trivial, and it is developed in Subsect. 9.3.5.

Finally, let us consider briefly a question of the time dependence for the
approximation f(Γ, a). Clearly, this question is relevant as soon as one looks
for the approximate trajectories directly, rather than integrating (9.34) in
time5. The answer assumes a dependence a(t), and requires an ordinary dif-
ferential equation for a. Such an equation should be obtained upon substi-
tution of the expression f(Γ, a) into the originating kinetic equation (9.34),
and by a further projecting. Specifically, the equation for a(t) has a form:

da
dt

∫
ϕ(Γ, a)

∂f(Γ, a)
∂a

dΓ =
∫
ϕ(Γ, a)Q(f(Γ, a)) dΓ , (9.39)

where integration with the function ϕ(Γ, a) establishes the projection opera-
tion. Usually, this is achieved by some moment projecting (ϕ is independent
of a), but this choice is arbitrary. Another possibility is to use the thermody-
namic projector (Chap. 5). Then (9.39) becomes the entropy rate equation
along the path (9.38):

da
dt

dSB(a)
da

= σB(a) , (9.40)

where SB(a) = −
∫
f(Γ, a) ln f(Γ, a) dΓ

and σB(a) = −
∫
Q(f(Γ, a)) ln f(Γ, a) dΓ

are the entropy and the entropy production in the states f(Γ, a) (9.38), re-
spectively.

A further consideration of (9.40) is beyond the scope of this Example.
Nevertheless, let us consider the asymptotics of (9.40) for the motion from
f0 towards f∗. As above, we take f(Γ, a) = (1− a)f0 + af∗. Equation (9.40)
for this function gives:

5 This question is typical to various approximations used in the kinetic theory
[9, 11].
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a(t) ∼ 1
a∗
t, a � 1

a(t) ∼ σ∗
B

(a∗)2K0

√
t, 1 − a � 1 ,

where σ∗
B is the entropy production in the state f∗, and K0 =

∫ Q2
0

f0
dΓ . The

slowing down at the final stage is due to the fact that dSB(a)/da → 0, as
a → 1, and σ∗

B > 0.

9.3.4 Relaxation of the Boltzmann Gas

The direct and the simplest application of the approach is the space-
independent Boltzmann equation. In what follows, Γ is the velocity v, and
f(Γ ) is the one-body distribution function, f(v), which obeys the the equa-
tion:

∂tf(v, t) = Q(f) , (9.41)

with Q(f) the Boltzmann collision integral.
In the first example we consider the following form of the collision integral

Q(f) =
∫
dw

∫
dn̂γ(ĝ · n̂) {f(v′, t)f(w′, t) − f(v, t)f(w, t)} , (9.42)

where the function γ depends only on the scalar product of unit vectors
ĝ = v−w

|v−w| and n̂ = v′−w′

|v−w| , while v′ = 1
2 (v + w + n̂|v − w|), and w′ =

1
2 (v+w−n̂|v−w|). The Boltzmann equation (9.41) with the collision integral
(9.42) corresponds to the power-law repelling potential inversly proportional
to the fourth degree of the distance (the 3D Maxwell molecules, see e.g. [261]).
The reason to consider this model is that it admits the exact solution, the
famous BKW-mode discovered by Bobylev [262], and by Krook and Wu [255,
256]. The BKW-mode is the following one-parametric set of the distribution
functions f(c,v):

f(c,v) =
1
2

(
2π
c

)−3/2

exp
{
−cv2

2

}(
(5 − 3c) + c(c− 1)v2

)
, (9.43)

where the parameter c spans the segment [1, 5
3 [, the value c = 1 corresponds

to the equilibrium Maxwell distribution

f0(v) = f(1,v) = (2π)−3/2 exp{−v2/2} .

As c decays from a given value c0, where 1 < c0 < 5/3, to the value c = 1,
the functions f(c,v) (9.43) describe the trajectory of the BKW-mode (the
time dependence of c is unimportant in the present context, see e.g. [286]).

