

Asymptotic Dynamics of Spiral and Scroll Waves

¹Vadim N. Biktashev, ²Irina V. Biktasheva

¹ Exeter University, UK; ² Liverpool University, UK.

Collaborators: D. Barkley, G.V. Bordyugov, H. Dierckx, Y.E. Elkin, A.J. Foulkes, A.V. Holden, Z.A. Jiménez, S.R. Kharche, S.W. Morgan, E. Nakouzi, G. Plank, N. Sarvazyan, Ö. Selsil, E.E. Shnol, O. Steinbock, H. Verschelde, H. Zhang, ...

Model Reduction Across Disciplines, Leicester, August 19–22, 2014 Conference dedicated to the 60th birthday of Alexander Gorban

Intro	Theory	Spirals	Scrolls	Between	Conclusions
000000	0000000	0000	000000	0000	000

1 A brief introduction

2 Theory

- 3 Examples: spirals
- 4 Examples: scrolls
- **5** Examples: between 2D and 3D

6 Conclusions

Intro	Theory	Spirals	Scrolls	Between	Conclusions
00000	0000000	0000	000000	0000	000

Various spiral waves in nature

Dictyostelium discoideum (C. Weijer, Dundee)

Retina (M.A.Dahlem, Magdeburg)

Oxidation of CO on Pt (Y. Kevrekidis, Princeton)

Rusting of steel (O. Steinbock, Florida)

Liquid crystal (S. Residori, Nice)

Intro	Theory	Spirals	Scrolls	Between	Conclusions
○●○○○○	0000000	0000	000000	0000	000

Belousov-Zhabotinsky reaction

Non-stirred: concentric waves Stirred: spiral waves (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (!)

A. M. Zhabotinsky and A. N. Zaikin, "Spatial effects in a self-oscillating chemical system", in *Oscillatory processes in biological and chemical systems II*, Sel'kov E. E.
Ed., Science Publ., Puschino (1971)

Intro	Theory	Spirals	Scrolls	Between	Conclusions
○○●○○○	0000000	0000	000000	0000	000

Scroll waves in BZ

A. T. Winfree, "Scroll-shaped waves of chemical activity in three dimensions", *Science* **181**:937-939 (1973)

Intro	Theory	Spirals	Scrolls	Between	Conclusions
○○○●○○	00000000	0000	000000	0000	000

Spiral waves in heart

Picture from: http://thevirtualheart.org (F. Fenton)

Spiral and scroll waves

Drift due to inhomogeneity

A.M. Pertsov, E.A. Ermakova, "Mechanism of the drift of a spiral wave in an inhomogeneous medium". *Biofizika*, **33**(2): 338-342, 1988.

Spontaneous evolution

V.N. Biktashev, A.V. Holden & H. Zhang, ``Tension of Organizing Filaments of Scroll Waves" *Phil. Trans. Roy. Soc. London, ser A* **347**: 611-630 (1994); V.N. Biktashev ``A Three-Dimensional Autowave Turbulence" Int. J. Bifurcation & Chaos, 8(4): 677-684, (1998)

Intro	Theory	Spirals	Scrolls	Between	Conclusions
○○○○●○	00000000	0000	000000	0000	000
	0000000	0000	000000	0000	000

The challenge and the intrigue

- In describing spiral and scroll waves, it is convenient to talk in terms of spiral core and scroll filaments, as particle-like and string-like objects.
- What corresponds to this convenience mathematically?
- The answer involves model reductions $(2D \rightarrow 0D \text{ and } 3D \rightarrow 1D)$, but also some unique feature of spiral waves.
- There will be also one more reduction $(3D\rightarrow 2D)$ towards the end...

Intro	Theory	Spirals	Scrolls	Between	Conclusions
000000	0000000	0000	000000	0000	000

1 A brief introduction

2 Theory

- 3 Examples: spirals
- 4 Examples: scrolls
- **5** Examples: between 2D and 3D

6 Conclusions

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ◆ ■ * つへで 9/39

Drift of spirals: a popular introduction by Dwight Barkley (with some help from Lady Gaga)

https:// www.youtube. com/watch? feature=player _embedded&v =YGVvZVD_ ddo

https:// sites.google.c om/site/ barkleyvideos /

Intro	Theory	Spirals	Scrolls	Between	Conclusions
000000	0000000	0000	000000	0000	000

Spiral waves reduction $(2D \rightarrow 0D)$: the idea

▲□▶ ▲□▶ ▲ ■▶ ▲ ■▶ ▲ ■ ◆ ○ Q (~ 10/39)

