Iterative Extraction (ITEX SEFIT (1990)): Extensions of Principal Component Analysis

Boris Mirkin

School of Computer Science
Birkbeck College
University of London

Special Issue: The Computer Journal, Profiling Expertise and Behaviour:
Deadline 15 Nov. 2006
WHAT IS CLUSTERING; WHAT IS DATA

WARD HIERARCHICAL CLUSTERING: Agglomerative; Divisive Clustering with Ward Criterion; Extensions of Ward Clustering

DATA RECOVERY MODELS: Statistics Modelling as Data Recovery; Data Recovery Model for K-Means; for Ward; Extensions to Other Data Types; One-by-One Clustering

DIFFERENT CLUSTERING APPROACHES: Extensions of K-Means; Graph-Theoretic Approaches; Conceptual Description of Clusters

GENERAL ISSUES: Feature Selection and Extraction; Similarity on Subsets and Partitions; Validity and Reliability
Talk’s outline

- Data model and Pythagorean decomposition
- Principal component analysis as a data model
- Extension of PCA to clustering and K-Means
- Principal cluster analysis for clustering
- General ITEX strategy
- Examples of ITEX: hierarchical clustering, additive clustering, box clustering, contingency data aggregation
Pythagorean framework for data analysis methods

Type of Data
- Similarity
- Temporal
- Entity-to-feature
- Co-occurrence

Type of Model
- Regression
- Principal components
- Clusters

Model:
Data = Model_Data + Residual

Pythagoras:
Data^2 = Model_Data^2 + Residual^2
Pearson’s PCA: measuring talent

Given: marks x_{iv} (i – student, v – subject)

Find: talent score z_i and subject loading c_v

\[x_{iv} = c_v z_i + e_{iv} \]

\[L^2 = \sum_{i \in I} \sum_{v \in V} e_{iv}^2 = \sum_{i \in I} \sum_{v \in V} (x_{iv} - c_v z_i)^2 \]

Solution: \(X^T z^* = \mu c^* \), \(Xc^* = \mu z^* \), \(\max \mu \)

Properties:

P1: z^* is lc of X columns

P2: \(T(X) = \mu^2 + L^2 \), \(T(X) = \sum x_{iv}^2 \) – data scatter
PCA as a data model

Data Model:

\[y_{iv} = \sum_{k=1}^{K} c_{kv}z_{ik} + e_{iv}, \]

minimising \(L^2 \) over \(c \) and \(z \)

Properties:

\[[Z, M, C] = \text{svd}(Y), \]

\[\text{Thus } z \text{ and } c \text{ are lc of } X \]

\[\text{Can be done sequentially, one by one} \]

\[T(Y) = \mu_1^2 + \mu_2^2 + \ldots + \mu_K^2 + L^2 \]
Extension of PCA to clustering

\[y_{iv} = \sum_{k=1}^{K} c_{kv} z_{ik} + \varepsilon_{iv}, \]

\[\sum_{i=1}^{N} \sum_{v=1}^{V} y_{iv}^2 = \sum_{v=1}^{V} \sum_{k=1}^{K} c_{kv}^2 N_k + \sum_{k=1}^{K} \sum_{i \in S_k} \sum_{v=1}^{V} (y_{iv} - c_{kv})^2 \]

- \(y \) – data entry
- \(z \) – 1/0 membership
- \(c \) – cluster centroid
- \(N \) – cardinality
- \(i \) – entity
- \(v \) – feature /category
- \(k \) – cluster
Representing a partition

Cluster k:

Centroid

C_{kv} (ν - feature)

Binary 1/0 membership

Z_{ik} (i - entity)
Standardisation of features

\[Y_{ik} = \frac{(X_{ik} - A_k)}{B_k} \]

- **X** - original data
- **Y** - standardised data
- **i** - entities
- **k** - features
- **A_k** - shift of the origin, typically, the average
- **B_k** - rescaling factor, traditionally the standard deviation, but range seems better in clustering
No standardisation
Z-scoring (scaling by std)
Standardising by range & weight
Fitting the model with Straight K-Means Partitioning

Start:
* Presenting cases as multidimensional points
* Putting initial centroids (seeds)

Reiterated until no change:
* Collecting points into clusters around centroids
* Recalculating centroids as cluster prototypes
Advantages of K-Means

- **Conventional:**
 - Models typology building
 - Computationally effective
 - Can be incremental, `on-line`

- **Unconventional:**
 - Associates feature salience with feature scales and correlation/association
 - Applicable to mixed scale data
Drawbacks of K-Means

