FG U N IVERSITY OF LIVERPOOL

Asymptotic Dynamics of Spiral and Scroll Waves

${ }^{1}$ Vadim N. Biktashev, ${ }^{2}$ Irina V. Biktasheva

${ }^{1}$ Exeter University, UK; ${ }^{2}$ Liverpool University, UK.
Collaborators: D. Barkley, G.V. Bordyugov, H. Dierckx, Y.E. Elkin, A.J. Foulkes, A.V. Holden, Z.A. Jiménez, S.R. Kharche, S.W. Morgan, E. Nakouzi, G. Plank, N. Sarvazyan, Ö. Selsil, E.E. Shnol, O. Steinbock, H. Verschelde, H. Zhang, ...

Model Reduction Across Disciplines, Leicester, August 19-22, 2014 Conference dedicated to the 60th birthday of Alexander Gorban
(1) A brief introduction
(2) Theory
(3) Examples: spirals

4 Examples: scrolls
(5) Examples: between 2D and 3D
(6) Conclusions

Various spiral waves in nature

Dictyostelium discoideum (C. Weijer, Dundee)

Oxidation of CO on Pt (Y . Kevrekidis, Princeton)

Retina (M.A.Dahlem, Magdeburg)

Rusting of steel (O. Steinbock, Florida)

Combustion (A.Merzhanov, Chernogolovka)

Liquid crystal (S. Residori, Nice)

Belousov-Zhabotinsky reaction

Non-stirred: concentric waves

Stirred: spiral waves

A. M. Zhabotinsky and A. N. Zaikin, "Spatial effects in a self-oscillating chemical system", in Oscillatory processes in biological and chemical systems II, Sel'kov E. E. Ed., Science Publ., Puschino (1971)

Scroll waves in BZ

Experiment

Explanation

A. T. Winfree, "Scroll-shaped waves of chemical activity in three dimensions", Science 181:937-939 (1973)

Spiral waves in heart

Picture from: http://thevirtualheart.org (F. Fenton)

Spiral and scroll waves

Drift due to inhomogeneity

A.M. Pertsov, E.A. Ermakova, "Mechanism of the drift of a spiral wave in an inhomogeneous medium". Biofizika, 33(2): 338-342, 1988.

Spontaneous evolution

V.N. Biktashev, A.V. Holden \& H. Zhang, `'Tension of Organizing Filaments of Scroll Waves" Phil. Trans. Roy. Soc. London, ser A 347: 611-630 (1994); V.N. Biktashev ``A ThreeDimensional Autowave Turbulence" Int. J. Bifurcation \& Chaos, 8(4): 677-684, (1998)

The challenge and the intrigue

- In describing spiral and scroll waves, it is convenient to talk in terms of spiral core and scroll filaments, as particle-like and string-like objects.
- What corresponds to this convenience mathematically?
- The answer involves model reductions (2D $\rightarrow 0 \mathrm{D}$ and 3D $\rightarrow 1 \mathrm{D}$), but also some unique feature of spiral waves.
- There will be also one more reduction (3D $\rightarrow 2 \mathrm{D}$) towards the end. . .
(1) A brief introduction
(2) Theory
(3) Examples: spirals
(4) Examples: scrolls
(5) Examples: between 2D and 3D

6 Conclusions

Drift of spirals:

a popular introduction by Dwight Barkley

(with some help from Lady Gaga)

https://
www.youtube. com/watch?
feature=player _embedded\&v
$=Y G V v Z V D$ ddo
https://
sites.google.c om/site/ barkleyvideos /

Spiral waves reduction $(2 \mathrm{D} \rightarrow 0 \mathrm{D})$: the idea

Spiral waves reduction (2D \rightarrow OD): ansatz

- (Perturbed) reaction-diffusion system for ℓ components on the plane

$$
\begin{gathered}
\partial_{t} \mathbf{u}=\mathbf{f}(\mathbf{u})+\mathbf{D} \nabla^{2} \mathbf{u}+\epsilon \mathbf{h} \\
\mathbf{u}(\vec{r}, t), \mathbf{f}(\mathbf{u}), \mathbf{h}(\cdot) \in \mathbb{R}^{\ell}, \mathbf{D} \in \mathbb{R}^{\ell \times \ell}, \ell \geq 2, \vec{r} \in \mathbb{R}^{2} .
\end{gathered}
$$

- Steadily rotating spiral wave solutions $(\epsilon=0)$:

$$
\mathbf{u}(\vec{r}, t)=\mathbf{U}(\rho(\vec{r}-\vec{R}), \vartheta(\vec{r}-\vec{R})+\omega t-\Phi) .
$$

$$
(\vec{r}=(x, y), \vec{R}=(X, Y)=\text { const, } \Phi=\text { const, } \omega \text { is an eigenvalue })
$$

- For $\epsilon \neq 0$, the spiral drifts: solution remains approximately as above, but $\mathrm{d} \vec{R} / \mathrm{d} t=\mathcal{O}(\epsilon), \mathrm{d} \Phi / \mathrm{d} t=\mathcal{O}(\epsilon)$.

