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WHAT IS CLUSTERING;  WHAT IS  DATA
K-MEANS CLUSTERING: Conventional K-Means; Initialization of K-
Means; Intelligent K-Means; Interpretation Aids
WARD HIERARCHICAL CLUSTERING: Agglomeration; Divisive 
Clustering with Ward Criterion; Extensions of Ward Clustering
DATA RECOVERY MODELS: Statistics Modelling as Data Recovery;
Data Recovery Model for K-Means; for Ward; Extensions to Other Data 

Types; One-by-One Clustering
DIFFERENT CLUSTERING APPROACHES: Extensions of K-Means; 
Graph-Theoretic Approaches; Conceptual Description of Clusters
GENERAL ISSUES: Feature Selection and Extraction; Similarity on 
Subsets and Partitions; Validity and Reliability



Talk’s outline

Data model and Pythagorean decomposition
Principal component analysis as a data model
Extension of PCA to clustering and K-Means
Principal cluster analysis for clustering
General ITEX strategy
Examples of ITEX: hierarchical clustering, 
additive clustering, box clustering, 
contingency data aggregation



Pythagorean framework for
data analysis methods

Type of Data
Similarity
Temporal
Entity-to-feature
Co-occurrence

Type of Model
Regression
Principal components
Clusters

Model:
Data = Model_Data + Residual

Pythagoras:

Data2 = Model_Data2 + Residual2



Pearson’s PCA: measuring talent
Given: marks  xiv (i – student, v – subject) 

Find: talent score zi and subject loading cv

xiv = cvzi+ eiv

Solution:     XTz*= μc*, Xc*=μz* ,  max μ
Properties:

P1: z* is  lc  of X columns
P2: T(X)= μ2 + L2,   T(X)=Σ xiv

2 – data scatter
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PCA  as a data model
Data Model:

minimising L2 over  c and  z
Properties:

[Z, M, C]=svd(Y),
Thus z and c are lc of X
Can be done sequentially, one by one

T(Y) = μ1 
2 +μ2 

2 +…+μK 
2 + L2
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Extension of PCA to clustering

y – data entry,      z – 1/0 membership

c - cluster centroid,      N – cardinality

i  - entity,     v - feature /category,     k - cluster
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Representing a partition
Cluster k:

Centroid

ckv (v - feature)

Binary 1/0 membership

zik (i - entity)



Standardisation of features

Yik = (Xik –Ak)/Bk

X - original data
Y – standardised data
i – entities
k – features
Ak – shift of the origin, typically, the average
Bk – rescaling factor, traditionally the standard 
deviation, but  range seems better in clustering



No standardisation



Z-scoring (scaling by std)



Standardising by range & 
weight



Start:

*  Presenting cases as multidimensional points

*  Putting initial centroids (seeds)

Reiterated until no change:

*  Collecting points into clusters around centroids

*  Recalculating centroids as cluster prototypes

Fitting the model with
Straight K-Means Partitioning



Advantages of K-Means
Conventional:

Models typology building
Computationally effective
Can be incremental, `on-line’

Unconventional:
Associates feature salience with 
feature scales and 
correlation/association
Applicable to mixed scale data 



Drawbacks of K-Means

•No advice on:
•Data pre-processing
•Number of clusters
•Initial setting

•Instability of results
•Criterion can be inadequate
•Insufficient interpretation  

aids



Initial Centroids: Correct

Two  cluster  case



Initial Centroids: Correct

Initial Final



Different Initial Centroids



Different Initial Centroids: 
Wrong, even though in different clusters

Initial Final



Principal Cluster Analysis: 
One cluster at a time

yiv =cv zi + eiv, 

where   zi = 1 if i∈S,    zi = 0 if i∉S
With Euclidean distance squared
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Principal Cluster Analysis:       
One cluster at a time

Or, with                                   
Euclidean distance squared d( , )
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Initial setting with Anomalous 
Pattern (AP) clustering

TomSawyer



AP clustering: Iterate 

0

TomSawyer



iK-Means with Anomalous 
Single Clusters

0

Tom Sawyer

1
2

3



Decomposing Data scatter

The sum of standardised entries squired

The sum of contributions of 
features

Proportional to the summary variance
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Contribution of  a  feature  F
to a partition

Proportional to 

correlation ratio  η2 if F is quantitative

a contingency coefficient  if  F  is  nominal

Pearson chi-square (Poisson normalised)
Goodman-Kruskal tau-b (Range normalised)
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Contribution of  a  quantitative 
feature to a partition

Proportional to 

correlation ratio  η2 if F is quantitative
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Contribution of  a nominal            
feature to a partition

Proportional to a contingency coefficient 
Pearson chi-square (Poisson normalised)

Goodman-Kruskal tau-b (Range normalised)
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Pythagorean Decomposition of data scatter    for interpretation



Contribution based description 
of clusters

C. Dickens:     FCon = 0

M. Twain:      LenD < 28

L. Tolstoy: NumCh > 3   or  
Direct = 1



Simulation study of Number-of 
clusters methods(joint work with 
Mark Chiang):

• Variance based:
Hartigan(HK)
Calinski & Harabasz (CH)
Jump Statistic (JS)

• Structure based:
Silhouette Width (SW)

• Consensus based:
Consensus Distribution area (CD)
Consensus Distribution mean (DD)

• Sequential extraction of APs:
Least Square (LS)
Least Moduli (LM)



Data generation for the experiment
• Gaussian Mixture (6,7,9 clusters) with:

•Cluster spatial size:
- Constant (spherical)
- k-proportional
- k2-proportional

•Cluster spread (distance between centroids)
PPCA model

Spread Spherical k-proport. k2-proport.