Considering the states (9.43) as the initial states in the procedure de-
scribed above, we can construct the upper limiting states, f∗(c,v) = f(c,v)+
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a∗(c)Q(c,v), for each value of c. First, we compute the collision integral (9.42)
in the states (9.43) and obtain the functions Q(c,v):

Q(c,v) =
λ

2
(c−1)2

(
2π
c

)−3/2

exp
{
−cv2

2

}(
15 − 10cv2 + c2(v2)2

)
, (9.44)

where λ is a constant: λ = 1
8

∫
dn̂γ(k̂ · n̂)(1 − (k̂ · n̂)2).

Expression (9.44) suggests a simple structure of the velocity space par-
tition into the domains V+(c) and V−(c) (corresponding to the domains Γ±
(9.31)). Namely, for a given c, the function (9.44) is positive inside a sphere

of radius v−(c) =
√
c−1(5 −

√
10), and outside a larger sphere of radius

v+(c) =
√
c−1(5 +

√
10) (both the spheres are centered in v = 0), while it is

negative inside the spheric layer between these spheres:

V−(c) = {v | v−(c) < |v| < v+(c)} , (9.45)
V+(c) = {v | v−(c) > |v|} ∪ {v | |v| > v+(c)} .

The limiting states f∗(c,v) are given by the following expression:

f∗(c,v) =
1
2

(
2π
c

)−3/2

exp
{
−cv2

2

}
(9.46)

×
(
5 − 3c+ 15a∗(c) + (c− 1 − 10a∗(c))cv2 + a∗(c)c2(v2)2

)
,

where a∗(c) is a solution to (9.26):
∫
Q(c,v) ln

(
f(c,v) + a∗(c)

Q(c,v)
λ(c− 1)2

)
dv = 0 . (9.47)

Taking into account the partition (9.45), all the parameters (9.33) are
expressed by definite one-dimensional integrals. Thus, we obtain the first
approximate a∗1(c). Numerical results are presented in Table 9.3 (second col-
umn) for the three values of the parameter c taken on the BKW mode.
It is interesting to compare a∗1(c) with amax(c), for which the function,
f(c,v) + a Q(c,v)

λ(c−1)2 , looses positivity (i.e., this function becomes negative for
some v, as a > amax(c)). The ratio a∗1(c)/amax(c) is given in the third column
of Table 9.3. The step in the direction Q(c,v) which is allowed due to the
entropy estimate reasons is never negligible in comparison to that determined
by the positivity reasons, as seen in Table 9.3.

We now use (9.46) to get the approximations of trajectories (9.36) and
(9.38). The estimation of the parameter g in the expression (9.38) according
to Subsect. 9.3.5 gives the value g = 1 for all the initial states (9.43).

In order to make a comparison with the exact result (9.43), we have
considered the dependencies of the normalized moments mk(ml), where
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Table 9.3. The limiting states for the Maxwell molecules

c a∗
1 a∗

1/amax

1.12 3.1779 · 10−3 0.2221
1.24 1.1660 · 10−2 0.4291
1.48 3.8277 · 10−2 0.7087

ms(f) =
∫

(v2)sf dv∫
(v2)sf0 dv

, s = 0, 1, 2, . . . . (9.48)

Typical dependencies of the higher-order moments (k ≥ 3) on the lowest-
order non-trivial moment (l = 2) are presented in the Fig. 9.1 for a consider-
ably nonequilibrium initial state (9.43) with c = 1.42.

The error of the approximation (9.38) was estimated as follows: In each
moment plane (mk,ml), the approximation (9.38) and the BKW-mode (9.43)
generate two sets (two curvilinear segments), Xkl and Ykl, respectively. First,
in order to eliminate the contribution from the difference in the total variation
of the moments, we rescale the variables:

m̂i = mi/∆i , i = k, l ,

where
∆i = max

x,x′∈Xkl

⋃
Ykl

|xi − x′i| .

Second, in the plane (m̂k, m̂l), we compute the Hausdorff distance, dkl, be-
tween the two corresponding sets, X̂kl and Ŷkl:

dkl = max
{

max
x∈X̂kl

min
y∈Ŷkl

d(x,y), max
y∈Ŷkl

min
x∈X̂kl

d(x,y)
}

, (9.49)

where d(x,y) is the standard Euclidian distance between two points. Finally,
the error δkl was estimated as the normalized distance dkl:

δkl =
dkl

Dkl
· 100% , (9.50)

where
Dkl = max

x,y∈Ŷkl

⋃
X̂kl

d(x,y) .

