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Abstract. There are many methods developed to approximate a cloud of vec-
tors embedded in high-dimensional space by simpler objects: starting from 
principal points and linear manifolds to self-organizing maps, neural gas, elastic 
maps, various types of principal curves and principal trees, and so on. For each 
type of approximators the measure of the approximator complexity was devel-
oped too. These measures are necessary to find the balance between accuracy 
and complexity and to define the optimal approximations of a given type. We 
propose a measure of complexity (geometrical complexity) which is applicable 
to approximators of several types and which allows comparing data approxima-
tions of different types. 

Keywords: Data analysis, Approximation algorithms, Data structures, Data 
complexity, Model selection.  

1 Introduction 

1.1 Complexity of Data as Complexity of Approximator 

It would be useful to measure the complexity of datasets which can be represented as 
a set of vectors in a potentially high-dimensional space. In this study, we analyse a 
measure of data complexity based on the analysis of the geometry of the data  
approximators. Therefore, we call it the geometrical measure of complexity.  

There are many ways to define the complexity of data distribution. For example, 
Akaike information criterion (AIC) can be used to select models of data of minimal 
complexity, using information theory [1], or Structural risk minimization principle is 
applied in some areas [2]. 

Recently we proposed to measure data complexity through complexity of data  
approximators and developed three measures of data complexity: geometrical  
complexity, structural complexity and construction complexity [3-5].  

Actually, each data approximation method is equipped with a measure of the  
approximator complexity. For example, in the classical data approximation methods, 
the number of centroids in k-means clustering, the number of principal components in 
Principal Component Analysis, and curvature or length of the principal curve serve as 
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measures of complexity. A close to optimal approximator must be able to catch the 
hypothetical intrinsic shape of the data distribution without trying to approximate the 
data’s “noise” (though “one man’s noise is another man’s signal” [6]). 

1.2 Complexity of Data Approximators 

Measuring complexity of data approximators is important because of the following 
principle, which is an application of the famous Occam’s razor: between two approx-
imators of the same accuracy one should prefer the one with smaller complexity [7]. 
Thus, complexity measure becomes a computational tool for selecting the best ap-
proximator type and structure, a tool for model selection. The model selection prob-
lem is the classical problem of mathematical modelling and statistics. Its solution is 
always based on the complexity/accuracy trade-off [8]. Model selection should be 
based not solely on goodness-of-fit, but must also consider model complexity [9]. The 
positive effect of model complexity on estimation error for new data points from the 
same data domain can be directly demonstrated by cross-validation computational 
experiments in some settings [9]. 

Selecting a model of data with the least complexity can be even more crucial for 
model generalizability on new data domains not accessible through available sam-
pling [10]. This model ability cannot be directly demonstrated by cross-validation. 
Using complexity criteria here gives us hope that the simpler model will better fit 
outside its definition domain, sometimes at the expense of worse accuracy for availa-
ble data (accuracy/generalizability trade-off). However, this remains a strong hypo-
thesis in statistics. In other fields of science (for example, theoretical physics) the 
internal simplicity (“beauty”) of a model or a theory often guides theoretical construc-
tions with many examples of success. 

However, measuring and even defining complexity is a difficult task. Many me-
thodological studies converge on that the notion of complexity should be distinguished 
from the notions of size, order and variety, and that any measure of complexity is 
dependent on the language of object’s representation [11]. The most common 
attributes used to compare alternative models are the level of detail and the model 
complexity although these terms are used in many different ways [12]. There may be 
proposed many complexity criteria. Each of them represents an aspect of complexity 
and together they can be considered as a representation of the “objective complexity”. 
At least, there is no other “objective complexity” besides a combination of various 
technical complexity measures. 

Coming back to the problem of data approximation, we can distinguish two impor-
tant characteristics of any approximator: 1) its “internal” structure, and 2) its “flexibil-
ity”, i.e. its ability to be tuned in order to fit the data. For example, a polynomial ap-
proximator is characterized by its maximal degree (internal structure), and the con-
straints on the parameter values (flexibility). Therefore, talking about approximator’s 
complexity, we can distinguish the complexity of the approximator’s structure and the 
complexity of its configuration in the data space.  

