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m Get more than just ad hoc methods—discover a sound theoretical framework!
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HAT IS CLUSTERING; WHAT IS DATA

-MEANS CLUSTERING: Conventional K-Means; Initialization of K-
eans; Intelligent K-Means; Interpretation Aids
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@

® WARD HIERARCHICAL CLUSTERING: Agglomeration; Divisive
Clustering with Ward Criterion; Extensions of Ward Clustering

®

DATA RECOVERY MODELS: Statistics Modelling as Data Recovery;

Data Recovery Model for K-Means; for Ward; Extensions to Other Data
Types; One-by-One Clustering

DIFFERENT CLUSTERING APPROACHES: Extensions of K-Means;
Graph-Theoretic Approaches; Conceptual Description of Clusters

® GENERAL ISSUES: Feature Selection and Extraction; Similarity on
Subsets and Partitions; Validity and Reliability
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Talk’s outline
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Data model and Pythagorean decomposition

Principal component analysis as a data model

Extension of PCA to clustering and K-Means

Principal cluster analysis for clustering
#®General ITEX strategy

®Examples of ITEX: hierarchical clustering,
additive clustering, box clustering,
contingency data aggregation
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Pythagorean framework for
data analysis methods

# Type of Data @ Type of Model
= Similarity = Regression
= Temporal = Principal components
= Entity-to-feature = Clusters
= Co-occurrence
Model:

Data = Model Data + Residual
Pythagoras:

Data?= Model Data? + Residual?




Pearson’s PCA: measuring talent
@ Giveri:marks x;,, (i - student, v — subject)

#® Find: talent score z;and subject loading ¢,

{% Xiy = C 277 € Z Z € 'V_Z Z (XIV_C Z

iel veV iel veV

#® Solution: X' z*= uc* Xc*=uz*, max u
#® Properties:

®P1: z* I1s Ic of X columns
®P2: T(X)= w2 + L%, T(X)=2 x,7— data scatter




PCA as a data model

Data Model: K
Yiv = Z CivZik T €y
minimising L% over ¢ and z k=
Properties:

® [Z M, C]=svd(Y),
¢+ Thus zand c are Ic of X
+ Can be done sequentially, one by one

® T(Y)=p, 2 +u,° +...+p 2 +1°




Extension of PCA to clustering

s K
Yiv = Z CrvZik T €iv
k=1
NV M K K Vv :
ZZ Yiv = ZZCKVNK + ZZ(yw —Cy)
=1 v=1 v=l k=1 k=1 1eS, v=

y —dataentry, z-1/0 membership
c - cluster centroid, N — cardinality

| -entity, V- feature/category, k- cluster
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Representing a partition
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Standardisation of features

*Yic = (Xix —A)/B,

m X - original data

m Y — standardised data

m | — entities

m k — features

s A, — shift of the origin, typically, the average

m B, — rescaling factor, traditionally the standard
deviation, but range seems better in clustering




No standardisation
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“Z-scoring (scaling by std)
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Standardising by range &
‘welight
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Fitting the model with
Straight K-Means Partitioning

Start:
* Presenting cases as multidimensional points

* Putting initial centroids (seeds)

Reiterated until no change:
* Collecting points into clusters around centroids

* Recalculating centroids as cluster prototypes




Advantages of K-Means

#Conventional:
= Models typology buirlding

= Computationally effective
= Can be 1ncremental, on-line’

#Unconventional:

s Assoclates feature salience with
feature scales and
correlation/Zassociration

= Applicable to mixed scale data



Drawbacks of K-Means

No advice on:
eData pre-processing
Number of clusters
eInitial setting
eInstability of results
Criterion can be 1nadeguate
eInsufficient Interpretation
alds



Two cluster case
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Principal Cluster Analysis:
One cluster at a time

Yiv =Cy 4 T eiv,

where Z;=1if 1€S, z;=0if 1&S

WlthVEuclldean distance squared

> Y= ZCSVN +ZZ(y.V—CsV)

=1 v=1 1eS v=1
N

Zd(l 0) =d(c,,0)Nq +Zd(IC)

(:5 must be anomalous, that |s Interesting



Principal Cluster Analysis:
One cluster at a time

Zzyl ZCVNS_I_ZZ(ylv_CSv)

1=1 v=1 v=1 ieS v=1

@ Or, with
Euclidean distance squared a(, )

Zd(l 0) =d(cs,0)Ng + > d(i,cq)

1S




Initial setting with Anomalous
Pattern (AP) clustering
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AP clustering: |