The error δk2 of the plots like in Fig. 9.1 is presented in the Table 9.4 for
several values of the parameter c.

The quality of the smooth approximation (9.38) is either good or reason-
able up to the order of the moment k ∼ 10, depending on the closeness of the
initial state to the equilibrium. when either k increases, or the initial state is
taken very far from the equilibria (i.e., when c is close to 5/3) the comparison
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Fig. 9.1. Moment dependencies for the Maxwell molecules: The initial state f0 is
the function (9.43) with c = 1.42. Punctuated contour is the image of the triangle
T . Punctuated dash line is the BKW-mode. Solid line is the smooth approximation
(9.38). Punctuated path f0 → f∗ → f0 is the non-smooth approximation (9.36)
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Table 9.4. The error δk2 (9.50) of the approximation (9.38) for the Maxwell mole-
cules with the initial data (9.43)

k c = 1.12 c = 1.24 c = 1.36 c = 1.48 c = 1.59

3 0.31 0.33 0.30 0.41 0.70
4 0.44 0.47 0.44 0.81 1.57
5 0.58 0.55 0.71 1.41 2.67
6 0.71 0.57 1.10 2.20 3.97
7 0.81 0.62 1.58 3.14 5.40
8 0.89 0.84 2.19 4.19 6.93
9 0.95 1.11 2.87 5.34 8.52

10 0.99 1.41 3.64 6.55 10.11
20 1.46 6.77 12.91 18.15 22.87
50 10.38 28.47 27.36 30.81 33.94

100 21.76 29.26 32.49 34.78 37.22

becomes worser. For the moments of a very high order, the approximation
with the smooth function (9.38) is only qualitative. On the other hand, the
two-step (non-smooth) approximation (9.36) provides a much better approx-
imation for higher-order moments (k ∼ 40 and higher). The explanation is as
follows: the BKW-mode (9.43) demonstrates a very rapid relaxation of higher
moments to their equilibrium values. Therefore, as expected, the relaxation
in the direction Q0 leads to the state where the higher-order moments are
practically the same as in the equilibrium.

The second example is the very hard particles (VHP) model [257, 258].
The distribution function F (x) depends on the phase variable x, where 0 ≤
x ≤ ∞, and is governed by the following kinetic equation:

∂tF (x, t) =
∫ ∞

x

du
∫ u

0

dy [F (y, t)F (u− y, t) − F (x, t)F (u− x, t)] . (9.51)

This model has the two conservation laws:

N =
∫ ∞

0

F (x, t) dx = 1 ,

E =
∫ ∞

0

xF (x, t) dx = 1 ,

and has the entropy SB(F ) = −
∫∞
0

F (x) lnF (x) dx. The equilibrium dis-
tribution reads: F 0(x) = exp(−x). The general solution to this model is
known [257,258,286].

The first set of initial conditions which was tested was as follows:

F0(x, β) = β((2 − β) + β(β − 1)x) exp(−βx) , (9.52)

where 1 ≤ β < 2, the value β = 1 corresponds to the equilibrium state
F0(x, 1) = F 0(x).
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In accordance with [257, 258, 286], the exact solution solution to (9.51)
with the initial data (9.52) reads:

Fex(x, β, t) =
Az+ + C

z+ − z−
exz+ +

Az− + C

z− − z+
exz− , (9.53)

z± = − t+ 2β
2

±

√(
t+ 2β

2

)2

− C ,

A = 1 − (β − 1)2e−t; C = t+ 2β − 1 + e−t(β − 1)2 .

Comparison of the smooth approximation (9.38) with the exact solution
(9.53) demonstrates the same quality as in the case of the Maxwell mole-
cules. As above, the normalized moments mk were compared, where

mk =

∫∞
0

xkF (x) dx∫∞
0

xkF 0(x) dx
.

