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a b s t r a c t

The canine lymphoma blood test detects the levels of two biomarkers, the acute phase proteins
(C-Reactive Protein and Haptoglobin). This test can be used for diagnostics, for screening, and for
remission monitoring as well. We analyze clinical data, test various machine learning methods and select
the best approach to these oblems. Three families of methods, decision trees, kNN (including advanced
and adaptive kNN) and probability density evaluation with radial basis functions, are used for
classification and risk estimation. Several pre-processing approaches were implemented and compared.
The best of them are used to create the diagnostic system. For the differential diagnosis the best solution
gives the sensitivity and specificity of 83.5% and 77%, respectively (using three input features, CRP,
Haptoglobin and standard clinical symptom). For the screening task, the decision tree method provides
the best result, with sensitivity and specificity of 81.4% and 499%, respectively (using the same input
features). If the clinical symptoms (Lymphadenopathy) are considered as unknown then a decision tree
with CRP and Hapt only provides sensitivity 69% and specificity 83.5%. The lymphoma risk evaluation
problem is formulated and solved. The best models are selected as the system for computational
lymphoma diagnosis and evaluation of the risk of lymphoma as well. These methods are implemented
into a special web-accessed software and are applied to the problem of monitoring dogs with lymphoma
after treatment. It detects recurrence of lymphoma up to two months prior to the appearance of clinical
signs. The risk map visualization provides a friendly tool for exploratory data analysis.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Biomarkers for canine lymphoma

Approximately 20% of all canine tumors are lymphoma [81].
The typical age of a dog with lymphoma is 6–9 years although
dogs of any age can be affected. The biggest problem with cancer
treatment in dogs or humans is the earlier diagnostics. Routine
screening can improve cancer care by helping pick up tumors that
might otherwise be missed.

The minimally invasive tests are needed for screening and
differential diagnosis as precursors to histological analysis. It is
also necessary to monitor the late effects of treatment, to identify
or explain trends and to watch the lymphoma return. The modern
development of veterinary biomarker technology aims to answer
these challenges. In the discovery of cancer biomarkers the
veterinary medicine follows human oncology with some delay.
The controversies, potentials biases, and other concern related to
the clinical application of biomarker assays for cancer screening
are discussed in [32]. There is increasing interest in the study of

prognostic and diagnostic biomarker proteins for canine lym-
phoma [58].

Identification of several biomarkers for canine lymphoma has
been reported during the last decade:

� The proteomic evaluation of lymph nodes from dogs with B-cell
lymphoma (11 cases) was compared to those from unaffected
controls (13 cases). The expression of prolidase (proline dipepti-
dase), triosephosphate isomerase and glutathione S-transferase
was decreased in the samples from the lymphoma cases and the
expression of macrophage capping protein was increased [52].

� The surface-enhanced laser desorption-ionization time-of-
flight mass spectrometry (SELDI-TOF-MS) was used to identify
biomarker proteins for B-cell lymphoma in canine serum. 29
dogs with B-cell lymphoma and 87 control dogs were involved
in the study. Several biomarker protein peaks in canine serum
were identified, and a classification tree was built on the basis
of 3 biomarker protein peaks. It was reported that with 10-fold
cross-validation of the sample set, the best individual serum
biomarker peak had 75% sensitivity and 86% specificity and the
classification tree had 97% sensitivity and 91% specificity for the
classification of B-cell lymphoma [21].

� A commercially available canine lymphoma screening test was
developed by PetScreen Ltd [69]. Serum samples were collected
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from 87 dogs with malignant lymphoma and 92 control cases
and subjected to ion exchange chromatography and SELDI-TOF-
MS analysis. Nineteen serum protein peaks differed signifi-
cantly ðpo0:05Þ between the two groups based on normalized
ion intensities. From these 19 peaks, two differentiating bio-
markers emerged with a positive predictive value (PPV) of 82%.
These biomarkers were used in a clinical study of 96 dogs
suspected of having malignant lymphoma. A specificity of 91%
and sensitivity of 75% was determined, with a PPV of 80% and
negative predictive value (NPV) of 88%. Later on, these peaks
were identified as two acute phase proteins: Haptoglobin
(Hapt) and C-Reactive Protein (CRP) [2].

� Some qualitative alterations were identified in dogs with
lymphoma in the proteomic study [5]; 21 dogs included in
the study had high grade lymphoma confirmed cytologically
(16 cases) or histologically (five cases). The increased concen-
trations of haptoglobin in the sera of dogs with lymphoma
could account for increased levels of α 2 globulins, α 2 macro-
globulin, α-anti-chymotrypsin and inter-α-trypsin inhibitor,
which were identified concurrently.

� Vascular endothelial growth factor (VEGF), metalloproteinase
(MMP) 2 and 9 transforming growth factor beta (TGF-β) were
tested in 37 dogs with lymphoma, 13 of which were also
monitored during chemotherapy. Ten healthy dogs served as
control. Lymphoma dogs showed higher activity of MMP-9
ðpo0:01Þ and VEGF ðpo0:05Þ, and lower TGF-β than controls,
and a positive correlation between act-MMP-9 and VEGF
ðpo0:001Þ. During chemotherapy, activity MMP-9 and VEGF
decreased in B-cell lymphomas ðpo0:01Þ, suggesting a possible
predictive role in this group of dogs [3].

For use in clinics, the biomarkers should be identified and validated
in preclinical settings and then validated and standardized using real
clinical samples [59]. Intensive search of biomarkers requires standar-
dization of this technology [51]. Proteins discovered in the research
phase may not necessarily be the best diagnostic or therapeutic
biomarkers. Therefore, after identification of a biomarker (Phase 1),
the clinical assays are necessary to investigate if the biomarker can
truly distinguish between disease versus control subjects (Phase 2).
Then special retrospective and prospective research is needed for
sensitivity and specificity analysis (Phases 3 and 4). Finally, the cancer
control phase is needed (Phase 5) to “evaluate role of biomarker for
screening and detection of cancer in large population” [51]. Discovery
and identification of a promising biomarker does not mean that it will
successfully go through the whole standardized procedure of testing
and evaluation.

1.2. Acute phase proteins as lymphoma biomarkers

Acute phase proteins are now understood to be an integral part of
the acute phase response which is the cornerstone of innate immunity
[17]. They have been shown to be valuable biomarkers as increases can
occur with inflammation, infection, neoplasia, stress, and trauma. All
animals have acute phase proteins, but the major proteins of this type
differ by species. Acute phase proteins have been well documented in
laboratory, companion, and large animals. After standardized assays,
these biomarkers are available for use in all fields of veterinary
medicine as well as basic and clinical research [17].