Intro 00000	Theory ○●○○○○○○	Spirals 0000	Scrolls 000000	Between 0000	Conclusions 000
Spiral	waves reduct	ion (2D $ ightarrow$	0D): ansatz	Z	

• (Perturbed) reaction-diffusion system for ℓ components on the plane

 $\partial_t \mathbf{u} = \mathbf{f}(\mathbf{u}) + \mathbf{D} \nabla^2 \mathbf{u} + \epsilon \mathbf{h},$

 $\mathbf{u}(\vec{r},t), \mathbf{f}(\mathbf{u}), \mathbf{h}(\cdot) \in \mathbb{R}^{\ell}, \ \mathbf{D} \in \mathbb{R}^{\ell imes \ell}, \ \ell \geq 2, \ \vec{r} \in \mathbb{R}^2.$

• Steadily rotating spiral wave solutions ($\epsilon = 0$):

$$\mathbf{u}(\vec{r},t) = \mathbf{U}(\rho(\vec{r}-\vec{R}),\vartheta(\vec{r}-\vec{R})+\omega t-\Phi).$$

 $(\vec{r} = (x, y), \ \vec{R} = (X, Y) = \text{const}, \ \Phi = \text{const}, \ \omega \text{ is an eigenvalue}).$

For ε ≠ 0, the spiral drifts: solution remains approximately as above, but dR/dt = O(ε), dΦ/dt = O(ε).

Intro	Theory	Spirals	Scrolls	Between	Conclusions
00000	0000000	0000	000000	0000	000

Spiral waves reduction $(2D \rightarrow 0D)$: equation of motion

• Drift velocity due to perturbation:

$$\dot{R} = \epsilon \int_{\phi-\pi}^{\phi+\pi} e^{-i\xi} \left\langle \mathbf{W}_{1}, \, \tilde{\mathbf{h}}(\mathbf{U}; \rho, \theta, \xi) \right\rangle \frac{\mathrm{d}\xi}{2\pi} + \mathcal{O}\left(\epsilon^{2}\right),$$

where (
ho, heta) are corotating polar coords, $\phi = \omega t - \Phi(t)$, and

$$\langle \mathbf{w}, \mathbf{v} \rangle = \int_{\mathbb{R}^2} \mathbf{w}^+(\vec{r}) \mathbf{v}(\vec{r}) d^2 \vec{r} = \oint \int_0^\infty \mathbf{w}^+(\rho, \theta) \mathbf{v}(\rho, \theta) \rho d\rho d\theta.$$

- (Translational) response function $W_1(\rho, \theta) \in \mathbb{C}$: eigenfunction of the adjoint linearized operator, corresponding to eigenvalue $i\omega$.
- Linear expressions, hence superposition principle.

Intro	Theory	Spirals	Scrolls	Between	Conclusions
000000	0000000	0000	000000	0000	000

Spiral wave reduction: why do the integrals converge

Complex Ginzburg-Landau Equation

Intro	Theory	Spirals	Scrolls	Between	Conclusions
000000	0000000	0000	000000	0000	000

Spiral wave reduction: why do the integrals converge

FitzHugh-Nagumo

Barkley

Oregonator (BZ reaction)

Beeler-Reuter (heart ventricles)

Intro	Theory	Spirals	Scrolls	Between	Conclusions
000000	00000000	0000	000000	0000	000

Spiral wave reduction: why do the integrals converge

SIAM J. APPLIED DYNAMICAL SYSTEMS Vol. 3, No. 1, pp. 1–68

© 2004 Society for Industrial and Applied Mathematics

Defects in Oscillatory Media: Toward a Classification*

Björn Sandstede † and Arnd Scheel ‡

Corollary 4.6. Assume that $u_d(\xi, \tau)$ is a transverse source. The null space of the adjoint operator $\Phi_d^{ad} - 1$ on $L^2(\mathbb{R}, \mathbb{C}^n)$ is at least two-dimensional and contains two linearly independent functions $\psi_d^c(\xi, 0)$ and $\psi_d^{\omega}(\xi, 0)$ that satisfy

 $\int_{\mathbb{R}} \left(\begin{array}{cc} \langle \psi_{\mathrm{d}}^{c}(\xi,0), \partial_{\xi} u_{\mathrm{d}}(\xi,0) \rangle & \langle \psi_{\mathrm{d}}^{c}(\xi,0), \partial_{\tau} u_{\mathrm{d}}(\xi,0) \rangle \\ \langle \psi_{\mathrm{d}}^{\omega}(\xi,0), \partial_{\xi} u_{\mathrm{d}}(\xi,0) \rangle & \langle \psi_{\mathrm{d}}^{\omega}(\xi,0), \partial_{\tau} u_{\mathrm{d}}(\xi,0) \rangle \end{array} \right) \mathrm{d}\xi = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right).$

Furthermore, the corresponding solutions $\psi_d^c(\xi,\tau)$ and $\psi_d^\omega(\xi,\tau)$ of (4.8) decay exponentially with a uniform rate as $\xi \to \pm \infty$ for all τ .