A large class of data approximators can be represented in the form of graphs, em-
bedded into a data space [3], [13]. Here one can talk about the complexity of the 
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graph structure itself and the complexity of the mapping of the graph’s nodes into the 
data space. For example, a one-dimensional grid with k nodes can represent both li-
near and curvilinear approximations of data, with linear mapping being evidently less 
complex.  

In this paper, we compare approximators represented by graphs of two different 
types: one-dimensional grids and trees. From what was said above, we have two op-
tions to compare them in terms of complexity:  the complexity of their structures and 
the complexity of their mappings. Comparing structures of graph-based approxima-
tors is not always meaningful: they can be generated using different types of generat-
ing grammars (description languages). Here, the grammar generating trees has more 
types of elementary transformations (more variety) than the one generating  
one-dimensional grids.  

In this study we focus on comparing approximators for their mapping complexity 
rather than comparing their structures. In this paper we present and test a concrete 
recipe for this, the geometrical complexity. 

1.3 Three Measures of Approximators’ Complexity 

Three measures of the approximator’s complexity were introduced in [3-5]:  
(1) Geometrical measure, (2) Structural measure, (3) Construction measure. 

Structural and construction complexity measures introduced below estimate the 
complexity of the “internal” structure of the approximating graph, while geometrical 
complexity is an analogue of non-linearity for the graph-based approximators.  

Geometrical Complexity. The geometrical measure of complexity estimates the 
deviation of the approximating object from some “idealized” configuration. The sim-
plest such ideal configuration is linear: in this case the nodes of the approximator are 
located on some linear surface. Deviation from the linear configuration would mean 
some degree of non-linearity. 

However, the notion of non-linearity is applicable only to relatively simple situa-
tions. For example, in the case of branching data distributions, non-linearity is not 
applicable as a good measure of geometrical complexity. In [13] it was suggested that 
a good generalization of linearity as “idealized” configuration can be the notion of 
harmonicity. An embedding of a graph into linear space is called harmonic if, in each 
star of the graph, the position of the central node of the star coincides with the mean 
of its leaf vectors [13]. For many applications it is convenient to consider not all the 
stars but a set of selected stars and to introduce pluriharmonic embedding [5,13]. For 
pluriharmonic embedding, the position of the central node of each selected star  
coincides with the mean of its leaf vectors. 

In our estimations of the geometrical complexity of trees we will use the deviation 
from a harmonic embedment as analogue and generalization of the non-linearity. 

In [4] geometrical complexity was used to optimize the balance between accuracy 
and complexity (see Fig. 1). 
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Fig. 1. The “accuracy–complexity” graph for a tree-like 2D data distribution. Several scales of 
the approximator’s complexity are shown. Two of them, corresponding to the structural com-
plexity barcodes 0|1||4 (1 3-star and 4 nodes) and 1|2||19 (1 4-star, 2 3-star and 19 nodes) are 
optimal and approximate the distribution structure at a certain “depth”. 

Structural Complexity. The structural complexity defines how complex is an ap-
proximator in terms of its structural elements (number of nodes, edges, stars of vari-
ous degrees). In general, this index should be a non-decreasing function of these 
numbers. Contribution of some of the elements (for example, nodes and edges) might 
be not interesting for measuring the structural complexity and, hence, have zero 
weight (not present) in the resulting quantitative measure. 

Construction Complexity. We derive our approximators by the systematic applica-
tion of the graph grammar operations, in the way which is the most optimal in terms 
of the objective function. The construction complexity of an approximator can be 
defined as a minimum number of elementary graph transformations which were 
needed to produce it, using given grammar. This measure can be similar to the struc-
tural complexity in some implementations but is not equivalent to it. There is some 
similarity to the idea of the Kolmogorov complexity (see, for example, [14]) but the 
Kolmogorov complexity is defined on the base of the necessary length of the program 
and the construction complexity is the number of operation actually used in  
construction. 

In this paper we show that the geometrical complexity can be used to compare ap-
proximators of different types. In particular, we compare Growing Self-Organising 
Maps and Growing Principal Trees in terms of this measure. 