Acute phase proteins, including alpha 1-acid glycoprotein
[63,30,77], C-Reactive Protein (CRP) [55,57,69,2], and Haptoglobin
(Hapt) [57,69,2], have been evaluated as tumor markers. Never-
theless, as is mentioned in review [32], it is still necessary to prove
that these biomarkers are clinically useful in cancer diagnosis.
Some authors even suggest that the non-specific serum biomar-
kers indicate inflammatory response rather than cancer [38].

In our research we evaluate the role of two biomarkers, CRP
and Hapt, for screening and detection of lymphoma, for differen-
tial diagnosis of lymphoma and for monitoring of lymphoma
return after treatment. Our research is based on the PetScreen
Canine Lymphoma Blood Test (cLBT). This is advanced technology
to detect lymphoma biomarkers present in a patient's serum [2].
The cLBT evaluates the concentration of two acute phase proteins:
Hapt and CRP. High levels of these biomarkers indicate a high
likelihood that the patient has lymphoma. The cLBT provides a
minimally invasive alternative to a fine needle aspirate as a
precursor to histological diagnosis of the disease. The cLBT should
be used for differential diagnosis when a patient is suspected of
having lymphoma by showing classical symptoms such as general-
ized lymphadenopathy, PU/PD and lethargy (we call all such cases
the clinically suspected ones). It may be also useful in the
monitoring of lymphoma return. In summary, the test provides:

� A simple blood test requiring only 2 ml of blood taken as part of
existing biochemistry/haematology work up. Results are avail-
able the same day.

� A minimally invasive procedure.
� An alternative to taking an FNA sample and the associated risks

of failing to retrieve sufficient lymphoid cells or encountering
poor preservation of the cells.

� A monitoring tool to assess treatment progression and to detect
recurrence.

Some of our previous results of canine lymphoma diagnosis are
announced in [2,56].

1.3. The structure of the paper

The description of the database and statement of the problems are
represented in Section 2. Two cohorts are isolated in the database and
two problems are formulated: (i) differential diagnostic in clinically
suspected cases and (ii) screening. The isolation of the clinically
suspected cohort is necessary for formulation of the problem of
differential diagnostics and selection of the appropriate methods.
The healthy cohort and formulation of the screening problem
demands the use of a prior probability of lymphoma and forbids the
use of class weights as a parameter to select the best solution. This
means that the weights of classes are determined by the prior
probability. Both problems (differential diagnostics and screening)
are formulated as problems of probabilistic risk evaluation [10]. Usual
classifiers provide a decision rule and give the answer in the form
“Yes” or “No” (cancer or not cancer, for example). We almost never can
be sure that this “Yes” or “No” answer is correct. Therefore the
evaluation of probability may be more useful than just a binary
answer. If we evaluate the posterior probability of lymphoma under
given values of features then we can take the decision about the next
step of medical investigation or treatment. Probabilistic risk evaluation
supports decision making and allows to evaluate the consequences of
the decisions (risk management [10]).

Section 3 presents a brief review of the data mining methods
employed in biomarker cancer diagnosis. We introduce the meth-
ods used in our work for the analysis of canine lymphoma. The
detailed description of these methods is given in Appendix. Three
used methods are described:

� Decision trees with three different impure-based criteria: infor-
mation gain, Gini gain and DKM [70].

� K nearest neighbors method (KNN). Three versions of KNN
methods are used: KNN with Euclidean distance [16], KNN
with Fisher's distance transformation, and the advanced adap-
tive KNN [31]. All the three methods use statistical kernels to
weight an influence of each of the k nearest neighbors to
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evaluate the risk of lymphoma. The KNN method with Fisher's
distance transformation is much less known. We use the
geometrical complexity [89] for comparison of different KNN
methods.

� Probability density function estimation (PDFE) [72]. We use PDFE
for direct evaluation of the lymphoma risk.

The decision trees and KNN classifiers are also used for
evaluation of probability. The way back from the probability
estimate to classification rule is simple, just define the threshold.
The criterion of selection of the best classifier is the maximum
sum of sensitivity and specificity or the furthest from the “com-
pletely random guess” classifier. We also compare performance of
this selection criterion with some other criteria: the relative
information gain (RIG) from the classifier output to the target
attribute, accuracy, precision, and F-score.

We use classical methods, and the main building blocks of the
algorithms are well known. Nevertheless, some particular combi-
nations of methods may be new, for example, combination of
discriminant analysis with Advanced KNN (see Appendix). We
have tested automatically thousands of combinations, and the best
combination for each task has been selected.

Section 4 contains the description of the best solutions obtained
for differential diagnostic and screening problems. All features are
analyzed from the point of view of their usability for the lymphoma
diagnostic and risk evaluation. We present the case study for both
problems: for the diagnostics problem we have tested 25,600,000
variants of the KNN method, 5,184,400 variants of decision tree
algorithms and 3480 variants of the PDFE method; for the screening
task we have tested 51,200 variants of KNN and advanced KNN
parameters, 10,368 variants of decision trees and 3480 variants of
PDFE. The versions differ by impurity criteria, kernel functions,
number of nearest neighbors, weights and other parameters. The
best results are implemented in web-accessed software for the
diagnosis of canine lymphoma (implemented in Java 6).

The obtained results provide the creation of a more reliable
diagnostic, screening and monitoring system for canine lymphoma.
The first application of the developed system shows that the risk of
lymphoma (cLBT score) defined after lymphoma treatment allows
prediction of time before relapse of lymphoma. If after treatment of
lymphoma the cLBT is performed regularly, it detects recurrence up
to two months prior to the appearance of physical signs.

2. Database description and problem statement

2.1. Database

The original database contains 303 records (dogs) with four
categorical input features: Sex, Lymphadenopathy, Neutered and
Breed and three real valued features: Age and concentrations of
two acute phase proteins: Haptoglobin (Hapt) and C-Reactive
Protein (CRP). A part of serum samples was collected by PetScreen
from dogs undergoing differential diagnosis for lymphoma and
also collected at veterinary practices in the USA [2,69]. Another
source is the Pet Blood Bank which stores the blood of healthy
dogs. Lymphoma positive serum samples were confirmed either
by excisional biopsy or fine needle aspirate and non-lymphoma
serum samples were confirmed to be free of lymphoma at a
minimum of 6 months after the sample was taken [2,69].