B. Sandstede claims this result extends to 2D, i.e. spiral waves (private communication).

Intro	Theory	Spirals	Scrolls	Between	Conclusions
00000	00000000	0000	000000	0000	000

Scroll waves reduction $(3D \rightarrow 1D)$: ansatz

 (Unperturbed) reaction-diffusion system for ℓ components in space,

$$\partial_t \mathbf{u} = \mathbf{f}(\mathbf{u}) + \mathbf{D} \nabla^2 \mathbf{u} \mathbf{e} \mathbf{h},$$

 $\mathbf{u} = \mathbf{u}(\vec{r}, t); \vec{r} \in \mathbb{R}^3.$

• Steadily rotating spirals in 2D:

 $\mathbf{f}(\mathbf{U}) - \omega \mathbf{U}_{\theta} + \mathbf{D} \nabla^2 \mathbf{U} = \mathbf{0},$

 Looking for a bended and twisted scroll in 3D:

$$egin{aligned} & \mathbf{u}(ec{R}+ec{N}
ho'\cos heta'+ec{B}
ho'\sin heta',t') = \ & \mathbf{U}(
ho', heta'+(\omega t'-\Phi))+\mathbf{v}, \quad |\mathbf{v}|\ll 1, \end{aligned}$$

A twisted and bent scroll:

Intro	Theory	Spirals	Scrolls	Between	Conclusions
000000	0000000	0000	000000	0000	000

Scroll waves reduction $(3D \rightarrow 1D)$: equation of motion

 Asymptotically, when filament is locally almost straight and twist is small,

$$(\vec{R})_{\perp} = \left(\gamma_{1} + \gamma_{2}\partial_{\sigma}\vec{R}\times\right)\partial_{\sigma}^{2}\vec{R} \qquad \text{(linear) "tension"} - \left(e_{1} + e_{2}\partial_{\sigma}\vec{R}\times\right)(\partial_{\sigma}^{4}\vec{R})_{\perp} \qquad \text{"rigidity"} + |\partial_{\sigma}^{2}\vec{R}|^{2}\left(b_{1} + b_{2}\partial_{\sigma}\vec{R}\times\right)\partial_{\sigma}^{2}\vec{R} \qquad \text{"nonlinear tension"}$$

• Spirals are "building blocks" of scrolls, hence coefficients of the EoM are overlap integrals involving the same response functions.

Intro	Theory	Spirals	Scrolls	Between	Conclusions
000000	0000000	0000	000000	0000	000

1 A brief introduction

2 Theory

- 3 Examples: spirals
- 4 Examples: scrolls
- **5** Examples: between 2D and 3D

6 Conclusions

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q ○
18/39

Intro	Theory	Spirals	Scrolls	Between	Conclusions
000000	00000000	●○○○	000000	0000	000

Simple drifts

Resonant drift and Resonant repulsion

- Each stimulus shifts the spirals
- Stimulation period = spiral period => drift along straight line.
- However inhomogeneity (the boundary in this case) changes spiral period => direction of drift changes

V.A. Davydov et al. "Drift and resonance of spiral waves in active media", *Radiofzika* **31**(1988): 574-582; V.N. Biktashev, A.V. Holden "Resonant Drift of an autowave vortex in a Bounded Medium" *Physics Letters A* **181**(3): 216-224, 1993

Intro	Theory	Spirals	Scrolls	Between	Conclusions
000000	0000000		000000	0000	000

Resonant drift and "resonant repulsion"

Idea (Biktashev, Holden, 1993):

+ 0 + 4 0 + 4 2

30.0

Feedback-controlled resonant drift

- Now stimulation period synchronized with spiral wave via a feedback loop.
- Drift proceeds notwithstanding obstacles => lowvoltage defibrillation?