In Table 9.5, the error δk2 (9.50) is represented for several values of the
parameter β, while Fig. 9.2 illustrate the typical moment behavior. We also
represent in this figure the result of the correction to the approximation (9.38)
due to the first iteration of the Newton method with incomplete linearization
(Chap. 6).

Table 9.5. The error δk2 (9.50) of the approximation (9.38) for the VHP model
with the initial data (9.52)

k 4 6 8 10 20 100

β = 1.2 0.95 1.81 2.26 2.23 2.24 9.64
β = 1.6 0.88 1.89 2.59 2.77 6.14 24.29
β = 1.9 1.16 1.65 1.45 3.16 12.7 28.22

The second set of the initial conditions for the VHP model (9.51) was
considered as follows:

F0(x, λ) = exp(−2x)
{

1 +
1
2
λ+ 2x2(1 − λ) +

1
3
λx4

}
, (9.54)

where 0 < λ < 1/5(7+
√

19). The exact solution to (9.51) with the initial con-
dition (9.54) was found in [258]. This solution demonstrates so-called Tjon’s
overshoot effect [264]. We remind that Tjon’s effect takes place when the
distribution function becomes overpopulated for some velocities in compari-
son to both the initial and the equilibrium states. This effect was intensively
studied for solvable Boltzmann-like kinetic equations, such as the Maxwell
molecules (9.42), the VHP model (9.51), and others (see [286], [265] and
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Fig. 9.2. Moment dependency m10 vs. m2 for the VHP model with the initial
condition (9.52), β = 1.5. Dots – the exact solution (9.53); Bold line is the smooth
approximation (9.38); Solid line is the first correction to the approximation (9.38)

references therein; it is worthwhile to mention here extensive studies of the
Tjon-like effects in chemical kinetics [81,115]).

The approximation (9.38) for the VHP model (9.51) with the initial con-
dition (9.54) also demonstrates the overshoot just mentioned. In the moment
representation, the overshoot of the moments is clearly seen in Fig. 9.3. The
quality of the approximation is the same as in the examples above.

9.3.5 Estimations

This is the technical subsection which contains estimations for the limiting
state and for the smooth approximation of the trajectory.

Evaluation of the Limiting State. Double-Space Newton Method

Let us introduce a normalization of the partition Q±
0 (Γ ):

q±0 (Γ ) = q−1Q±
0 (Γ ) , q =

∫
Γ±

Q±
0 (Γ ) dΓ . (9.55)

Switching to the variable b = qa, so that f∗ = f0(Γ ) + b∗q0(Γ ), where
q0(Γ ) = q−1Q0(Γ ), equation (9.26) can be rewritten as follows:

A+(b∗) = A−(b∗) , (9.56)
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Fig. 9.3. Moment dependencies m6 vs. m3 for the VHP model with the initial
condition (9.54). Solid line is the exact solution [258], Bold line is the smooth
approximation (9.38)
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where
A±(b) =

∫
Γ±

q±0 (Γ ) ln(f0(Γ ) ± bq±0 (Γ )) dΓ . (9.57)

It is easy to check the following properties of the functions A± (9.57):

1. The domain of A+ is the open semi-axis ]b+,+∞[, where b+ < 0, and
domain of A− is the open semi-axis ]−∞, b−[, where b− > 0. The functions
A± have logarithmic singularities at points b±, respectively.

2. The functions A± are monotonic and concave inside their domains.
3. An inequality holds as: A+(0) − A−(0) = −q−1σ0 < 0, where σ0 =

−
∫
Q0(Γ ) ln f0(Γ ) dΓ is the entropy production in the state f0.