Breed may be important for lymphoma diagnosis. For example,
the boxer, bulldog and bull mastiff breeds have a high incidence of
lymphoma [65]. The relatively small number of records in our
database has limited our ability to detect breeds with an elevated
risk. We exclude this feature because there are 54 different breeds
in 204 records (less than four records of each breed) and 99

missed values. This amount of known data for a categorical feature
with 54 different values is not sufficient for diagnosis without
clustering of breeds (numerosity reduction is needed). The well-
developed imputation methods [73] also cannot be applied
directly without numerosity reduction because of insufficient
information.

The target feature Lymphoma is binary: “Positive” for a dog
with lymphoma and “Negative” for a dog without lymphoma.
Three attributes contain missed values: Sex contains 96 (35%);
Neutered contains 107 (38%); Age contains 101 (36%).

2.2. Two cohorts and two problems

Isolating of two cohorts. The database analysis shows that the
samples are heterogeneous: two different cohorts of data can be
distinguished in the database. There were two different sources of
data: dogs undergoing differential diagnosis for lymphoma and
the Pet Blood Bank (the blood of healthy dogs) [2].

The existence of two so different sources of data entails the
presence of two different cohorts of patients in the database. The
first cohort is entitled “clinically suspected” and contains records
collected by PetScreen from dogs undergoing differential diagno-
sis. All dogs in this cohort have been referred for differential
diagnosis by veterinary practitioners. The vets decide that these
dogs are clinically suspected on the base of one or more clinical
symptoms. It is not possible to find a posteriori these symptoms
for each instance and we have to introduce a new synthetic
attribute: “clinically suspected”. The cohort of clinically suspected
instances should be considered separately for differential diagno-
sis purposes and we propose to treat each case referred to the
differential diagnosis as a clinically suspected one. The second
cohort is entitled “healthy” and contains records obtained from
healthy dogs courtesy of the Pet Blood Bank.

The additional confirmation of existence of two cohorts is the
differences in statistics of the attributes for these cohorts. In
accordance with expert estimations, the prior probability of
lymphoma is located between 2% and 5% in the canine population.
The number of records of patients with lymphoma is 97 or 32% of
all the records in the database. All these cases have been clinically
suspected and form 42% of the clinically suspected cases. This
imbalance entails the usage of specific methods to solve screening
tasks. The “clinically suspected” feature was added to the database
to identify the two cohorts. The values of feature “clinically
suspected” were defined by using additional information from
veterinary cards.

The existence of the two cohorts allows us to formulate two
different problems: the problem of differential diagnosis and the
problem of screening.

Differential diagnosis. The problem of differential diagnostic can be
formulated as a problem of lymphoma diagnosis for patients with
some clinical symptoms of lymphoma. To solve this task we use the
clinically suspected samples. A diagnostic problem is a usual classi-
fication problem and all classification methods can be used. We use
three types of classification methods: KNN, decision tree and the
method based on probability distribution function estimation. Each
of these methods is described in Section 3. The first two methods
have an auxiliary parameter “weight” of the positive class wp.

Screening. The problem of screening can be formulated as a
problem of evaluation of lymphoma risk for any dog. The sample
for this problem includes all the database records. The experts'
estimation of prior probability of lymphoma is between 2% and 5%
however the fraction of patients with lymphoma records in the
database is 32%. To compensate for this imbalance all methods
take into account the prior probability of lymphoma and the
weights of classes are defined by prior probability.
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3. Methods

3.1. Data mining methods for biomarker cancer diagnosis

Extraction diagnostic biomarkers for cancer, their validation and
testing for clinical use is considered now as a data analysis challenge
[34,74]. The classical methods of supervised classification are widely
used to meet this challenge: linear and quadratic discriminant analysis
[6,8,48,82], decision trees [1,9,33,50,60,62,66,75,80,88], logistic regres-
sion [4,8,41,42], k nearest neighbors (KNN) approach [33,66,82,83] and
naïve Bayes model for probability density function estimation [8,64].
Artificial neural networks are used for the identification of cancer
biomarkers and cancer prediction as a flexible tool for supervised
learning [7,33,44,66,79,80,43]. During the last decade, applications of
support vector machines [29,46,66,82], and ensemble learning (ran-
dom forests, committees of decision trees, boosting methods)
[15,45,46,61,85,87] have been intensively developed.

Most of the works combine and compare several methods, for
example, discriminant analysis, KNN and support vector machines
[82], decision trees, KNN, and artificial neural networks [33],
discriminate analysis, random forest, and support vector machine
[61], decision trees, bagging, random forests, extra trees, boosting,
KNN, and support vector machines [23], linear discriminant
analysis, quadratic discriminant analysis, KNN, bagging, boosting
classification trees, and random forest [85].

Supervised classification and regression methods are combined
with dimensionality reduction methods such as linear and non-linear
principal component analysis [8,24,35,40,67,80] or moment-based
approach [76]. Several hybrid systems are developed with combina-
tions of supervised classification and unsupervised clustering [8,86].

The classical decision trees or KNN approach (or both) usually
serve as bases for comparison when evaluating supervising classi-
fication. It is necessary to stress that there are many versions of
algorithm even for a single decision tree or KNN. In this paper, we
systematically test many versions of these basic algorithms on the
problem of canine lymphoma differential diagnosis and screening.

We use three types of classification methods to evaluate the
risk of lymphoma for the problems of differential diagnosis and
screening: decision tree, KNN and PDFE. Each of these titles covers
many different algorithm. Detailed description of these families of
algorithms used is presented in Appendix. We aim to select the
best one for the given problem. Simultaneously the best subset of
input attributes should be selected.

Totally we have tested 10,368 trees for the screening problem. For
the task of differential diagnostic we vary the weight of class of
patients with lymphoma from 0.1 to 50. For the differential diagnostic
problem 5,184,400 variants of decision trees have been tested.

We have tested 51,200 sets of parameter values for the screen-
ing. For the differential diagnostic, we vary the weight of class of
patients with lymphoma from 0.1 to 50; 25,600,000 variants of
KNN method have been tested.

We have tested 3840 variants of PDFE for each problem.

3.2. Data transformation, evaluation and weighting

The CRP and Hapt features are the concentrations of the two
proteins. It is well-known that in many chemical applications the
logarithm of concentration (the chemical potential) is more
informative and useful then the concentration itself [84]. There-
fore, we test all the methods for concentrations of CRP and Hapt
(in the “natural” units of concentration) and for logarithms of the
concentrations (in the logarithmic coordinates). All real valued
features are divided by their standard deviation. If CRP and Hapt
are used in logarithmic transformed form then initially we per-
form logarithmic transformation and then divide by the standard

deviation of the logarithmic transformed feature. For the KNN and
PDFE all the binary input features are coded by 0 and 1.