As for the other two measures, structural and construction complexities, it happens 
that for the two types of graph-based approximators considered in this paper, we can 
only compare them in terms of the number of nodes in the graph (see Table 1). 
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2 Materials and Methods 

To check the ability of geometrical complexity (GC) to compare two different ap-
proximators, we designed several benchmarks datasets (see Fig. 2), which we approx-
imated using two data approximation methods: Growing Self-Organizing Map 
(GSOM) [15] and Principal Tree (PT) [13]. 

First, for both methods we used the fraction of variance unexplained (FVU) as the 
measure of the approximation accuracy. In all tests we stopped the approximator’s 
growth when the approximation accuracy was less or equal to a specified threshold 
value, which was the same for both GSOM and PT. For “thin” patterns the threshold 
value of FVU was equal to 0.1%, for “scattered” patterns the threshold value of FVU 
was equal to 0.2% and for “scattered and noised” patterns threshold value of FVU 
was equal to 1%. 

The same parameters of approximation methods were used for all benchmarks. 
For comparison of the constructed approximators we used three criteria: 1) number 

of nodes, 2) length of the constructed approximating graph, which, by definition, is 
the sum of all graph edge lengths, and 3) geometrical complexity. 

2.1 Fraction of Variance Unexplained 

The Fraction of Variance Unexplained (FVU) is the dimensionless least square evalu-
ation of the approximation error. It is defined as the ratio between the sum of squared 
distances from data to the approximating line and the sum of squared distances from 
data to the mean point. 

The distance from a point xi to a line is the distance pi between xi and its ortho-
gonal projection onto the line. The FVU of a line, used as an approximator, is simply 
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2.2 Growing Self-Organizing Maps 

Growing self-organizing maps is a well-known method to approximate sets of vectors 
embedded in high dimensional space by self-organizing maps with ability to increase 
the number of nodes [15]. For this study we use the line version of GSOM.  
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A detailed description of the algorithm used can be found in [16]: below we provide a 
brief description. 

1. Initiate SOM by two nodes, connected by an edge, which is a linear fragment of 
the first principal component, centred at the mean point. 

2. Optimize the node positions by using the Batch SOM learning algorithm [17]. 
3. Compute the current FVU (CFVU). 
4. If CFVU is less than or equal to the specified threshold value then stop. If not then 
5. Glue to the first node of the polygonal line a new edge, of the same length and di-

rection as the first edge of the polygonal line, and calculate FVU for the new po-
lygonal line (BFVU). 

6. Extend the last node of the polygonal line with a new edge, of the same length and 
direction as the last edge of the polygonal line, and calculate FVU for new polygo-
nal line (EFVU). 

7. If BFVU<EFVU and BFVU<CFVU then glue to the first node of the polygonal 
line a new edge, of the same length and direction as the first edge of the polygonal 
line, and go to step 2. 

8. If EFVU<BFVU and EFVU<CFVU then extend the last node of the polygonal line 
with a new edge, of the same length and direction as the last edge of the polygonal 
line, and go to step 2. 

For each GSOM in this study we used the linear BSpline neighbourhood function 
with neighbourhood radius 3. 

2.3 Principal Tree 

Principal graphs form a rich family of tools for nonlinear dimensionality reduction for 
data of complex topology [18]. The method of topological grammars for construction 
of principal graphs and cubic complexes was proposed in [13]. The detailed descrip-
tion of principal tree (PT) construction algorithm can be found also in [4], [16]. The 
parameters which were used in this work are described below. 

We used the graph growing grammar with two rules: “add new node to an existing 
node” and “bisect an existing edge”. We used the graph shrinking grammar with two 
rules: “remove a leaf”, “remove an edge, and glue its nodes”. The grammar sequence 
“growing, growing, growing, shrink” was used for constructing the principal tree. In 
this study we used the elastic moduli 0.01 for stretching and 0.001 for bending. 

1. Initiate PT by two nodes, connected by an edge, which is a linear fragment of the 
first principal component, centred at the mean point. Set stage = 1. 

