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Various spiral waves in nature

Dictyostelium discoideum
(C. Weijer, Dundee)

Retina (M.A.Dahlem,
Magdeburg)

Combustion (A.Merzha-
nov, Chernogolovka)

Oxidation of CO on Pt (Y.
Kevrekidis, Princeton)

Rusting of steel (O. Stein-
bock, Florida)

Liquid crystal (S. Residori,
Nice)
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Belousov-Zhabotinsky reaction

Non-stirred: concentric waves Stirred: spiral waves

A. M. Zhabotinsky and A. N. Zaikin, “Spatial e↵ects in a self-oscillating chemical

system”, in Oscillatory processes in biological and chemical systems II, Sel’kov E. E.

Ed., Science Publ., Puschino (1971)
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Scroll waves in BZ

Experiment

Reports
2

Scroll-Shaped Waves of Chemical Activity in Three Dimensions

Abstract. Ferric ions catalyze the oxidation of inalonate by bromate in acid
solution, sometimes at a spatially uniform, steady rate, but somnetimes in a self-
regenerating three-dimensional wave which resembles a rotating scroll, often
with its axis closed in a ring. In cross section perpendicular to the axis, one sees

an involute spiral emerging from a thin cylindrical core. This "dissipative
structure" organizes reaction stages periodically in space and time everywhere
except along its rotation axis, which may therefore be a thermodynamically
unique locus.

Detonation of a spatially homogene-
ous explosive results in propagation of
a wave of chemical activity, behind
which the reaction is complete. Re-
actions are also known in which each
passing wave of activity leaves the
reagent only a little closer to exhaus-
tion. In such media many waves may
propagate in succession, separated by
a minimum interval. This feature of
the gas-phase oxidation of phosphorus
attracted Rayleigh's (1) attention as
long ago as 1921. More recently and
more conveniently, in a reagent first
prepared by Zaikin and Zhabotinsky
(2), waves of chemical activity propa-
gate through a motionless liquid at
room temperature. These waves are
seen by color changes due to the local
oxidation-reduction potential of metal
ions present in catalytic amounts. In
a variety of recipes (2-5), the metal
ion (or ion complex) catalyzes the
oxidative decarboxylation of an ali-
phatic acid by bromate in acid aque-
ous solution. Several groups have in-
vestigated the reaction kinetics in-
volved (6).
My purpose here is to discuss the

wave geometry (7-10) in three di-
niensions, setting into perspective pre-
vious reports (5, 8, 9) which were
restricted to two-dimensional organiza-
tion in the periodic steady state. Figure
I shows a layer of reagent (5) 1.5 mm
deep at 25°C, printed at actual size.
The dark regions are orange (ferrous
phenanthroline) and the light regions
are blue (ferric phenanthroline). The
blue waves are propagating through the
motionless reagent at about 6 mm/min.
It is essential to realize that these
waves are really propagating, like ac-
tion potentials in nerve membrane,
through this excitable medium. Any
wave can be blocked by a barrier. They
7 SEPTEMBER 1973

are not due to spatial phase gradients
of a limit cycle oscillation, such as
described in (9, 10). Until triggered
by an encroaching blue wave, the re-
agent remains orange. All these waves
are emerging at nearly equal intervals
in time (+ 10 percent) from 19 dis-
tinct sources, most of which are not
points, but arcs of curves up to 15 mm
long. The waves emerge from some
sources, for example, A to E, as paral-
lel closed rings about a distance X,o
apart, but from others, for example
F to H, as single spirals with the same
pitch, A,. A sufficiently elongated spiral
source like F often decays into a more
symmetric spiral source; A and H de-
cayed in this way before this picture
was taken. Similarly, a sufficiently
elongated ring source like A or B often
decays into two or more less elongated
ring sources or a pair of counter-

Fig. 1. Liquid layer
of reagent (5) 1.5
mm deep at 25°C,
shown at actual size.
After spontaneous
development of pace-
maker waves in
concentric rings, and
several minutes be-
fore this picture was
taken, the fluid was
briefly and gently
sheared to create
crossed concentra-
tion gradients. My
contention is that the
waves seen here
in projection all
emerged from scroll
axes (some of them
curved) lying at
various angles to the
interfaces. The small
circles are C(O. btib-
bles.

rotating spirals like I, or both. If we
define parity as the number of clock-
wise spirals minus the number of
counterclockwise spirals, it is con-
served in every decay, except at the
edge of the dish, where a spiral can
vanish.