For feature evaluation and selection we calculate the Relative
Information Gain (RIG) [70] which is the natural tool to estimate the
importance of input features for the categorical target feature. For
this purpose, real data have been binned (organized into groups).

We use two types of weights: prior weights of classes and
weight of positive class. Really, we use the weights of instances
instead of weights of classes. For the differential diagnosis and
screening problems both types of weights are defined for different
reasons: for the screening problem we have the prior probability
of lymphoma for the whole dog population; for the differential
diagnosis problem we have no prior probability but can use the
auxiliary weight of the positive class to search for the best
classifier. We use the following notations: p is the prior probability
of lymphoma, NL is the number of patients with lymphoma, NCS is
the number of all clinically suspected patients and NH is the
number of healthy patient.

For the screening problem the weight of the class of patients
with lymphoma is equal to p. The weight of one patient with
lymphoma is equal to wL ¼ p=NL. In fact, this is the weight of any
record of the clinically suspected cohort. The total probability must
be equal to 1. This means that the sum of weights of all records
must be equal to 1. Therefore, the weight of each record of a
healthy patient is wH ¼ ð1�wLNCSÞ=NH. For the screening problem
the auxiliary weight of the positive class cannot be used (is
equal to 1).

For the differential diagnosis problem there is no prior probability.
The auxiliary weight of positive class may be any positive number.

To work with imbalanced dataset we employ two data simula-
tion methods for over-sampling of the minority class.

The first approach (“Rectangular”) uses the random generation
of N new instances for each given sample from the minority class
by formulas

xnew ¼ xþσxWrx ð1Þ
where σx is the standard deviations, rx is a random variable
uniformly distributed in interval (�1,1), W is the average Eucli-
dean distance from the given sample to k nearest neighbors of the
same class. (The Euclidean distance is calculated in the plane of
dimensionless variables normalized to unite variance.)

The second approach is synthetic minority over-sampling
technique (SMOT) [12]. It also uses the random generation of N
new instances for each given sample from the minority class. For a
given k, we find k nearest neighbors of the given sample of the
same class. Each new instance is randomly situated on the straight
line interval which links the given sample with a randomly
selected nearest neighbor (from k neighbors found).

3.3. Selection of the best algorithms

We have many algorithms (variants of algorithm parameters)
and we need to select the best algorithm. In this study we have
considered two possible approaches: (i) use of the test set and (ii)
Leave One Out Cross Validation (LOOCV). The preference for using
test set is the speed: for each algorithm one model construction is
sufficient. The model construction means the forming of the decision
tree, or identifying k nearest neighbors, and computing the inverse
covariance matrix for PDFE. LOOCV is more expensive: the number of
model constructions is equal to the number of instances. Nevertheless,
for a relatively small sample exclusion of a sufficiently large test set
from learning may lead to the strong scattering of the evaluation
result. We split the database into training set (80%) and test set (20%)
100 times independently and find large variance of the estimated
sensitivity and specificity. The values vary from 30% to 100%, and the
best version of the algorithm cannot be defined unambiguously.
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Therefore, we use LOOCV for evaluation of sensitivity and specificity
and for selection of the best algorithm. An extensive simulation study
of cross-validation for three classification rules, Fisher's discriminant
analysis, 3NN, and decision trees (CART) using both synthetic and real
breast cancer patient data was performed in [11]. It was demonstrated
that cross-validation is less biased than some other methods but
overestimates the number of errors for small samples.

The next question is what indicator has to be used as a measure of
algorithm accuracy. We can calculate the accuracy of classification as a
ratio of correctly classified cases among all cases. Also the sensitivity
and specificity can be used as such a measure. The classification
accuracy is appropriate when numbers of examples of different classes
are balanced. In our database the fraction of lymphoma patients is
equal to 32% for the screening problem and 42% for the differential
diagnosis problem. This means that the algorithm selected by classi-
fication accuracy can be shifted to good specificity and poor sensitivity.
Other commonly used measures of classification quality is the area
under Receiver Operating Characteristic (ROC) [78]. The sum of
specificity and sensitivity is the distance from curve to the main
diagonal which corresponds to the ‘completely random guess' classi-
fier. We suggest considering the classifier with maximum sum of
specificity and sensitivity as the best.

4. Results

4.1. Feature evaluation by information gain

We need to find how much information about the diagnosis
contain the inputs. For this purpose, real data have been binned
(organized into groups). The bins have approximately equal depth; the
boundaries of bins are represented in Table 1. Table 2 contains values
of RIG for the target feature Lymphoma from any input feature. RIG is
calculated for the whole database and for two samples: (Y) with
L¼“Y” and (N) with L¼“N” (we use the abbreviation L for Lympha-
denopathy). The RIG from Neutered is always less than 1% and this
feature is excluded from the further study.

We calculate the RIG for Lymphoma from all the input features
together. The calculated value of RIG is 83%. This gives us an
estimate of the expected classification accuracy. Therefore, we do
not expect to produce classifiers without misclassifications.

The number of input attributes is five and the problem of feature
selection can be solved by exhaustive search. Table 2 shows that the
most informative attributes are Hapt (H) and CRP (C). These features
are included into all tested sets of input features. The various
combination of Age (A), Sex (S) and Lymphadenopathy (L) are included
into tested input sets. In total, eight input feature sets are formed. Each
set is denoted by abbreviation of included features: CH, CHA, CHL, CHS,
CHAL, CHAS, CHLS and CHALS.

The distributions of the real valued features are non-normal. It
means that we cannot use any methods based on assumption of
normality. The distribution diagram for Lymphoma is represented
in Fig. 1. The diagram shows that only four records without
lymphadenopathy have a positive Lymphoma diagnosis. It means
that the decision “all dogs without lymphadenopathy have no
lymphoma” generates only 4 false negative errors and truly
identifies 93 dogs without lymphoma.

4.2. The best algorithms

The criteria developed for choosing the best solution suggest
selecting the following algorithms. The ROC curves for the selected
classifiers are depicted in Fig. 2.

Differential diagnostic problem. The best algorithm is the deci-
sion tree with three input features: a linear combination of the
concentrations of CRP and Hapt, and Lymphadenopathy. The tree
is formed with DKM as the splitting criterion. The sensitivity of
this method is 83.5%, specificity is 77%. The ROC integral for this
method is 0.879 (Fig. 2a).

In the case when Lymphadenopathy is considered as unknownwe
use a decision tree which only uses CRP and Hapt. The tree is formed
with Information gain as a splitting criterion. The best version uses
input features in linear combinations after logarithmic transformation.
The sensitivity of this method is 81.5%, the specificity is 76%. The ROC
integral (Fig. 2b) for this method is 0.780.