Spiral waves reduction (2D $\rightarrow 0 \mathrm{D}$): equation of motion

- Drift velocity due to perturbation:

$$
\dot{R}=\epsilon \int_{\phi-\pi}^{\phi+\pi} e^{-i \xi}\left\langle\mathbf{W}_{1}, \tilde{\mathbf{h}}(\mathbf{U} ; \rho, \theta, \xi)\right\rangle \frac{\mathrm{d} \xi}{2 \pi}+\mathcal{O}\left(\epsilon^{2}\right)
$$

where (ρ, θ) are corotating polar coords, $\phi=\omega t-\Phi(t)$, and

$$
\langle\mathbf{w}, \mathbf{v}\rangle=\int_{\mathbb{R}^{2}} \mathbf{w}^{+}(\vec{r}) \mathbf{v}(\vec{r}) \mathrm{d}^{2} \vec{r}=\oint \int_{0}^{\infty} \mathbf{w}^{+}(\rho, \theta) \mathbf{v}(\rho, \theta) \rho \mathrm{d} \rho \mathrm{~d} \theta .
$$

- (Translational) response function $\mathbf{W}_{1}(\rho, \theta) \in \mathbb{C}$: eigenfunction of the adjoint linearized operator, corresponding to eigenvalue $\mathrm{i} \omega$.
- Linear expressions, hence superposition principle.

Spiral wave reduction: why do the integrals converge

Complex
GinzburgLandau
Equation

Spiral wave reduction: why do the integrals converge

FitzHugh-Nagumo

Oregonator
 (BZ reaction)

Barkley

Beeler-Reuter (heart ventricles)

Spiral wave reduction: why do the integrals converge

Defects in Oscillatory Media: Toward a Classification*

Björn Sandstede ${ }^{\dagger}$ and Arnd Scheel ${ }^{\ddagger}$

Corollary 4.6. Assume that $u_{\mathrm{d}}(\xi, \tau)$ is a transverse source. The null space of the adjoint operator $\Phi_{\mathrm{d}}^{\text {ad }}-1$ on $L^{2}\left(\mathbb{R}, \mathbb{C}^{n}\right)$ is at least two-dimensional and contains two linearly independent functions $\psi_{\mathrm{d}}^{c}(\xi, 0)$ and $\psi_{\mathrm{d}}^{\omega}(\xi, 0)$ that satisfy

$$
\int_{\mathbb{R}}\left(\begin{array}{cc}
\left\langle\psi_{\mathrm{d}}^{c}(\xi, 0), \partial_{\xi} u_{\mathrm{d}}(\xi, 0)\right\rangle & \left\langle\psi_{\mathrm{d}}^{c}(\xi, 0), \partial_{\tau} u_{\mathrm{d}}(\xi, 0)\right\rangle \\
\left\langle\psi_{\mathrm{d}}^{\omega}(\xi, 0), \partial_{\xi} u_{\mathrm{d}}(\xi, 0)\right\rangle & \left\langle\psi_{\mathrm{d}}^{\omega}(\xi, 0), \partial_{\tau} u_{\mathrm{d}}(\xi, 0)\right\rangle
\end{array}\right) \mathrm{d} \xi=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Furthermore, the corresponding solutions $\psi_{\mathrm{d}}^{c}(\xi, \tau)$ and $\psi_{\mathrm{d}}^{\omega}(\xi, \tau)$ of (4.8) decay exponentially with a uniform rate as $\xi \rightarrow \pm \infty$ for all τ.