• No advice on:
 • Data pre-processing
 • Number of clusters
 • Initial setting
• Instability of results
• Criterion can be inadequate
• Insufficient interpretation aids
Initial Centroids: Correct

Two cluster case
Initial Centroids: Correct
Different Initial Centroids:
Wrong, even though in different clusters
Principal Cluster Analysis:
One cluster at a time

\[y_{iv} = c_v z_i + e_{iv}, \]

where \(z_i = 1 \) if \(i \in S \), \(z_i = 0 \) if \(i \not\in S \)

With Euclidean distance squared

\[
\sum_{i=1}^{N} \sum_{v=1}^{V} y_{iv}^2 = \sum_{v=1}^{V} c_{Sv}^2 N_S + \sum_{i \in S} \sum_{v=1}^{V} (y_{iv} - c_{Sv})^2
\]

\[
\sum_{i=1}^{N} d(i,0) = d(c_S,0) N_S + \sum_{i \in S} d(i, c_S)
\]

\(c_S \) must be anomalous, that is, interesting
Principal Cluster Analysis:
One cluster at a time

\[\sum_{i=1}^{N} \sum_{v=1}^{V} y_{iv}^2 = \sum_{v=1}^{V} c_{sv}^2 N_S + \sum_{i \in S} \sum_{v=1}^{V} (y_{iv} - c_{sv})^2 \]

\[\sum_{i=1}^{N} d(i,0) = d(c_s,0) N_S + \sum_{i \in S} d(i,c_s) \]

Or, with

Euclidean distance squared \(d(, ,) \)
Initial setting with Anomalous Pattern (AP) clustering
AP clustering: Iterate

- DombeySon
- OliverTwist
- GreatExpectations
- TomSawyer
- Yankee
- HuckFinn
- WarPeace
- AnnaKarenin
iK-Means with Anomalous Single Clusters

1. AnnaKarenin
 - WarPeace

2. DombeySon
 - OliverTwist
 - GreatExpectations

3. TomSawyer
 - HuckFinn
 - Yankee
Decomposing Data scatter

The sum of standardised entries squared

\[D^2 = \sum_{i=1}^{N} \sum_{v=1}^{V} y_{iv}^2 \]

The sum of contributions of features

Proportional to the summary variance
Contribution of a feature F to a partition

$Contrib(F) = \sum_{v \in F} \sum_{k=1}^{K} c_{kv}^2 N_k$

Proportional to

- correlation ratio η^2 if F is quantitative
- a contingency coefficient if F is nominal
 - Pearson chi-square (Poisson normalised)
 - Goodman-Kruskal tau-b (Range normalised)
Contribution of a quantitative feature to a partition

\[N \eta^2 = N \sum_{k=1}^{K} \left(\sigma^2 - p_k \sigma_k^2 \right) / \sigma^2 \]

Proportional to

- correlation ratio \(\eta^2 \) if F is quantitative
Contribution of a nominal feature to a partition

\[N X^2 = N \sum_{k=1}^{K} \left(p_{ij} - p_i p_j \right)^2 / p_i B_j^2 \]

Proportional to a contingency coefficient

- Pearson chi-square (Poisson normalised)
 \[B_j = \sqrt{p_j} \]

- Goodman-Kruskal tau-b (Range normalised)
Pythagorean Decomposition of data scatter for interpretation

Praised as in Table 2.0 according to author based clusters.

<table>
<thead>
<tr>
<th>Title</th>
<th>LenS</th>
<th>LenD</th>
<th>NChar</th>
<th>FCon</th>
<th>Pers</th>
<th>Obje</th>
<th>Dire</th>
<th>Cntr</th>
<th>Cntr,%</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTwist</td>
<td>-0.18</td>
<td>0.29</td>
<td>0.29</td>
<td>1.46</td>
<td>0.23</td>
<td>0.02</td>
<td>0.10</td>
<td>2.21</td>
<td>6.31</td>
</tr>
<tr>
<td>DombyS</td>
<td>0.36</td>
<td>0.06</td>
<td>0</td>
<td>1.46</td>
<td>0.23</td>
<td>0.02</td>
<td>0.10</td>
<td>2.22</td>
<td>6.34</td>
</tr>
<tr>
<td>GExpectations</td>
<td>0.08</td>
<td>0.12</td>
<td>0</td>
<td>1.46</td>
<td>-0.14</td>
<td>-0.03</td>
<td>0.10</td>
<td>1.58</td>
<td>4.51</td>
</tr>
</tbody>
</table>