V.N. Biktashev & A.V. Holden ``Design Principles of a Low-Voltage Cardiac Defibrillator Based on the Effect of Feed-Back Resonant Drift" *J. Theor. Biol.* 169(2): 101-113, 1994

Intro	Theory	Spirals	Scrolls	Between	Conclusions
000000	0000000	0000	000000	0000	000

Interaction with a parametric step

Orbital motion around a local inhomogeneity

- In this example, the inhomogeneity is repelling at short distance and attracting at long distance
- Therefore the spiral is kept at a stable distance
- This stable distance depends on the response functions (ie. medium parameters) not inhomogeneity strength!

V.N. Biktashev, D. Barkley and I.V. Biktasheva "Orbital motion of spiral waves in excitable media" *Phys. Rev. Lett.*, **104**(5): 058302, 2010

Intro	Theory	Spirals	Scrolls	Between	Conclusions
000000	0000000	0000	000000	0000	000

Orbital movement around local heterogeneity

√ Q (~
22 / 39

Intro	Theory	Spirals	Scrolls	Between	Conclusions
000000	0000000	0000	000000	0000	000

1 A brief introduction

2 Theory

- 3 Examples: spirals
- 4 Examples: scrolls
- 5 Examples: between 2D and 3D

6 Conclusions

Scroll turbulence: a 3D phenomenon

2D: stationary spiral

3D: instability

(FitzHugh-Nagumo model)

V.N. Biktashev, A.V. Holden & H. Zhang, ``Tension of Organizing Filaments of Scroll Waves" *Phil. Trans. Roy. Soc. London, ser A* **347**: 611-630 (1994); V.N. Biktashev ``A Three-Dimensional Autowave Turbulence" Int. J. Bifurcation & Chaos, 8(4): 677-684, (1998)

Intro	Theory	Spirals	Scrolls	Between	Conclusions
000000	0000000	0000	●○○○○○	0000	000

Filament tension

Fig. 1. Two regimes of the scroll ring drift. (a) Scroll ring. The direction of rotation is shown by the arrow. (b) The contraction regime. Evolution of a scroll filament in time intervals $\Delta T = 1000$. The bottom is the initial location of the ring. $g_f = 1.0$. (c) The extension regime. $\Delta T = 300$, $g_f = 0.775$.

A.V. Panfilov and A.N.Rudenko, *Physica* **28D**:215-218 (1987)

P.K. Brazhnik et al. *Sov. Phys. JETP* **64**:984-990 (1987)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Intro	Theory	Spirals	Scrolls	Between	Conclusions
000000	0000000	0000	○●○○○○	0000	000

Scroll wave turbulence

$$S(t) = \int \mathrm{d}\boldsymbol{s} = \int \left| \partial_{\sigma} \vec{R} \right| \, \mathrm{d}\sigma \quad \Rightarrow \quad \frac{\partial S}{\partial t} = -\gamma_1 \int \left(\partial_{\sigma}^2 \vec{R} \right)^2 \, \mathrm{d}\boldsymbol{s} + \mathcal{O}\left(\epsilon^2\right)$$

ク **へ** (~ 25 / 39

Ð.

Precessing helical scroll: constant frequency near-resonant perturbation

IntroTheorySpiralsScrollsBetweenConclusions0000000000000000000000000000000000000

Helix produced by resonant stimulation in 3D

Helical scroll in rabbit heart geometry

- Here the "low-voltage defibrillation" failed.
- Possible reason: fiber orientation gradient => twist of a vortex => stationary helical twisted vortex by the mechanism described above.

S.W. Morgan, G. Plank, I.V. Biktasheva, and V.N. Biktashev, "Low energy defibrillation in whole ventricle model: a simulation study", in preparation

Moving boundary generating scrolls: filament tension role

Low excitability, Negative filament tension

High excitability, Positive filament tension

V.N. Biktashev, I.V. Biktasheva and N.A. Sarvazyan, ``Evolution of spiral and scroll waves of excitation in a mathematical model of ischaemic border zone" PLoS ONE, 6(9):e24388, 2011

Buckling of a negative tension filament in a thin layer: between 2D and 3D

Negative tension is tamed by filament "rigidity" and nonlinear effects

(Barkley model)

H.Dierckx, H.Verschelde, O.Selsil, V.N.Biktashev, Buckling of scroll waves, *PRL* **109**: 174102, 2012

Intro	Theory	Spirals	Scrolls	Between	Conclusions
000000	0000000	0000	000000	0000	000

Buckling of a scroll with negative filament tension

Rails, thermal expansion

Scroll filament, negative tension

Stress/negative tension vs rigidity

Pinning of filament on two spherical beads

Established filament shape can be used to estimate the filament rigidity.

Oregonator model of BZ reaction.