Screening. The best classifier for the screening problem is the
decision tree with three input features: the concentrations of CRP and
Hapt, and Lymphadenopathy. The tree is formed with DKM as a
splitting criterion. The concentrations of CRP and Hapt are used
separately (not in linear combinations). The sensitivity of this method
is 81.4% and specificity is 499% (no false negative results in one-
leave-out cross-validation). The ROC integral is 0.917 (Fig. 2c). In the
case when Lymphadenopathy is considered as unknown we use a
decision tree with CRP and Hapt only. The tree is formed with Gini
gain as the splitting criteria. The concentrations of CRP and Hapt are
used separately. The sensitivity is 69%, the specificity is 83.5%. The ROC
integral is 0.771 (Fig. 2d).

Table 1
Real attributes and bins.

Feature Min Max Upper bounds of bins

Age 0.67 17 3, 6, 8, 11, 20
CRP 0 124 0.6, 2.5, 11, 27, 125
Hapt 0 18 0.2, 1.7, 4, 7.5, 20

Table 2
Relative information gain about the “Lymphoma” feature.

Tested feature RIG under given L

RIG L¼Y L¼N

L 28.92% – –

CRP binned 24.38% 15.00% 23.52%
Hapt binned 07.02% 01.76% 14.32%
Age binned 06.07% 01.62% 09.39%
Sex 00.95% 03.79% 22.84%
Neutered 00.06% 00.50% 00.47%
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Fig. 1. Distribution of Lymphoma diagnosis.
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The classifiers for screening are prepared using the mixture of
clinically suspected patients (Lymphadenopathy¼Y) with the patients
without lymphadenopathy. Application of these classifiers for screen-
ing of dogs without clinical symptoms (Lymphadenopathy¼N)
requires additional tests because there are only four cases of
dogs with lymphoma with Lymphadenopathy¼N in the database
(see Fig. 1). For the preliminary analysis of this problemwe apply both
data simulation methods for over-sampling of the minority class,
Rectangular (1) and SMOT.

We select N¼10 and k¼3 in each method and add synthetic data
to the instances from the original database with Lympha-
denopathy¼N and positive lymphoma diagnosis. The new database
has well balanced classes. For both methods, the two best decision
trees (one for Lymphadenopathy¼Y and one for Lympha-
denopathy¼N) together demonstrate in LOOCV the results presented
in Table 3.

We see that with the simulated data the specificity decreases. In
simulation, we add more data points with lymphoma but without
observable lymphadenopathy (Lymphadenopathy¼N). These new
data are not well separated from the real data without lymphoma
and with absence of lymphadenopathy. Therefore, all the data mining
methods give the similar result and the specificity decreases after
adding the simulated data. This fact allows two interpretations:

� The simulated data do not reflect the reality properly and they
should be substituted by a collection of real instances with
lymphoma but without observable lymphadenopathy for the
validation of screening algorithms.

� The simulated data reflect the reality and, therefore, the use of the
acute phase proteins for lymphoma diagnosis is more reliable for
the clinically suspected patients than for the patients without
clinical symptoms (for the discussion of possible non-specificity
of the acute phase proteins at tumor markers we refer to [38]).

To resolve this dilemma, it is necessary to collect more real
instances with lymphoma but without observable lymphadeno-
pathy (Lymphadenopathy¼N).

Other criteria. The value of the Hosmer–Lemeshow [37] statistics
for the differential diagnosis algorithmwith three input value (CHL)
is 12.73. It shows that with p-value greater than 10% the distribution
of estimated probabilities coincides with the distribution of diag-
nosis. This test does not consider the prior probability and cannot
be applied for the screening problem. Efron's pseudo R2 [19] shows
that classifiers which use Lymphadenopathy explain about 40% of
total variance. McFaden's pseudo R2 [53] for the differential diag-
nosis problem classifier, which uses Lymphadenopathy, has 38%
greater log likelihood than the null model ones. For the screening
problem the classifier which uses Lymphadenopathy has 45%
greater log likelihood than the log likelihood of null model which
is based on prior probability.

We employ the Sensitivity þ Specificity criterion for the best
model selection. There exist many other criteria, for example,

relative information gain (RIG) from the classifier output to the
target attribute (Lymphoma, in our case), Accuracy ([“True posi-
tive” þ “True negative”]/“Number of instances”), Precision (“True
positive”/“Number of positive labels”), where “Number of positive
labels” is the number of samples labeled as positive, i.e. “True
positive” þ “False positive”, F-score that is the harmonic mean of
Precision and Sensitivity (F¼2� Precision� Sensitivity/[Precision
þ Sensitivity]). We compare performance of these criteria on the
test task of selection of the best model for the data set CHL
without logarithmic transformation of concentrations. Table 4
represents the sensitivity (Sens) and specificity (Spec) for the best
models which are selected by each criterion.

As we can see from this test, only the criterion Precision
sometimes gives significantly different results (very precisely all
the positive labels are true positive but many false negative results
occur). It is risky to use Precision as a single criterion for model
selection. All other criteria in Table 4 combine the sensitivity and
specificity and provide the reasonable balance between them in all
selected models.

Risk evaluation and risk mapping. All classifiers used in our
study can calculate the risk of lymphoma at an arbitrary point. We
can use this capability to form a map of risk. To visualize data with
more than two dimensions several types of screens can be used:
coordinate planes, PCA, non-linear principal graphs and manifolds
[24,25]. For this study we use the plane of CRP and Hapt
concentrations. The explanation of colors is depicted in the legend
included at the right of each figure.

We use risk maps to generate hypotheses about the impact of
input features. For example, let us consider the risk of lymphoma in
relation to sex for clinically suspected cohort. There are 24 records
with lymphoma and 54 records without lymphoma among female
records and 38 and 43 records with and without lymphoma
correspondingly among male records in the database of clinically
suspected cases. The frequencies of lymphoma for female and male
are here 31% and 47% correspondingly. This probability difference can
be uniformly distributed in the space of the input attributes but can
be condensed in some area on the map. To check this hypothesis we
form the risk map for the three best classifiers one of each type for
three input attributes: CHS (CRP, Hapt and sex). The best PDFE
parameters are concentrations of CRP and Hapt, 9 nearest neighbors
and Gaussian kernel (Fig. 3a, e). The best decision tree parameters are
linear combinations of CRP and Hapt after logarithmic transforma-
tion, Information gain as a splitting criterion and the weight of class
with lymphoma equals 1.8 (Fig. 3b, f). The best KNN options are
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Fig. 2. ROC curves for (a) the best algorithm for differential diagnosis (ROC integral 0.879), (b) the best algorithm for differential diagnosis with CRP and Hapt only (ROC
integral 0.780), (c) the best algorithm for screening (ROC integral 0.917), and (d) the best algorithm for screening with CRP and Hapt only (ROC integral 0.771).