B. Sandstede claims this result extends to 2 D , i.e. spiral waves (private communication).

Scroll waves reduction (3D \rightarrow 1D): ansatz

- (Unperturbed) reaction-diffusion system for ℓ components in space,

$$
\begin{aligned}
\partial_{t} \mathbf{u} & =\mathbf{f}(\mathbf{u})+\mathbf{D} \nabla^{2} \mathbf{u}+c \mathbf{K}_{,} \\
\mathbf{u} & =\mathbf{u}(\vec{r}, t) ; \vec{r} \in \mathbb{R}^{3}
\end{aligned}
$$

- Steadily rotating spirals in 2D:

$$
\mathbf{f}(\mathbf{U})-\omega \mathbf{U}_{\theta}+\mathbf{D} \nabla^{2} \mathbf{U}=0
$$

- Looking for a bended and twisted scroll in 3D:

$$
\begin{aligned}
& \mathbf{u}\left(\vec{R}+\vec{N} \rho^{\prime} \cos \theta^{\prime}+\vec{B} \rho^{\prime} \sin \theta^{\prime}, t^{\prime}\right)= \\
& \mathbf{U}\left(\rho^{\prime}, \theta^{\prime}+\left(\omega t^{\prime}-\Phi\right)\right)+\mathbf{v}, \quad|\mathbf{v}| \ll 1
\end{aligned}
$$

A twisted and bent scroll:

Frenet-Serret frame:

Scroll waves reduction (3D $\rightarrow 1 \mathrm{D}$): equation of motion

- Asymptotically, when filament is locally almost straight and twist is small,

$$
\begin{aligned}
(\dot{\vec{R}})_{\perp}= & \left(\gamma_{1}+\gamma_{2} \partial_{\sigma} \vec{R} \times\right) \partial_{\sigma}^{2} \vec{R} & & \text { (linear)"tension" } \\
& -\left(e_{1}+e_{2} \partial_{\sigma} \vec{R} \times\right)\left(\partial_{\sigma}^{4} \vec{R}\right)_{\perp} & & \text { "rigidity" } \\
& +\left|\partial_{\sigma}^{2} \vec{R}\right|^{2}\left(b_{1}+b_{2} \partial_{\sigma} \vec{R} \times\right) \partial_{\sigma}^{2} \vec{R} & & \text { "nonlinear tension" }
\end{aligned}
$$

- Spirals are "building blocks" of scrolls, hence coefficients of the EoM are overlap integrals involving the same response functions.
(1) A brief introduction
(2) Theory
(3) Examples: spirals
(4) Examples: scrolls
(5) Examples: between 2D and 3D
(6) Conclusions

Simple drifts

$\mathbf{h} \propto \cos (\omega t)$ resonant

Resonant drift and Resonant repulsion

- Each stimulus shifts the spirals
- Stimulation period = spiral period => drift along straight line.
- However inhomogeneity (the boundary in this case) changes spiral period => direction of drift changes

Resonant drift and "resonant repulsion"

Idea (Biktashev, Holden, 1993):

True asymptotic theory (Langham, Biktasheva, Barkley, 2014, under review):

Feedback-controlled resonant drift

- Now stimulation period synchronized with spiral wave via a feedback loop.
- Drift proceeds notwithstanding obstacles => lowvoltage defibrillation?

Interaction with a parametric step

(a)

(d)
(g)

(b)

(e)

(c)

(f)

(i)
(h)

Orbital motion around a local inhomogeneity

- In this example, the inhomogeneity is repelling at short distance and attracting at long distance
- Therefore the spiral is kept at a stable distance
- This stable distance depends on the response functions (ie. medium parameters) not inhomogeneity strength!

Orbital movement around local heterogeneity

(1) A brief introduction

(2) Theory
(3) Examples: spirals
(4) Examples: scrolls
(5) Examples: between 2D and 3D
(6) Conclusions

Scroll turbulence: a 3D phenomenon

2D: stationary spiral

3D: instability

(FitzHugh-Nagumo model)

Filament tension

Fig. 1. Two regimes of the scroll ring drift. (a) Scroll ring. The direction of rotation is shown by the arrow. (b) The contraction regime. Evolution of a scroll filament in time intervals $\Delta T=1000$. The bottom is the initial location of the ring. $g_{f}=1.0$. (c) The extension regime. $\Delta T=300, g_{f}=0.775$.
A.V. Panfilov and A.N.Rudenko, Physica 28D:215-218 (1987)

FIG. 3.
P.K. Brazhnik et al. Sov. Phys. JETP 64:984-990 (1987)

Scroll wave turbulence

$$
S(t)=\int \mathrm{d} s=\int\left|\partial_{\sigma} \vec{R}\right| \mathrm{d} \sigma \Rightarrow \frac{\partial S}{\partial t}=-\gamma_{1} \int\left(\partial_{\sigma}^{2} \vec{R}\right)^{2} \mathrm{~d} s+\mathcal{O}\left(\epsilon^{2}\right)
$$

$t=75$

Precessing helical scroll: constant frequency near-resonant perturbation

Helix produced by resonant stimulation in 3D

Helical scroll in rabbit heart geometry

- Here the "low-voltage defibrillation" failed.
- Possible reason: fiber orientation gradient => twist of a vortex => stationary helical twisted vortex by the mechanism described above.