One has to solve (9.56) in order to obtain approximations b∗1, b
∗
2, . . . not

greater than the unknown exact value b∗. To obtain a relevant lower estimate
of b∗, it is convenient to use the concavity properties of the functions (9.57).
Indeed, for positive b, the function A− is estimated from below as:

A−(b) ≥ A−(0) + ln(1 − α1b) . (9.58)

Here α1 is the inverse of b−:

α1 = sup
Γ∈Γ−

q−0 (Γ )
f0(Γ )

= sup
Γ∈Γ−

Q−
0 (Γ )

qf0(Γ )
= q−1α ,

while α was introduced in (9.33).
On the contrary, the function A+ should be estimated from above. Note

that a function expA+ is also monotonic and concave. We can write for
positive b:

A+(b) ≤ A+(0) + ln
(

1 + b
dA+(0)

db

)
, (9.59)

where
dA+(0)
db

=
∫

Γ+

(q+0 (Γ ))2

f0(Γ )
dΓ = q−1β ,

and β was introduced in (9.33).
Equating the right-hand side of (9.59) to the right-hand side of (9.58),

and solving the linear equation obtained, we get the estimate b∗1 ≤ b∗. Next,
switching back to the variable a, we get the estimate a∗1 (9.32) and (9.33).
One can readily recognize that the procedure just described is the first iterate
of the Newton method for (9.56) (modified by making use of the concavity
to guarantee positivity of the approximate solution, a∗1 ≤ a∗). We call it
the double-space Newton method. Next iterations are performed in the same
manner.
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Smooth Approximations of the Trajectories

The Triangle of Model Motions

Notation conv{f1, . . . , fk} stands for a closed convex linear hull of the func-
tions f1, . . . , fk, and we drop the variable Γ . In particular, the triangle T
introduced in the section “Approximate trajectories” reads:

T = conv{f0, f
∗, f0} . (9.60)

A function from the triangle T (9.60) can be specified with two parameters,
ξ and η, as f(ξ, η):

f(ξ, η) = f0 + ξ{η(f∗ − f0) + f0 − f0}, 0 ≤ ξ, η ≤ 1 . (9.61)

A shift of the function f(ξ, η) under a variation of ξ and of η reads:

∆f(ξ, η) = ∂ξf(ξ, η)∆ξ + ∂ηf(ξ, η)∆η + o(∆ξ,∆η)
= (f(ξ, η) − f0)ξ−1∆ξ + a∗Q0ξ∆η + o(∆ξ,∆η) .

This shift is a combination of the two: a shift towards f0, and a shift in the
direction Q0. We further refer to these as to the BGK-motion and the Q0-
motion, respectively. The differential of the entropy SB(ξ, η) = SB(f(ξ, η))
is:

dSB(ξ, η) = −σ1(ξ, η)ξ−1 dξ + σ2(ξ, η)ξ dη , (9.62)

where

σ1(ξ, η) =
∫

(f(ξ, η) − f0) ln
f(ξ, η)
f0

dΓ , (9.63)

σ2(ξ, η) =
∫

(f0 − f∗) ln f(ξ, η) dΓ = −a∗
∫
Q0 ln f(ξ, η) dΓ ,

are the entropy productions in the BGK-motion and in the Q0-motion, re-
spectively.

Introducing smooth dependencies, ξ(a) and η(a), where 0 ≤ a ≤ 1, and
requiring

0 ≤ ξ(a), η(a) ≤ 1, ξ(0) = 1, ξ(1) = 0, η(0) = 0, η(1) < ∞ , (9.64)
dξ(a)
da

∣∣∣∣
a=0

= 0,
dη(a)
da

∣∣∣∣
a=0

= γ, 0 < γ ≤ 1 ,

we obtain a one-parametric set, f(a) = f(ξ(a), η(a)). Geometrically, f(a) is
a smooth curve located in T . This curve begins in f0 at a = 0, ends up in
f0 at a = 1, and is tangent to the side of T , Lf0f∗ = conv{f0, f

∗}, at a = 0.
Further, only monotonic functions ξ(a) and η(a) will be considered:

dξ(a)
da

≤ 0,
dη(a)
da

≥ 0 . (9.65)
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The crucial point is that the function f(a) should have a correct en-
tropy behavior. Specifically, we require that the entropy SB(a) = SB(f(a)) =
SB(f(ξ(a), η(a))) is a monotonic function:

dSB(a)
da

= −σ1(ξ(a), η(a))ξ−1(a)
dξ(a)
da

+ σ2(ξ(a), η(a))ξ(a)
dη(a)
da

≥ 0 .