2. Optimize the energy functional of the graph 
3. Calculate the current FVU. If FVU is less than or equal to the specified threshold 

value then stop. If not then 
4. If stage < 4 then try all possible applications of growing grammar. Select the most 

optimal in terms of energy decrease operation. Apply the selected graph grammar 
operation. Add 1 to stage. Go to step 2. 

5. If stage = 4 then try each possible application of shrinking grammar and save the 
best operation. Apply saved operation. Put stage = 1. Go to step 2. 
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2.4 Geometrical Complexity Used in the Study 

A k-star is defined as a fragment of a graph, which is a node 0v  with all connected to 

it neighbour nodes kivi ,,1: =  (leaves). Let us denote by iv both the tree (polygonal 

line) node and the embedment (position) of the corresponding vector in the data 
space. For each embedment of a k-star into the data space, the measure of non-
harmonicity is the squared deviation of the central node 0v  from the mean point of 

the leaf positions ( ) ( )
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2.5 Available Implementations 

A user-friendly graphical interface (Java-applet) for constructing principal trees and 
GSOM in 2D is available at [16]. 

3 Results and Discussion 

The resulting maps and trees for each benchmark are shown in Fig. 2 and 3. The nu-
merical values of the complexity measures for them are listed in Table 1. Table 1 
allows us to compare four characteristics of constructed approximators: the number of 
nodes N, FVU, their lengths, and GC. We can see that for the approximators with the 
same FVU three complexity measures may be significantly different. The difference 
between GC values may be huge (one order of magnitude) while the length and N do 
not differ significantly. Thus, one can conclude the GC measure can be more sensitive 
in distinguishing the least complex approximator. 

We can also compare two algorithms for approximation, GSOM and PT. For two 
patterns, “spiral thin” and “spiral scattered” they work similarly (the results are quali-
tatively the same, some measures are better for GSOM, and some for PT, without 
huge difference). The differences in the approximator lengths for the same patterns 
and given FVU are not big. The length of PT approximators is smaller in most cases. 
The number of nodes for the same FVU is always smaller for PT, and GS of the PT 
approximators is almost always much smaller than for GSOM.  
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Fig. 2. Approximating polygonal lines constructed by GSOM 

 

Fig. 3. Approximating trees constructed by the principal tree algorithm 
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Table 1. Complexity measures for the constructed approximators. N is number of nodes which 
reflects the construction complexity measure in this case. In the column “Pattern” S means 
“scattered” pattern, SN means “scattered and noised” pattern. The winner value of the 
complexity measures for each pattern is highlighted in bold and underlined. 

Pattern SOM PT 

N FVU GC Length N FVU GC Length 

Sinus 101 0.10% 3 895.64 1 671.30 56 0.10% 263.89 1 236.06 

Sinus S 91 0.20% 1 043.05 1 454.64 49 0.20% 238.59 1 232.75 
Sinus SN 90 0.98% 939.10 1 551.04 41 1.00% 325.26 1 357.12 

Spiral 66 0.10% 83.90 1 247.49 46 0.08% 107.89 1 254.20 

Spiral S 71 0.19% 74.14 1 253.22 51 0.19% 96.23 1 251.32 

Spiral SN 158 0.99% 3 164.63 1 680.79 46 0.99% 166.84 1 442.07 

Tree 82 1.05% 1 951.71 1 101.49 59 0.09% 25.17 973.18 
Tree S 156 0.20% 6 143.35 1 434.03 71 0.19% 29.93 995.80 

Tree SN 115 1.00% 4 699.45 1 822.96 75 0.99% 319.64 1 392.00 

4 Conclusion 

Accordingly to the general principles of model selection, among approximators hav-
ing the same accuracy (FVU), the one with the smallest complexity should be pre-
ferred. Here we demonstrated that the geometrical complexity (GC) is applicable for 
comparing self-organising maps and principal tree approximators. Moreover, we 
show that the geometrical complexity investigated here is a more sensitive measure 
for model selection between these two types of graph-based approximators, compared 
to other measures such as the length and the number of nodes in the graph. Further 
investigations are required to demonstrate the utility of geometrical complexity for 
model selection among many different types of graph-based approximators. 
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