Cl. 1 Cntr	0.26	0.47	0.29	4.38	0.32	0.01	0.29	6.01	17.17
TomSoyer	0.48	0.44	0.58	0.52	-0.03	-0.14	0.10	1.95	5.57
HuckFinn	-0.38	0.83	0	0.52	0.02	0.23	0.10	1.32	3.77
YankeeA	1.22	1.21	0.58	0.52	0.02	0.23	0.10	3.88	11.09

Cl. 2 Cntr	1.31	2.48	1.17	1.58	0.01	0.32	0.29	7.15	20.43
WarPeace	0.14	-0.23	1.31	0.52	0.18	0.18	0.88	2.97	8.49
Akarenina	0.47	1.42	2.62	0.52	0.18	0.18	0.88	6.26	17.89

| Cl. 3 Cntr | 0.61 | 1.19 | 3.94 | 1.05 | 0.35 | 0.35 | 1.75 | 9.23 | 26.37 |

Explained	2.18	4.14	5.40	7.00	0.67	0.67	2.33	22.39	63.97
Unexplained	4.82	2.86	1.60	0	1.66	1.67	0.00	12.61	36.03
Total	7.00	7.00	7.00	7.00	2.33	2.33	2.33	35.00	100.00
Contribution based description of clusters

- C. Dickens: \(FCon = 0 \)
- M. Twain: \(LenD < 28 \)
- L. Tolstoy: \(\text{NumCh} > 3 \) or \(Direct = 1 \)
Simulation study of Number-of clusters methods (joint work with Mark Chiang):

- Variance based:
 - Hartigan (HK)
 - Calinski & Harabasz (CH)
 - Jump Statistic (JS)

- Structure based:
 - Silhouette Width (SW)

- Consensus based:
 - Consensus Distribution area (CD)
 - Consensus Distribution mean (DD)

- Sequential extraction of APs:
 - Least Square (LS)
 - Least Moduli (LM)
Data generation for the experiment

- Gaussian Mixture (6, 7, 9 clusters) with:
 - Cluster spatial size:
 - Constant (spherical)
 - k-proportional
 - k^2-proportional
 - Cluster spread (distance between centroids)

<table>
<thead>
<tr>
<th>Spread</th>
<th>Spherical</th>
<th>PPCA model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>k-proport.</td>
</tr>
<tr>
<td>Large</td>
<td>2 (1)</td>
<td>10 (2)</td>
</tr>
<tr>
<td>Small</td>
<td>0.2 (4)</td>
<td>0.5 (5)</td>
</tr>
</tbody>
</table>
Evaluation of results:
Estimated clustering versus that generated

- Number of clusters
- Distance between centroids
- Similarity between partitions
Distance between estimated centroids (o) and those generated (o)
Distance between estimated centroids (\(o\)) and those generated (\(o'\))

Final Assignment

\[G_1(p_1)\]

\[G_2(p_2)\]

\[G_3(p_3)\]

\[e_1(q_1)\]

\[e_2(q_2)\]

\[e_3(q_3)\]

\[e_4(q_4)\]

\[e_5(q_5)\]

\[g_1------e_2, e_1\]

\[g_2------e_4, e_3\]

\[g_3------e_5\]
Distance between centroids: quadratic and city-block

1. Assignment

\[g_1(p_1)-----e_1(q_1), \ e_2(q_2) \]
\[g_2(p_2)-----e_3(q_3), \ e_4(q_4) \]
\[g_3(p_3)-----e_5(q_5) \]

2. Distancing

\[d_1 = \frac{q_1 \cdot d(g_1,e_1) + q_2 \cdot d(g_1,e_2)}{q_1 + q_2} \]
\[d_2 = \frac{q_3 \cdot d(g_2,e_3) + q_4 \cdot d(g_2,e_4)}{q_3 + q_4} \]
\[d_3 = \frac{q_5 \cdot d(g_3,e_5)}{q_5} \]
Distance between centroids: quadratic and city-block

\[p_1d_1 + p_2d_2 + p_3d_3 \]

1. Assignment
2. Distancing
3. Averaging
Similarity between partitions according to their confusion table

- Relative distance (Mirkin-Cherny 1970)
- Tchouprov coefficient (Cramer 1943)
- Adjusted Rand Index (Arabie-Hubert, 1985)
- Average Overlap (Mirkin 2005)
Results
at 9 clusters, 1000 entities, 20 features generated