(9.66)
Since σ1(ξ, η) is non-negative everywhere in T , a sufficient condition for

inequality (9.66) to be valid for any pair of functions ξ(a) and η(a) with the
properties (9.64) and (9.65) is that σ2(ξ, η) is non-negative everywhere in T .
However, this situation might not always be realized for arbitrary f0 and Q0.
In order to take into account a general situation, we execute the following
procedure:

1. We derive a subset of T , inside which σ2 is non-negative. This subset
includes f0, and will be constructed as a triangle T ′ ⊆ T .

2. We tune the functions ξ(a) and η(a) in such a way that σ1(a) dominates
σ2(a) outside T ′.

The Triangle T ′

Let us introduce a different specification of the functions in the triangle T .
Denote

f1(y) = (1 − y)f0 + yf∗, f2(y) = (1 − y)f0 + yf0, 0 ≤ y ≤ 1 . (9.67)

The functions in T are labeled with two parameters, x and y:

f(x, y) = (1 − x)f1(y) + xf2(y), 0 ≤ x, y ≤ 1 . (9.68)

Let us derive y′, where 0 < y′ ≤ 1, in such a way that σ2 is non-negative
everywhere in the triangle T ′ = conv{f0, f1(y′), f2(y′)}.

Introducing a representation σ2(x, y) = σ+
2 (x, y) − σ−

2 (x, y), where

σ+
2 (x, y) =

∫
f0 ln f(x, y) dΓ, σ−

2 (x, y) =
∫
f∗ ln f(x, y) dΓ , (9.69)

we notice that the functions σ±
2 (x, y) are concave in the variable y on the

segment [0, 1], for any fixed x. Now we apply the standard estimations of a
smooth concave function on [0, 1] (if d2ψ(t)/dt2 ≤ 0 on [0, 1], then ψ(t) ≥
(1 − t)ψ(0) + tψ(1), and ψ(t) ≤ (dψ(t)/dt|t=0)t + ψ(0)) to the functions
(9.69):

σ+
2 (x, y) ≥ (1 − y)σ+

2 (x, 0) + yσ+
2 (x, 1) ,

σ−
2 (x, y) ≤ (∂yσ

−
2 (x, y)|y=0)y + σ−

2 (x, 0) .

Furthermore, the function σ+
2 (x, 1) is concave, hence
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σ+
2 (x, 1) ≥ (1 − x)σ+

2 (0, 1) + xσ+
2 (1, 1) .

Making use of the three inequalities just derived, and taking into account the
explicit form of the function f(x, y), we are led to the following estimate of
σ2 in T :

σ2(x, y) ≥ a∗σ0 − y(xK1 +K2) , (9.70)

where σ0 is the entropy production in the initial state (9.33), and parameters
K1 and K2 are:

K1 =
∫

f∗

f0
(f0 − f∗) dΓ + SB(f0) − SB(f∗) , (9.71)

K2 =
∫

f∗

f0
(f∗ − f0) dΓ + SB(f∗) − SB(f0) .

Here SB(f0), SB(f∗), and SB(f0) are values of the entropy in the states f0,
f∗, and f0, respectively.

Since σ0 is positive, there always exists such y′, where 0 < y′ ≤ 1, that
the right-hand side of (9.70) is non-negative for all x on the segment [0, 1].
Specifically, let us introduce a function ϕ(x) = a∗σ0−(xK1+K2), and denote

z = a∗σ0 min{K−1
2 , (K1 +K2)−1} , (9.72)

where min{K−1
2 , (K1 + K2)−1} stands for the minimal of the two numbers,

K−1
2 and (K1 +K2)−1. Then y′ is defined as:

y′ =
{

1 if ϕ(x) ≥ 0 on [0, 1], or z ≥ 1
z otherwise . (9.73)

Thus, σ2 is non-negative inside the triangle T ′ = conv{f0, f1(y′), f2(y′)},
where f1,2(y′) are given by (9.67), and y′ is given by (9.73). If it happens that
y′ = 1, then T ′ = T , and σ2 is non-negative everywhere in T . In this case any
pair of the functions ξ(a) and η(a) with the properties (9.64) and (9.65) give
the approximation f(a) consistent with the inequality (9.66). Otherwise, we
continue the procedure.