Table 3
Sensitivity and specificity for extended dataset.

Method Sensitivity Specificity

Rectangular 89.1 62.2
SMOTE 88.3 65.2
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logarithmic transformed CRP and Hapt, Euclidean distance, 15
nearest neighbors and Gaussian kernel for voting (Fig. 3c, g).

Fig. 3 shows that for each classifier there are two regions: the big
sex independent area in right side and small sex dependent area in left
side. In this area, the risk of lymphoma may depend on the steroid
hormones. This hypothesis needs additional verification.

Applying the selected methods to lymphoma treatment monitoring.
Prognosis and prediction tools give the possibility to more indivi-
dualized treatments of cancer patients [8]. After initial chemother-
apy of lymphoma, complete remission rates 65–97% have been
reported. Despite high initial remission rates, most lymphomas
relapse and require further therapy. The published median first
remission durations have the range 150–400 days [26]. For the
dogs, who receive an appropriate and timely therapy at the first
relapse, the second complete remission rate is also high (for various
groups it is reported between 70% and 92% [26]). Early and reliable
diagnosis of lymphoma relapse is realized as an important problem
both for canine and for human lymphoma treatment [26–28].
Concentration of some serum proteins increases before lymphoma
relapse. For example, serum alpha 1-acid glycoprotein (AGP) con-
centration increases three weeks prior to lymphoma relapse [28].

We have applied the tools we developed to the problem of
monitoring of dogs after treatment for lymphoma. The canine
lymphoma blood test was subjected to a blind retrospective study
on serum collected from 57 dogs over four years. The cLBT ranks
the remission status from 0 to 5 according to PDFE lymphoma risk
evaluation, where 0 indicates complete remission, 5 equates to
active diseases and a score of 3 represents a border line result. The
dogs regularly giving a cLBT score of 2 or lower remained in
remission. An increase in the score to 3 or more indicated that
lymphoma was recurring.

The first important result is that the score of the test immediately
after treatment is very informative for predicting the time before
relapse. Fig. 4a shows that for dogs with cLBT score between 3 and
4 the time of lymphoma relapsing is about four weeks; for dogs with
cLBT score 2 the time of lymphoma relapsing is greater than four
weeks and less than eight weeks, and for dogs with cLBT score 1 the
time of lymphoma relapsing is greater than eight weeks.

The second important result is that the cLBT score indicates the
relapse of lymphoma before the clinical symptoms reappear. The
study found that the test detected recurrence up to two months prior
to the appearance of physical signs. These results strongly support the
monthly basis monitoring of lymphoma patients in remission. The
properly predicted time before relapse gives the possibility for better
treatment planning and we expect that it may increase survival rate.

5. Conclusion

We formulate and analyze the problem of differential diagnosis of
clinically suspected cases and the problem of screening. The criteria to
select the best classifier for each problem are chosen. These criteria
allow the selection of the best algorithms. For differential diagnosis the
best solution is the decision tree with three input features: concentra-
tions of CRP and Hapt, and Lymphadenopathy. The tree is formed with
DKM as a splitting criterion. In this tree at each node the linear
combination of CRP and Hapt is used (Fisher's approach). Synthesis of

Table 4
Sensitivity and specificity (%) for the best models selected by different criteria.

Method SensþSpec RIG Accuracy Precision F-score

Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

DT 83.5 77.0 83.5 77.0 79.4 79.3 78.4 80.0 83.5 77.0
KNN 79.4 75.6 84.5 70.4 79.4 75.6 4.1 100.0 84.5 70.4
PDFE 83.5 68.9 83.5 68.9 77.3 74.8 70.1 78.5 83.5 68.9

Fig. 3. The maps of lymphoma risk for male and female dogs: (a) PDFE map for male, (b) decision tree map for male, (c) KNN map for male, (e) PDFE map for female,
(f) decision tree map for female, (g) KNN map for female, and (d) is the legend. Disclaimer: These colored maps are for qualitative illustration and understanding and not for
diagnosis of individual patients where the more detailed maps and exact numerical values are needed.

5

4

3

2

1

0

cL
B

T 
sc

or
e

1-2 3-4 5-6 7-8 >8
Weeks to relapse

3.85 3.72

2.13 2.04

1.17

Fig. 4. Monitoring results: the number of weeks before relapse of lymphoma in
dependence of cLBT score.
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decision trees and linear discriminant analysis is proven to be optimal
in some cases. The sensitivity of the best decision tree is 83.5%, the
specificity is 77%.

The best result is obtained for screening by the decision tree
which uses three input features: the concentrations of CRP and
Hapt, and Lymphadenopathy. CRP and Hapt are used separately.
DKM is used as the splitting criterion. The sensitivity of this
method is 81.4%, the specificity is 499% (no false negative results
in one-leave-out cross-validation).

For screening on the base of two biomarker concentrations only,
without any clinical symptoms, the best decision tree uses the
concentrations of CRP and Hapt separately and Gini gain as splitting
criteria. The sensitivity of this tree is 69%, the specificity is 83.5%.

It is desirable to organize the systematic comparison of the
predictive abilities of our test system with other biomarkers. Some
preliminary results for different biomarkers have been reported in
[3,5,21,52] for the significantly smaller samples than in our assay.
The best reported result is a decision tree for diagnosis of B-cell
lymphoma based on three protein peaks with 97% sensitivity and
91% specificity [21] (29 dogs with B-cell lymphoma and 87 control
dogs are used). In the future clinical assay, the methods should be
compared on the same cohorts of patients.

We compare our results with some well-developed modern
screening tests for the detection of human cancer. The accuracy of
tests which based on single biomarkers is often worse. For
example, the male PSA test gives sensitivity approximately 85%
and specificity 35% and the CA-125 screen for human ovarian
cancer provides sensitivity approximately 53% and specificity 98%.
Supplementation of CA-125 by several other biomarkers increases
sensitivity of at least 75% for early stage disease and specificity of
99.7% [71]. For the PSA marker, using age-specific reference ranges
improved the test specificity and sensitivity, but did not improve
the overall accuracy of PSA testing [36].

The risk map visualization is a friendly tool for exploratory data
analysis. It provides the opportunity to generate hypotheses about the
impact of input features on the final diagnosis. The risk of lymphoma
(cLBT score) defined after lymphoma treatment allows prediction of
time before relapse of lymphoma. If after treatment of lymphoma the
cLBT is performed regularly, it detected recurrence up to two months
prior to the appearance of physical signs.