-DombeySon

-OliverTwist - GreatExpectatior

terate

s AnnaKarenin

WarPeace

0

. HuckF"i'r,)n

TomSawyer

-Yankee




IK-Means with Anomalous
Single Clusters
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Decomposing Data scatter

#® The sum of standardised entries squired

NV
D? =ZZY§/

=1 v=1

# The sum of contributions of
features

# Proportional to the summary variance




Contribution of a feature F
to a partition

Contrib(F) = Z ZK: CEV N ’

veF k=1

N

@ Proportional to

= correlation ratio m? if Fis quantitative

= & contingency coefficient if F is nominal
+ Pearson chi-square (Poisson normalised)
+ Goodman-Kruskal tau-b (Range normalised)




Contribution of a quantitative
feature to a partition

N

@ Proportional to
= correlation ratio m? if Fis quantitative

K
Nn*=N) (¢°-po,)lc’
k=1



N
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Contribution of a nominal
feature to a partition

@®P

K
X * = NZ(pij T pipj)zl piBj
k=1

roportional to & contingency coefficient
+ Pearson chi-square (Poisson normalised)

Bj:\ﬁ

+ Goodman-Kruskal tau-b (Range normalised)

O B/:.Z




SN

an Decom |
for Iinterpretation

LULdel ad 11l 1ablo 4.0 allULULLE W dULLUL DdotU CIUSLELD,

position of

Title LenS LenD NChar FCon Pers Obje Dire Cntr Cntr,%
OTwist 008 029 029 146 023 002 010 220 6.4l
DombyS 0.36  0.06 0 146 023 002 010 222  6.34
GExpectations | 0.08 0,12 0 146 014 -0.03 010 158 451
CL. 1 Cntr 026 047 029 A 438 032 001 029 601 1707
" TomSoyer 048 044 058 05 003 -014 010 195 547
HuckFinn 038 0.83 0 052 002 025 010 132 37
YankeeA 122 121 058 052 002 023 010 388 1109
CL. 2 Cntr 130 m248 LI7 158 001 032 029 715 2043
WarPeace 014 038 131 052 018 018 0.88  2.97 8.9
Akarenina 047 142 262 052 018 018 088 626  17.89
CL. 3 Cntr 061 119 O304 105 035 035 OLT5 9.23 2637
Explained 218 414 540 700 067 067 233 2240 6397
Unexplained | 482 286  1.60 0 1.66 167 0 1260 3603
Total 700 700 700 700 233 233 233 3500  100.00




Contribution based description
of clusters

# C. Dickens: FCon =0
@ M. Twalin: LenD < 28
@ L. Tolstoy: NutmCh->3——of

Direct = 1




Simulation study of Number-of
clusters methods(joint work with
Mark Chiang):

 Variance based:
Hartigan(HK)
Calinski & Harabasz (CH)
Jump Statistic (JS)
e Structure based:
Silhouette Width (SW)

e Consensus based:
Consensus Distribution area (CD)
Consensus Distribution mean (DD)

e Sequential extraction of APs:

Least Square (LS)
Least Moduli (LM)




Data generation for the experiment

A
Y

'« Gaussian Mixture (6,7,9 clusters) with:
Cluster spatial size:
- Constant (spherical)
- k-proportional
- k2-proportional
Cluster spread (distance between centroids)
PPCA model
Spread | Spherical | k-proport. | k2-proport.

Large 2 (0) 10 (8) 10 (©)
Small 0.2 (9) 0.5 (©) 2 (0)




Evaluation of results:
Estimated clustering versus that
generated

*Number of clusters

eDistance between centroids

«Similarity between partitions




Distance between estimated
c?troids (0) and

those generated (0 )
i ® 1) Prime Assignment
e3(g3) e
® p PIT gl-—----e2
GZ(F? g2------e4
e4(q4) g3------ ed

Xe5(q5)
G3(p3)




Distance between estimated
c?troids (0) and

those generated (0 )
B c1(q1) Final Assignment
e3(q3) e2(q2) ///
. .bél(pl) gl------e2, el
GZ(I? g2------ e4, e3
e4(q4) g3------ ed

1.65«15)
G3(p3)




Distance between centroids:

‘quadratic and city-block

g1(
g2(
g3(

1).e2(02)  1.Assignment
3), e4(g4)

) 2. Distancing

d1=(gl*d(gl,el1)+g2*d(gl,e2))/(gql+g2)
d2=(g3*d(g2,e3)+g4*d(g2,e4))/(gq3+g4)
d3=(g5*d(g3,e5)/g5