Moving boundary generating scrolls: filament tension role

High excitability, Positive filament tension

Buckling of a negative tension filament in a thin layer: between 2D and 3D

Negative tension is tamed by filament "rigidity" and nonlinear effects
(Barkley model)
H.Dierckx,
H.Verschelde,
O.Selsil,
V.N.Biktashev,

Buckling of scroll
waves, PRL 109:

Buckling of a scroll with negative filament tension

Rails, thermal expansion

Scroll filament, negative tension

Stress/negative tension vs rigidity

Pinning of filament on two spherical beads

Established filament shape can be used to estimate the filament rigidity.

Oregonator model of $B Z$ reaction.
E. Nakouzi, Z. A. Jiménez,
V. N. Biktashev and O.

Steinbock, "Analysis of
Anchor-Size Effects on
Pinned Scroll Waves and
Measurement of Filament
Rigidity" Phys. Rev. E, 89:

Measuring rigidity of scroll filament in experiment

- Pinning of filament on spherical beads.
- Stat. shape: interaction of tension, rigidity and filaments' repulsion

(1) A brief introduction
(2) Theory
(3) Examples: spirals
(4) Examples: scrolls
(5) Examples: between 2D and 3D

6 Conclusions

Re-entry in human atrium geometry

- Is it threedimensional or two-dimensional?
(a variant of
Courtemanche et al. 1998 human atrial kinetics model)
S.R.Kharche, I.V.Biktasheva, G.Seeman, H.Zhang, V.N. Biktashev, "Mechanisms of spontaneous drift in the homogeneous human atrium '", in preparation, 2014

3D \rightarrow 2D reduction for thin layers

$$
\begin{aligned}
& \mathbf{v}_{t}=\mathbf{f}(\mathbf{v})+\mathbf{D} \nabla^{2} \mathbf{v}, \quad \mathbf{v}=\mathbf{v}(x, y, z, t) \\
& (x, y) \in \mathbb{R}^{2}, \quad 0 \leq z \leq H(x, y)=\mu \tilde{H}(x, y), \quad \mu \ll 1
\end{aligned}
$$

with no-flux boundaries at $z=z_{\text {min }}$ and $z=z_{\text {max }}$. Then

$$
\mathbf{v}(x, y, z, t)=\mathbf{u}(x, y, t)+\mathcal{O}\left(\mu^{2}\right)
$$

and

$$
\begin{aligned}
\mathbf{u}_{t} & =\mathbf{f}(\mathbf{u})+\mathbf{D} \frac{1}{H(x, y)} \nabla \cdot(H(x, y) \nabla \mathbf{u})+\mathcal{O}\left(\mu^{2}\right) \\
& \approx \mathbf{f}(\mathbf{u})+\mathbf{D} \nabla^{2} \mathbf{u}+\mathbf{D}(\nabla(\ln H) \cdot \nabla \mathbf{u})
\end{aligned}
$$

Interaction of a scroll/spiral with a trough

(a)

(b)

(c)

(d)

- Bifurcation: at some trough widths, there is "catching" solution, for some only "frozen" solution.
- If the trough width changes, there is also "wedging" force.

Anatomy induced drift in Human Atrium

Epicardial View

- Ridge --- the CT and PM (attached to wall) ridge structures

Drift of spiral/scroll in human atrium geometry

（1）A brief introduction
（2）Theory
（3）Examples：spirals
（4）Examples：scrolls
（5）Examples：between 2D and 3D
（6）Conclusions

Conclusions

- Wave particle duality: spiral waves behave as particles and scroll waves as strings, with respect to small perturbations of generic nature. This is due to localization of the adjoints ("response functions"), which is a peculiar feature of this sort of dissipative patterns.
- Perturbation theory quantitatively agrees with direct simulations for sufficiently small perturbations.
- Perturbation theory can give useful qualitative insight even when perturbations are not small.
- Potential applications, particularly cardiology.

Acknowledgements

Funding

- Russian Fund for Basic Research (RF)
- Wellcome Trust (UK)
- Engineering and Physical Sciences Research Council (UK)
- Royal Society (UK)
- Numerous, for overseas collaborators

GNU lincensed Software used

- Response functions: dxspiral*
- Direct numerical simulations: BeatBox*
- 3D visualization: ezview*, based on visualization code of Barkley and Dowle's EZSCROLL ${ }^{\dagger}$
* http://empslocal.ex.ac.uk/people/staff/vnb262/
† http://homepages.warwick.ac.uk/~masax/

THE END