Canine lymphoma can be considered as a model for human
non-Hodgkin lymphoma [54]. The new diagnostic approaches can
be applied for this disease.

There are several questions and directions the future work with
the biomarkers CRP and Hapt for canine lymphoma

� Further clinical testing of the screening classifier with special
attention to the instances with lymphoma but without obvious
lymphadenopathy.

� Further clinical testing of the proposed lymphoma treatment
monitoring system to validate the hypothesis that properly
predicted time before relapse improves treatment planning and
increases survival rate.

� Clustering of breeds for numerosity reduction and inclusion of
this important feature in the diagnostic system.

� Selection of the optimal set of input features for lymphoma
diagnosis from combinations of CRP and Hapt with the results
of routine blood tests.

6. Summary

Lymphoma is one of the most frequent canine cancers. It can be
also considered as a model for human non-Hodgkin lymphoma. We
develop technology for differential diagnosis of canine lymphoma, for

screening and for remission monitoring. This technology is based on a
specific blood test.

The canine lymphoma blood test detects the levels of two
biomarkers, the acute phase proteins, C-Reactive Protein and
Haptoglobin. This test can be used for diagnostics, for screening,
and for remission monitoring. We analyze clinical data, test
various machine learning methods and select the best approach
to these problems.

Three family of methods, decision trees, kNN (including
advanced and adaptive kNN) and probability density evaluation
with radial basis functions, are used for classification and risk
estimation. Several pre-processing approaches were implemented
and compared. The best of them are used to create the diagnostic
system. For the differential diagnosis the best solution gives the
LOOCV sensitivity and specificity of 83.5% and 77%, respectively
(using three input features, CRP, Haptoglobin and the standard
clinical symptom). For the screening task, the decision tree
method provides the best result, with sensitivity and specificity
of 81.4% and 499%, respectively (using the same input features),
and if the clinical symptoms (Lymphadenopathy) are considered
as unknown then a decision tree with CRP and Hapt provides
sensitivity 69% and specificity 83.5%.

The lymphoma risk evaluation problem is formulated and
solved. We use three methods to evaluate the risk. The best models
are selected as the system for computational lymphoma diagnosis
and evaluation the risk of lymphoma as well. These methods are
implemented into a special web-accessed software and are applied
to the problem of monitoring dogs with lymphoma after treatment.
It detects recurrence of lymphoma up to two months prior to the
appearance of clinical signs and may help to optimize relapse
treatment. The risk map visualization provides a friendly tool for
exploratory data analysis.

We compare our results with some current human cancer
screening tests. The accuracy of tests which based on single
biomarkers is often worse. For example, the male PSA test gives
sensitivity approximately 85% and specificity 35% and the CA-
125 screen for human ovarian cancer provides sensitivity
approximately 53% and specificity 98%. Supplementation of
the tests by several other biomarkers increases sensitivity and
specificity.
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Appendix A. Three main groups of algorithms

A.1. Decision tree

Decision tree is a method that constructs a tree like structure
which can be used to choose between several courses of action.
Binary decision trees are used in this study. The decision tree is
comprised of nodes and leaves. Every node can have a child node. If
a node has no child node it is called a leaf or a terminal node. Any
decision tree contains one root node which has no parent node.
Each nonterminal node calculates its own Boolean expression (i.e.
true or false). According to the result of this calculation the decision
for a given sample would be delegated to the left child node (“true”)
or to the right child node (“false”). Each leaf (terminal node) has a
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label which shows how many samples of the training set belong to
each class: nL is the number of cases with lymphoma, nSCWL is the
number of clinically suspected cases without lymphoma, nH is the
number of healthy cases. The probability of lymphoma is evaluated
as a result of the division of the sum of weights of positive samples
in this leaf by the sum of weights of all samples in the same leaf:

pL ¼ nLWL=ðnLWLþnSCWLWSCWLþnHWHÞ:
For the screening problem WL ¼wL;WSCWL ¼wL and WH ¼wH. For
the problem of differential diagnosis WL ¼wp;WSCWL ¼ 1 and
WH ¼ 0.

There are many methods to be used to develop a decision tree
[70,68,39,13,22,18]. We use the methods based on information
gain, Gini gain, and DKM gain. Since the screening problem defines
the prior weights of classes, these weights must be considered.
There are two ways to implement prior weights. The simplest way
is to multiply the number of positive class cases in a leaf by the
weight of the positive class, and the number of negative class cases
by the weight of the negative class and then calculate the
probability. In this study we use a different method: we modify
the split criteria. Let us consider one node and one binary input
attribute with values 0 and 1. To form a tree we select the base
function for information criterion among

EntropyðnL;nnÞ ¼ � nL

nLþnn
log 2

nL

nLþnn
� nn

nLþnn
log 2

nn

nLþnn
;

GiniðnL ;nnÞ ¼ 1� n2
L þn2

n

ðnLþnnÞ2
; DKMðnL;nnÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nLnn

ðnLþnnÞ2
s

;

where nL is the number of positive cases and nn is the number of
negative cases. The value of the criterion is the gain of the base
function:

BG¼ BaseðnL;nnÞ�
p0þn0

nLþnn
Baseðp0;n0Þ�

p1þn1

nLþnn
Baseðp1;n1Þ;

where pa is the number of positive cases with value of input
attribute a, na is the number of negative cases with value of input
attribute a, Baseðm;nÞ is one of the base function listed above. If
each case has the weight the criterion is defined as

BGW ¼ Baseðw; vÞ�w0þv0
wþv

Baseðw0; v0Þ�
w1þv1
wþv

Baseðw1; v1Þ;

where w is the sum of weights of positive cases, v is the sum of
weights of negative cases, wa is the sum of weights of positive
cases with value of input attribute equals a, va is the sum of
weights of negative cases with value of input attribute equals a. In
this study we use IGW instead of information gain, GGW instead of
Gini gain and DKMW instead of DKM gain.

For the screening problem wa ¼wLpa and va ¼wLnCSWL;aþ
wHnH;a, where nCSWL;a is the number of clinically suspected cases
without lymphoma with value of input attribute a, and nH;a is the
number of healthy cases with value of input attribute a. For the
problem of differential diagnosis wa ¼ pa; va ¼ na.