Distance between centroids:

‘guadratic and city-block

1. Assignment
pl*d1l+p2*d2+p3*d3

2. Distancing

3. Averaging




Similarity between partitions
according to their confusion table

e Relative distance (Mirkin-Cherny 1970)

» Tchouprov coefficient (Cramer 1943)

e Adjusted Rand Index (Arabie-Hubert, 1985)

e Average Overlap (Mirkin 2005)
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Results

at 9 clusters, 1000 entities, 20 features generated

Estimated number of

Distance between

Adjust Rand Index

clusters Centroids
Large Small Large Small Large spread Small
spread spread spread spread spread




Extending PCA to ITEX

Iterative Extraction Elements:
s Data X format: at PCA, entity-to-feature

m Structure to extract; at t-th step set D(t): at PCA,
a pair z and c;

= Criterion to minimise, ®(g): at PCA, L2

= Relation between D(t) and D(t+1): at PCA, same

= Method for minimising, at step t, ®(|X(t) —s|)
over seD(t) where X(t)=X(t-1)-s(t-1), X(0)=X: at
PCA, svd or AP clustering

Result: X =X, s(t) + ¢, along with Pythagorean
decomposition of T(X)

Proof of (finite) convergence (Mirkin (1990, 1998))

h




I TEX examples:

N

#® Hierarchical clustering for conventional
and spatial data

#® Similarity clustering with additive
clustering

# Similarity clustering with boxes (“plaid
clustering”)

#® Contingency data clustering and
aggregation




Hierarchical clustering for

conventional and spatial data

! K

# Model: Same Y. = C. Zy +€,,
k=1

A
Y

# Cluster structure: 3-valued z's
@ A split S=S1+S2 of a node S in children S1, S2:
S

Zi=01f 7¢S, =alif /eS1
= -bif /€S2

If a and b taken to z being centred, the
node vectors for a hierarchy form Sl S2
orthogonal base (an analogue to SVD)




Haar base

Hierarchies, Wavelets
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Similarity additive (and

hierarchical) clustering
Observed similarity matrix

— T T T
= M2.2," + AMz2,72, + Mzz '+ E

Problem: given B, find As and zs to
minimize E, the differences between

B and summary clusters
|E|I* = min,



Additive clusters: ITEX

Doubly greedy strategy
ODUTER LOOP: One cluster at a time

-ind real A4 (intensity) and binary z (membership) to
minimize L(B, 1,2).

Update B <« B -Azz’; and reiterate!

After Kiterations, clusters S,, of cardinality N,

eSS

T(B)=A,2N,2+ A ,2N,2 +..+ A, 2N, 2+ 12 (o)

INNER LOOP: maximise A, N,




Algorithm: ADDI-S (Mirkin JoC 1987),

a data approximation technique

‘® To maximize Contribution to Data Scatter,
Average within-cluster similarity A multiplied by the
cluster’'s size #S

® Algorithm ADDI-S:
s Jake S={ j } for arbitrary J

n Given S, find A =c(S) and similarities b(i,S) to S for
all entities i1 in and out of S;
s Check the differences b(i,S)- A /2. If they are

consistent, change the state of a most
contributing entity. Else, stop and output S.

# Resulting S: a tightness property.

@ Holzinger (1941) B-coefficient, Arkadiev&Braverman
(1964, 1967) Specter, Mirkin (1976, 1987) ADDI
family, Ben-Dor, Shamir, Yakhini (1999) CAST




Algorithm: ADDI-S a data

approximation techniques

Number of clusters: Depends on
similarity shift threshold b

b(ij) < b(ij) — b




Domain knowledge: Function Is
known at some HPFs

N

287 pairs of HPFs with known function of
which 86 are SYNONYMOUS (same function

densiTty

OoNn-sSynonymous

/synonymous

0.42 0.67 Similarity

Two values: Min error NO non-synonymous
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Hierarchical similarity clusters

Spectral clustering




_Similarity clustering with boxes

Plaid clustering




Contingency data clustering and
aggregation

#®Correspondence Analysis rather than PCA
®Quetelet coefficients rather than p;

Qi = P/ (Pis P4y)-1 =[p(/))-p(1)1/p(1)
Let A partitions | and B partitions J: P(A,B) by

summing up p; within blocks to approximate
dap by the p;, p,; weighted least-squares L*:

Pythagorean
X2(1,J)=X?(A,B) + L?




Conclusion

Looking forward to hear of further ideas for
ombining clustering and visualisation
a la PCA
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