E. Nakouzi, Z. A. Jiménez, V. N. Biktashev and O. Steinbock, ``Analysis of Anchor-Size Effects on Pinned Scroll Waves and Measurement of Filament Rigidity" Phys. Rev. E, 89: 042901, 2014

Intro	Theory	Spirals	Scrolls	Between	Conclusions
000000	0000000	0000	00000	0000	000

Measuring rigidity of scroll filament in experiment

- Pinning of filament on spherical beads.
- Stat. shape: interaction of tension, rigidity and filaments' repulsion

◆□ > ◆□ > ◆ □ > ◆ □ >

Э

Intro	Theory	Spirals	Scrolls	Between	Conclusions
000000	0000000	0000	000000	0000	000

1 A brief introduction

2 Theory

- 3 Examples: spirals
- 4 Examples: scrolls
- 5 Examples: between 2D and 3D

6 Conclusions

Re-entry in human atrium geometry

 Is it threedimensional or two-dimensional?

(a variant of Courtemanche et al. 1998 human atrial kinetics model)

S.R.Kharche, I.V.Biktasheva, G.Seeman, H.Zhang, V.N. Biktashev, "*Mechanisms of spontaneous drift in the homogeneous human atrium*", in preparation, 2014

Intro	Theory	Spirals	Scrolls	Between	Conclusions
000000	0000000	0000	000000	0000	000

$3D \rightarrow 2D$ reduction for thin layers

$$egin{aligned} \mathbf{v}_t &= \mathbf{f}(\mathbf{v}) + \mathbf{D}
abla^2 \mathbf{v}, & \mathbf{v} &= \mathbf{v}(x, y, z, t) \ &(x, y) \in \mathbb{R}^2, & 0 \leq z \leq H(x, y) = \mu \widetilde{H}(x, y), & \mu \ll 1. \end{aligned}$$

$$\mathbf{u}_{t} = \mathbf{f}(\mathbf{u}) + \mathbf{D} \frac{1}{H(x, y)} \nabla \cdot (H(x, y) \nabla \mathbf{u}) + \mathcal{O}(\mu^{2})$$
$$\approx \mathbf{f}(\mathbf{u}) + \mathbf{D} \nabla^{2} \mathbf{u} + \mathbf{D} (\nabla (\ln H) \cdot \nabla \mathbf{u})$$

32 / 39

Intro	Theory	Spirals	Scrolls	Between	Conclusions
000000	0000000	0000	000000	0000	000

Interaction of a scroll/spiral with a trough

- Bifurcation: at some trough widths, there is "catching" solution, for some only "frozen" solution.
- If the trough width changes, there is also "wedging" force.

Anatomy induced drift in Human Atrium

• *Ridge* --- the CT and PM (attached to wall) ridge structures

Drift of spiral/scroll in human atrium geometry

. .

5900

< □ > < □ > < □ > < Ξ > < Ξ > □ Ξ □

Intro	Theory	Spirals	Scrolls	Between	Conclusions
000000	0000000	0000	000000	0000	000

1 A brief introduction

2 Theory

- 3 Examples: spirals
- 4 Examples: scrolls
- **5** Examples: between 2D and 3D

6 Conclusions

Intro 000000	Theory 0000000	Spirals 0000	Scrolls 000000	Between 0000	Conclusions ●○○
Conclus	sions				

- Wave particle duality: spiral waves behave as particles and scroll waves as strings, with respect to small perturbations of generic nature. This is due to localization of the adjoints ("response functions"), which is a peculiar feature of this sort of dissipative patterns.
- Perturbation theory quantitatively agrees with direct simulations for sufficiently small perturbations.
- Perturbation theory can give useful qualitative insight even when perturbations are not small.
- Potential applications, particularly cardiology.

Intro	Theory	Spirals	Scrolls	Between	Conclusions
00000	00000000	0000	000000	0000	○●O

Acknowledgements

Funding

- Russian Fund for Basic Research (RF)
- Wellcome Trust (UK)
- Engineering and Physical Sciences Research Council (UK)
- Royal Society (UK)
- Numerous, for overseas collaborators

GNU lincensed Software used

- Response functions: dxspiral*
- Direct numerical simulations: BeatBox*
- 3D visualization: ezview^{*}, based on visualization code of Barkley and Dowle's EZSCROLL[†]
- * http://empslocal.ex.ac.uk/people/staff/vnb262/ † http://homepages.warwick.ac.uk/~masax/

Intro	Theory	Spirals	Scrolls	Between	Conclusions
000000	0000000	0000	000000	0000	○O●

THE END

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 少へで 38/39