There are several approaches for using real valued feature for
forming decision tree. The most commonly used approach sug-
gests the binning of the real valued attribute before form the tree.
In this study we implement the method of on the fly binning: in
each node for each real valued attribute the best threshold is
searched and then this threshold is used to bin these feature in
this node. The best threshold depends on the split criteria used
(information gain, Gini gain or DKM gain). We also use Fisher's
discriminant to define the best linear combinations of real valued
features [20] in each node. This means that we use either each real
valued attribute separately or one synthetic real valued feature
instead of all real valued input attributes. Pruning techniques are
applied to improve the tree. The specified minimal number of
instances in the tree's leaf is used as a criterion to stop node

splitting. This means that each leaf of the tree cannot contain
fewer instances than a specified number. For the case study we
test the decision trees which differ by:

� One of the three modified split criteria (information gain, Gini
gain or DKM gain);

� The use of real-valued features in the splitting criteria sepa-
rately or in linear combination;

� The use of concentrations of Hapt and CRP or of logarithm of
concentrations;

� The set of input features: CH, CHA, CHL, CHS, CHAL, CHAS, CHLS
and CHALS;

� The minimal number of instances in each leaf is varied between
3 and 30.

A.2. K nearest neighbors

The basic concept of KNN is: the class of an object is the class of
a majority of its k nearest neighbors [16]. This algorithm is very
sensitive to distance calculation. There are several commonly used
variants of distance for KNN: Euclidean distance; Minkovsky
distance; distance calculated after some transformation of
input space.

In this study we use three distances: the Euclidian distance, the
Fisher's transformed distance and adaptive distance [31]. More-
over we use a weighted vote procedure with weighting of
neighbors by one of the standard kernel functions [47]. The KNN
algorithm is well known [16]. The adaptive distance transforma-
tions algorithm is described in [31]. KNN with Fisher's transformed
distance is less well-known. For these methods the following
options are defined: k is the number of nearest neighbors, K is
the kernel function, kf is the number of neighbors which are used
for distance transformation. To define the risk of lymphoma we
have to do the following steps:

1. Find the kf nearest neighbors of test point.
2. Calculate the covariance matrix of kf neighbors and Fisher's

discriminant direction.
3. Find the k nearest neighbors of the test point using the distance

along Fisher's discriminant direction among the earlier found kf
neighbors.

4. Define the maximum of distances from the test point to k
neighbors.

5. For each class we calculate the membership of this class as a
sum of points' weights. The weight of a point is the product of
value of the kernel function K of distance from this point to the
test point divided by maximum distance and predefined point
weight.

6. Lymphoma risk is defined as a ratio of the positive class
membership to the sum of memberships of all classes.

For the differential diagnosis problem the predefined weight of the
lymphoma cases is equal to wp and the predefined weight of the
cases without lymphoma is equal to 1. For the screening problem
the predefined weight of clinically suspected cases is equal to wL

and for healthy cases the predefined weight is equal to wH. The
adaptive distance version implements the same algorithm but
uses the other transformation on Step 2 and other distance on Step
3. The Euclidean distance version simply defines kf¼k and omits
Steps 2 and 3 of the algorithm. We test the KNN versions which
differ by:

� The number of nearest neighbors is varied between 1 and 20;
� The use of concentrations of Hapt and CRP or of logarithm of

concentrations;
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� The set of input features: CH, CHA, CHL, CHS, CHAL, CHAS, CHLS
and CHALS;

� One of the three distances: Euclidean distance, adaptive dis-
tance and Fisher's distance.

� The kernel function for adaptive distance transformation;
� The kernel function for voting.

A.3. Probability density function estimation

We implement the radial-basis functions method [14] for
probability density function estimation [72]. For the robustness
we also implement the local Mahalanobis distance transformation
[49]. There are three probabilities for the screening problem:
Probability of lymphoma; Probability of belonging to the clinically
suspected cohort without lymphoma; Probability of being healthy.
Each probability density function is estimated separately by using
nonparametric techniques. The total probability of lymphoma has
to be equal to the prior probability of lymphoma psL ¼ p. The total
probability of belonging to the clinically suspected cohort without
lymphoma is defined by evaluation of the probability of lym-
phoma in the clinically suspected cohort from data, and from the
given total probability of lymphoma in population:

psCSWL ¼ psLðNCS�NLÞ=NL:

The total probability of being healthy is equal to 1 minus the
probability of belonging to the clinically suspected cohort:

psH ¼ 1�psL�psCSWL :

For the differential diagnosis we need to estimate two probabil-
ities: probability of lymphoma and probability that there is no
lymphoma. The prior probabilities of these classes are defined by
number of instances in each class:

pdL ¼NL=NCS and pdH ¼ ðNCS�NLÞ=NCS:

For each point, k nearest neighbors from the database are defined.
These k points are used to estimate the covariance matrix and
calculate the Mahalanobis distance matrix. Then the radius of the
neighborhood is estimated as a maximum of the Mahalanobis
distances from data point to each of k neighbors. The centre of one
of the kernel functions is placed at the data point [47]. The integral of
any kernel function over the whole space is equal to 1. There are NL

cases of lymphoma and NL kernel functions are placed at these points.
The total probability is the integral of the sum of kernel functions and
is equal to NL but the total probability of lymphoma has to be equal to
the prior probability ptL (where t is ‘s’ for the screening problem and ‘d’
for differential diagnosis problem). It means that the sum of kernel
functions has to be multiplied by WL ¼ ptL=NL.

The probability of lymphoma at an arbitrary point is estimated
as products of weight WL and the sum of values of kernel
functions which are placed at data points that correspond to
records with lymphoma. Other probabilities are estimated
analogously.

We use the following steps to evaluate the risk of lymphoma:
(i) three (screening problem) or two (differential diagnosis pro-
blem) probabilities are estimated and (ii) the risk of lymphoma is
defined as a ratio of the probability of lymphoma to the sum of all
probabilities. We test the PDFE versions which differ by:

� The number of nearest neighbors (it is varied between
5 and 30);

� The use of concentrations of CRP and Hapt or logarithm of the
concentrations;

� The set of input features: CH, CHA, CHL, CHS, CHAL, CHAS, CHLS
or CHALS;

� The kernel function which is placed at each data points.

A.4. Computational cost

Let us compare the computational cost of the most expensive
procedure, LOOCV, for these three types of algorithms. All software
has been implemented in Java 6 with one core usage. A computer
with processor Intel(R) Core(TM) i7-3667U CPU 2.0 GHz 2.5 GHz
with 8GB RAM under 64-bit Windows 7 Enterprise operation
system has been used. The test results are presented in Table 5.
This is the time for LOOCV of one model. For selection of the best
decision tree this LOOCV routine was called 10,368 times for the
screening problem and 5,184,400 times for the differential diag-
nosis, for the best KNN method it was called 25,600,000 times and
3840 times for the best PDFE.

Appendix B. Supplementary data

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.compbiomed.
2014.08.006.
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