Elongated spiral and ring sources
continually shorten toward greater sym-
metry; notice in Fig. 1 that wave
spacing is about one-sixth greater in
the direction of the long axis than at
right angles to elongated sources be-
cause such sources contract lengthwise
between emissions. Just before achiev-
ing perfect symmetry, ring sources
abruptly vanish, as in Fig. 1, J to L.
Thereafter, the expanding central disk
remains quiescent (unless a spontane-
ously oscillating version of the reagent
is used). In contrast, spiral sources per-
sist after contracting to a point, as in
H and I. The final pattern then con-
sists exclusively of involute spirals, all
rotating at close to the same period,
and so partitioning the dish into polyg-
onal domains bounded by lines of
cusps. These are the "reverberators" of
Zaikin and Zhabotinsky (2, 3). This
eventual periodic steady state in two
dimensions was the subject of a pre-
vious report [(5) and its cover photo].
The nature of the elongated sources

is betrayed by their period: in striking
contrast to the ring waves emitted from
heterogeneous nuclei (2), all elongated
sources emit waves at the same inter-
val (+ 10 percent) as the involute
spiral (5). I believe that all three are
views of a scroll-shaped three-dimen-
sional wave, seen in projection as it
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Explanation

lies at various angles in the reagent. If
a wave like Fig. 2a lay at any angle
other than 900 to the interfaces, as in
Fig. 2b, then in projection perpendicu-
lar to the interfaces it would be seen
as an elongated source of waves, all
connected in a single spiral. In con-
trast, if the scroll axis curves around
to encounter the same interface twice,
then it will enmit waves between paral-
lel interfaces in distinct elongated
rings, as often as the scroll rotates
(Fig. 2c). In either case, if the scroll
axis is sufficiently long, then its grad-
ual bending (perhaps in part due to
convection currents) may result in an
arc vanishing through one interface.
The remaining segments then consti-
tute distinct ring sources (if the seg-
ment begins and ends on the same
interface) or spiral sources (if the seg-
ment crosses from one interface to
the other) without change of collective
parity.

In liquid layers thicker than the
layer in Fig. 1, it is not uncommon to
see ringlike sources emitting ring-
shaped waves alternately inward and
outward at close to this same mini-
mum period. These seem to be scrolls
in which the axis closes in a ring,
making a "vortex ring" of chemical
activity. All other scroll waves may be
regarded as bits and pieces of scroll
ring truncated by the interfaces.

In favorable lighting and so forth, it
is sometimes possible to see the scroll
waves directly by stereomicroscopy, for
example, at M in Fig. 1. This has the ad-
vantage that the wave is seen in mo-
tion in three dimensions, but interpreta-
tion is diflicult, at best, because all
colors are seen in projection-through
differently colored layers in the most
interesting cases-and the least me-
chanical or thermal disturbance wrecks
the wave patterns.
A less direct check on these interpre-

tations was attempted: if the "variety
of less stable forms" (5) shown in
Fig. I derive from scroll waves, then
these elongated sources shoulld never be
seen in a reagent too shallow to accom-
modate the scroll wave's core. The core
may be defined roughly as a cylinder of
circumference X,, surrounding the scroll
axis. To accommodate a core ,/.
wide, thei scroll axis would have to tilt
more than 450 from the horizontal in
a layer shallower than X,/2-, X4/4.4.
The horizontal elongation of the
sources would therefore be less than
this, and thus negligible, whereas it
could be arbitrarily great in layers
deeper than X/,. When I used the

938

reagent of (5), with Ak = 1.3 mm,
and sandwiched it between parallel
Plexiglas plates held 0.02 to 2 mm
apart by calibrated ball bearings, I
found no elongated sources in layers
less than 0.3 mm deep. Using a less
acid reagent with A,, = 2.2 mm (11),
I found no elongated sources in layers
less than 0.6 mm deep. But in deeper
layers they were easy to create (by
rolling one plate several millimeters
across the other), with longevity pro-
portional to the depth.
Waves propagate equally well in the

homogeneous, porous, and relatively
inert matrix provided by a Millipore
filter. Elongated ring sources are never
fouLnd in a single 1/7-mm thickness of