Large 2 ( ) 10 ( ) 10 ( )
Small 0.2 ( ) 0.5 ( ) 2 ( )



Evaluation of results: 
Estimated clustering versus that 
generated

•Number of clusters

•Distance between centroids

•Similarity between partitions



Distance between estimated 
centroids (o) and 
those generated (o )

Prime Assignment

G1(p1)
G2(p2)

e1(q1)
e2(q2)e3(q3)

e4(q4)

g1------e2
g2------e4
g3------e5

G3(p3)

e5(q5)



Distance between estimated 
centroids (o) and 
those generated (o )

Final Assignment

G1(p1)
G2(p2)

e1(q1)
e2(q2)e3(q3)

e4(q4)

g1------e2, e1
g2------e4, e3
g3------e5

G3(p3)

e5(q5)



Distance between centroids: 
quadratic and city-block 

1.Assignment

2.Distancing

g1(p1)------e1(q1), e2(q2)
g2(p2)------e3(q3), e4(q4)
g3(p3)------e5(q5)

d1=(q1*d(g1,e1)+q2*d(g1,e2))/(q1+q2)

d2=(q3*d(g2,e3)+q4*d(g2,e4))/(q3+q4)

d3=(q5*d(g3,e5)/q5



Distance between centroids: 
quadratic and city-block 

1.Assignment

2.Distancing

3. Averaging

p1*d1+p2*d2+p3*d3



Similarity between partitions
according to their confusion table

• Relative distance (Mirkin-Cherny 1970)

• Tchouprov coefficient (Cramer 1943)

• Adjusted Rand Index (Arabie-Hubert, 1985)

• Average Overlap (Mirkin 2005)



Results
at 9 clusters, 1000 entities, 20 features generated

Estimated number of 
clusters

Distance between 
Centroids

Adjust Rand Index

Large 
spread

Small 
spread

Large 
spread

Small 
spread

Large spread Small 
spread

HK

CH

JS

SW

CD

DD

LS

LM



Extending PCA to ITEX
Iterative Extraction Elements: 

Data X format: at PCA, entity-to-feature
Structure to extract; at t-th step set D(t): at PCA, 
a pair z and c;
Criterion to minimise, Φ(ε): at PCA,  L2
Relation between D(t) and D(t+1): at PCA, same
Method for minimising, at step t,  Φ(|X(t) – s|)
over s∈D(t) where X(t)=X(t-1)-s(t-1), X(0)=X: at 
PCA, svd or AP clustering

Result:  X = Σt s(t) + ε,  along with Pythagorean 
decomposition of T(X)

Proof of (finite) convergence (Mirkin (1990, 1998))



ITEX examples:
Hierarchical clustering for conventional 
and spatial data
Similarity clustering with additive 
clustering
Similarity clustering with boxes (“plaid 
clustering”)
Contingency data clustering and 
aggregation



Hierarchical clustering for 
conventional and spatial data

Model: Same

Cluster structure: 3-valued z’s
A split S=S1+S2 of a node S in children S1, S2:

zi = 0 if i ∉S,  = a if i∈S1
= -b if i∈S2
If a and b taken to z being centred, the
node vectors for a hierarchy form
orthogonal base (an analogue to SVD)
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Hierarchies, Wavelets, Haar base



Similarity additive (and 
hierarchical) clustering

Observed similarity matrix 

B = λ1z1z1T + λ2z2z2T + λKzKzKT + E

Problem: given B, find λs and zs to 
minimize E, the differences between 
B and summary clusters

||E||2 ⇒ minA



Additive clusters: ITEX
Doubly greedy strategy
OUTER LOOP: One cluster at a time 

Find real λ (intensity) and binary z (membership) to 
minimize L(B, λ,z). 

Update    B ⇐ B  - λzzT;  and reiterate! 
After K iterations, clusters Sk, of cardinality Nk, 

T(B) = λ 1 
2 N1 

2 + λ 2 
2 N2 

2 +…+ λ K 
2 NK 

2 + L2 (●)

INNER LOOP: maximise λ k Nk



Algorithm: ADDI-S (Mirkin JoC 1987), 
a data approximation technique  

To maximize Contribution to Data Scatter, 
Average within-cluster similarity λ multiplied by the 
cluster’s  size #S
Algorithm ADDI-S:

Take S={ j } for arbitrary j
Given S, find λ =c(S) and similarities b(i,S) to S for 
all entities i in and out of S;
Check the differences b(i,S)- λ /2. If they are 
consistent, change the state of a most 
contributing entity. Else, stop and output S.

Resulting S: a tightness property.
Holzinger (1941) B-coefficient, Arkadiev&Braverman
(1964, 1967) Specter, Mirkin (1976, 1987) ADDI 
family, Ben-Dor, Shamir, Yakhini (1999) CAST



Algorithm: ADDI-S a data 
approximation techniques  

Number of clusters: Depends on 
similarity shift threshold b

b(ij)  ⇐ b(ij) – b

b



Domain knowledge: Function is 
known at some HPFs

287 pairs of HPFs with known function of 
which 86 are SYNONYMOUS (same function)

0.42 0.67 Similarity

density

synonymous

Non-synonymous

Two values: Min error No non-synonymous



Hierarchical similarity clusters

Spectral clustering



Similarity clustering with boxes

Plaid clustering



Contingency data clustering and 
aggregation

P(I,J)=(pij) non-negative and summable
Correspondence Analysis rather than PCA
Quetelet coefficients rather than pij

qij = pij/(pi+ p+j)-1 =[p(i/j)-p(i)]/p(i)
Let A partitions I and B partitions J: P(A,B) by 

summing up pij within blocks to approximate 
qab by the pi+ p+j weighted least-squares L2:

Pythagorean
X2(I,J)=X2(A,B) + L2



Conclusion

Looking forward to hear of further ideas for 
combining clustering and visualisation     
à la PCA
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