Near-Equilibrium Estimations of the Functions σ1 and σ2

Let us come back to the specification (9.61) in order to establish the following
inequalities for the functions σ1,2(ξ, η) (9.63):

σ1(ξ, η) ≥ M1ξ
2 , (9.74)

σ2(ξ, η) ≥ M2ξ .

Inequalities (9.74) are motivated by the following consideration. Since

f(ξ, η) → f0, as ξ → 0 ,
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parameter ξ controls a deviation of f(ξ, η) from f0 in T . Near the equilibrium
state f0, the function σ1(ξ, η) is quadratic in ξ, while the function σ2(ξ, η) is
linear. Inequalities (9.74) extend these near-equilibrium estimations to other
points of T , and they are intended to control dominance of σ1 over σ2 outside
T ′ in the case T ′ �= T .

Writing σ1(ξ, η) = ξλ(ξ, η), and representing λ(ξ, η) as a combination of
the concave functions, and after making the estimations as above, we come
to the following expression for M1 in the first of the inequalities (9.74):

M1 = SB(f0) − SB(f∗) . (9.75)

Since SB(f0) > SB(f∗), expression (9.75) is always positive. The estimate of
M2 is much the same. First, representing σ2(ξ, η) in the manner of (9.69), and
again estimating the concave functions obtained, we come to the following
inequality:

σ2(ξ, η) ≥ ξ(ηN1 +N2) , (9.76)

where constants N1 and N2 are:

N1 =
∫

f∗

f0
(f0 − f∗) dΓ + SB(f0) − SB(f∗) , (9.77)

N2 =
∫

f∗

f0
(f0 − f0) dΓ + SB(f0) − SB(f0) .

Second, denoting min{N2, N1 +N2} as the minimal of the two numbers, N2

and N1 +N2, we derive the constant in the second of the inequalities (9.74):

M2 = min{N2, N1 +N2} (9.78)

As above, there are two possibilities:

1. If M2 ≥ 0, then σ2 is non-negative everywhere in T , and any pair of
functions ξ(a) and η(a) with the properties (9.64) and (9.65) gives f(a)
with the correct entropy behavior.

2. If M2 < 0, then we continue the procedure.

Adjustment of the Functions ξ(a) and η(a)

Let y′ < 1 and M2 < 0. A further analysis requires an explicit form of the
functions ξ(a) and η(a) with the properties (9.64) and (9.65), and can be
done in any particular case. Consider the simplest choice:

ξ(a) = 1 − a2, η(a) = ga , (9.79)

where g, 0 < g ≤ 1, is a parameter to be determined. The function (9.61)
with the dependencies (9.79) has the form (9.38):

fg(a) = f0 + (1 − a2){ga(f∗ − f0) + f0 − f0} . (9.80)
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We should derive the parameter g in (9.79) in such a way that the states
f(a) (9.38) belong to T ′, when a varies from 0 to some a1, and also that
σ1(a) dominates σ2(a) when a varies from a1 to 1. Under these conditions,
the entropy inequality (9.66) is valid for all a on the segment [0, 1].

Substitute now (9.79) into (9.66) and apply the inequalities (9.74) to get:

dSB(a)
da

≥ 2a(1 − a2)M1 − g(1 − a2)2|M2| . (9.81)

We require that f(a1) ∈ conv{f1(y′), f2(y′)}, and that the right-hand side of
the inequality (9.81) is non-negative at a1:{

fg(a1) = f(x1, y
′)

2a(1 − a2)M1 − g(1 − a2)2|M2| ≥ 0 . (9.82)

Here f(x1, y
′) is the specification (9.68) of the function fg(a1). Explicitly,

condition (9.82) reads:


a2
1 = x1y

′

a1g(1 − a2
1) = (1 − x1)y′

g(1 − a2
1) ≤ 2M1

|M2|a1

. (9.83)

Eliminating a1 and x1 in (9.83), we are left with the following estimate of
the parameter g:

g ≤ λ

√
y′(1 + λ)

1 − y′ + λ
, (9.84)

where
λ =

2M1

|M2|
. (9.85)