<table>
<thead>
<tr>
<th></th>
<th>Estimated number of clusters</th>
<th>Distance between Centroids</th>
<th>Adjust Rand Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Large spread</td>
<td>Small spread</td>
<td>Large spread</td>
</tr>
<tr>
<td>HK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Extending PCA to ITEX

Iterative Extraction Elements:

- Data X format: at PCA, entity-to-feature
- Structure to extract; at t-th step set D(t): at PCA, a pair z and c;
- Criterion to minimise, $\Phi(\varepsilon)$: at PCA, $L2$
- Relation between D(t) and D(t+1): at PCA, same
- Method for minimising, at step t, $\Phi(|X(t) - s|)$ over $s \in D(t)$ where $X(t) = X(t-1) - s(t-1)$, $X(0) = X$: at PCA, svd or AP clustering

Result: $X = \sum_t s(t) + \varepsilon$, along with Pythagorean decomposition of T(X)

Proof of (finite) convergence (Mirkin (1990, 1998))
ITEX examples:

- Hierarchical clustering for conventional and spatial data
- Similarity clustering with additive clustering
- Similarity clustering with boxes (“plaid clustering”)
- Contingency data clustering and aggregation
Hierarchical clustering for conventional and spatial data

- **Model**: Same

- **Cluster structure**: 3-valued z’s

- **A split** $S = S_1 + S_2$ of a node S in children $S_1,$ S_2:

 $z_i = 0$ if $i \not\in S,$
 $= a$ if $i \in S_1$
 $= -b$ if $i \in S_2$

If a and b taken to z being centred, the node vectors for a hierarchy form **orthogonal base** (an analogue to SVD)

$$y_{iv} = \sum_{k=1}^{K} c_{kv} z_{ik} + e_{iv},$$
Figure 7. Compression and decompression of the boxed data with hierarchies A and B from Figure 6.
Similarity additive (and hierarchical) clustering

Observed similarity matrix

\[B = \lambda_1 z_1 z_1^T + \lambda_2 z_2 z_2^T + \lambda_K z_K z_K^T + E \]

Problem: given \(B \), find \(\lambda \)s and \(z \)s to minimize \(E \), the differences between \(B \) and summary clusters

\[||E||^2 \Rightarrow \min_A \]
Additive clusters: ITEX

Doubly greedy strategy

OUTER LOOP: One cluster at a time

Find real λ (intensity) and binary z (membership) to minimize $L(B, \lambda, z)$.

Update $B \leftarrow B - \lambda z z^T$; and reiterate!

After K iterations, clusters S_k of cardinality N_k.

$$T(B) = \lambda_1^2 N_1^2 + \lambda_2^2 N_2^2 + \ldots + \lambda_K^2 N_K^2 + L^2$$

INNER LOOP: maximise $\lambda_k N_k$
Algorithm: ADDI-S (Mirkin JoC 1987), a data approximation technique

To maximize Contribution to Data Scatter,
Average within-cluster similarity λ multiplied by the cluster’s size $\#S$

Algorithm ADDI-S:
- Take $S=\{ j \}$ for arbitrary j
- Given S, find $\lambda = c(S)$ and similarities $b(i,S)$ to S for all entities i in and out of S;
- Check the differences $b(i,S) - \lambda / 2$. If they are consistent, change the state of a most contributing entity. Else, stop and output S.

Resulting S: a tightness property.

Algorithm: ADDI-S a data approximation techniques

Number of clusters: Depends on similarity shift threshold b

$$b(ij) \leftarrow b(ij) - b$$
Domain knowledge: Function is known at some HPFs

- 287 pairs of HPFs with known function of which 86 are SYNONYMOUS (same function)

Two values:
- Min error
- No non-synonymous
Hierarchical similarity clusters

Spectral clustering
Similarity clustering with boxes

Plaid clustering
Contingency data clustering and aggregation

- $P(I,J) = (p_{ij})$ non-negative and summable

- Correspondence Analysis rather than PCA

- Quetelet coefficients rather than p_{ij}

\[
q_{ij} = \frac{p_{ij}}{(p_{i+} + p_{j+}) - 1} = \frac{[p(i/j) - p(i)]}{p(i)}
\]

Let A partitions I and B partitions J: $P(A,B)$ by summing up p_{ij} within blocks to approximate q_{ab} by the $p_{i+} p_{j+}$ weighted least-squares L^2:

- Pythagorean

\[
X^2(I,J) = X^2(A,B) + L^2
\]
Conclusion

Looking forward to hear of further ideas for combining clustering and visualisation à la PCA