It may happen that the right-hand side of the inequality (9.84) is greater
than 1. In this case we take g = 1 in (9.80). Thus, if y′ < 1, and M2 < 0, the
parameter g in (9.80) and (9.38) is estimated as:

g = min

{
1, λ

√
y′(1 + λ)

1 − y′ + λ

}
. (9.86)

Summary of the Algorithm

The choice of the parameter g in the smooth approximate to the trajectory
(9.38) is done in the following four steps:

1. Evaluate K1 and K2 (9.71).
2. If a∗σ0 − (K1x+K2) ≥ 0 on [0, 1], take g = 1. Otherwise, evaluate

y′ = a∗σ0 min{K−1
2 , (K1 +K2)−1} .

3. If y′ ≥ 1, take g = 1. Otherwise evaluate N1 and N2 (9.77).
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4. If min{N2, N1 + N2} ≥ 0, take g = 1. Otherwise evaluate M1 (9.75) and
take

g = min

{
1, λ

√
y′(1 + λ)

1 − y′ + λ

}
, λ =

2M1

|M2|
.

The function fg(a) (9.38) with g thus derived has the following properties:

1. It begins in f0 at a = 0 and ends in f0 at a = 1.
2. It is a non-negative function of Γ for each a.
3. It satisfies the conservation laws.
4. The entropy SB(fg(a)) is a monotonic function of a.
5. It is tangent to the exact trajectory at a = 0.

In practical computations, the approximation f∗
1 = f0 + a∗1Q0 with a∗1

(9.32) can be used in this algorithm instead of the exact f∗.

9.3.6 Discussion

Main results of this Example are:

1. The description of the Q0-dominated kinetics, and of its equilibrium state
f∗. The state f∗ is explicitly evaluated.

2. The explicit construction of the approximate trajectory f(Γ, a) for nonlin-
ear space-independent kinetic equations equipped with the entropy (Lya-
punov) function.

The approach used can be termed “geometric” since it avoids integration
of kinetic equations in time. In the point 1, it stays at variance with many
alternative approaches to the early-time evolution, which usually involve the
time integration over the first few collisions. These methods encounter two
general difficulties: the time of integration cannot be defined precisely, and
approximations involved can violate the entropy increase and the positivity of
distribution function. These difficulties are avoided in the present approach.
On the other hand, the presentation of the Q0-dominated relaxation is itself
an ansatz, whose relevance to the actual process can be judged only a pos-
teriori. As the examples show, we can indeed speak about such a dynamics.
It is remarkable that the limiting state f∗ differs significantly from both the
initial and equilibrium states. In other words, irrespectively of how short in
time the initial stage of the relaxation might be, the change of the state can
be large.

Concerning the point 2, it is worthwhile to notice that, though the space-
independent problem is too “refined”, it nevertheless gives a good example of
a problem without small parameters. It is rather remarkable that the global
requirements to the trajectory (e.g., the entropy increase) are accomplished
with the direct local analysis (Subsect. 9.3.5). Estimations in this part are
sufficient, and can be enhanced.
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Final comments concern a further treatment of the space-independent
relaxation. The goal now is to develop a procedure of corrections to the
approximate trajectory. In other words, what we need is a sequence of the
functions f0(Γ, a), f1(Γ, a), . . ., which converges to the exact trajectory, and
where f0(Γ, a) is the initial (global) approximation to the trajectory. Again, a
general obstacle is the absence of a small parameter in the problem. However,
the method of invariant manifold (Chap. 6) appears to be appropriate (at
least formally) since it is based on the Newton method and not on the small
parameter expansions. It turns out that smoothness and all the requirements
listed in the Introduction should be met by any initial approximation f0(Γ, a)
chosen for this procedure. Thus, the approximation (9.38) can be used for
this purpose. We have already annonsed this method with a result of the
first Newton correction to the approximation (9.38) for the VHP model (see
Fig. 9.2).

Finally, the present method recently became a part of the so-called En-
tropic lattice Boltzman method [136, 137, 140, 141] (see Sect. 2.7) because it
enables to implement collision in a numerically stable fashion.
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