C

Fig. 2. The wave forms of Fig. 1 are

idealized here in three dimensions in an

attempt to exhibit the blue wave fronts
(half of the Fe2 isoconcentration sur-

faces) as originating from segments of a

scroll wave which continually propagates
out into a thin horizontal layer of excit-
able reagent. (a) Involute spiral (Fig. 1,

H and I); (b) elongated spiral, shown as

emerging from a tilted scroll (Fig. IF);
(c) source of elongated ring waves, shown
as a U-shaped scroll wave (Fig. 1, A to
E). The wave forms of Fig. 1 correspond
not to the intercepts of these waves with
top or bottom interfaces (although those,
and intermediate levels as well, can be
seen in peeling open a Millipore stack).
but to vertical projections completely
through these waves. Structures such as

Fig. IF are therefore replaced in Millipore
sections by deformed spirals such as those
drawn on the top and bottom faces of

(b).

Millipore (with A, = 1.6 mm at 20°C),
nor in a double thickness of Millipore,
but they do appear in a stack of three
or more clinging together by the surface
tension of reagent between them, as ex-
pected in view of the core diameter.
Thus, a further test is to try three-di-
mensional reconstruction of scroll
waves from serial section: waves propa-
gating through stacked Millipores can
be examined in cross section (as though
microtomed) by inducing waves from
suitable initial conditions, letting them
develop for several minutes (at least
ten scroll rotations), then plunging and
dispersing the stack into cold 3 percent
perchloric acid. All wave patterns are
fixed within about I second by the
cold, the dilution of all inorganic ions,
and formation of the insoluble ferrous
phenanthroline perchlorate complex.
Restacked in their original alignments,
these filters reveal a diversity of wave
patterns. Most of them can be de-
scribed as bits and pieces of scroll
Wa.VCS suLch as Fig. 2, a to c. Occasion-
ally a complete scroll ring is found,
such as Fig. 2c, connected to its mirror
miage.
The scroll axis may be a thermody-

namically unique locus if, as symmetry
considerations suggest, it is held at rela-
tively time-independent concentrations
by diffusion from the involute wave
uniformly rotating around it. These
concentrations would not be the same as
in the locally attracting homogeneous
steady state approached in the most
orange part of the cycle. Nor need they
equal the time-averaged concentrations
in the blue-orange cycle going on every-
where else. Consequently, along this
threadlike axis snaking through the
liquid, such thermodynamic parameters
as temperature and free-energy dissipa-
tion may differ from their time-averaged
values elsewhere (11).
To me, the fascination of the scroll

wave and the reason for detailed analy-
sis of its core are that it provides a

self-sustainiingly periodic solution to
kinetic schemes which, in the absence
of opportunity for spatial differentiation,
are only transiently excitable from a

locally stable equilibrium. The core of
the scroll wave is a "dissipative struc-
ture" (12), uniformly and rigidly ro-

tating about a chemically quiescent axis
in three-dimensional space. The quies-
cent orange solution and the scroll wave

solution are two alternative, but locally
stable, modes of spatial and temporal
organization of this series of reactions.
A transient disturbance exceeding a

ininimLm threshold can flip the sys-
SCIENCE, VOL. 181
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A. T. Winfree, “Scroll-shaped waves of chemical activity in three dimensions”, Science

181:937-939 (1973)
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Spiral waves in heart

Picture from: http://thevirtualheart.org (F. Fenton)
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Spiral and scroll waves 
 
Drift due to inhomogeneity Spontaneous evolution 

V.N. Biktashev, A.V. Holden & H. Zhang, ``Tension of 
Organizing Filaments of Scroll Waves'' Phil. Trans. Roy. Soc. 
London, ser A 347: 611-630 (1994); V.N. Biktashev ``A Three-
Dimensional Autowave Turbulence'' Int. J. Bifurcation & Chaos, 
8(4): 677-684, (1998) 

A.M. Pertsov, E.A. Ermakova, "Mechanism of the drift of a 
spiral wave in an inhomogeneous medium". Biofizika, 33(2):
338-342, 1988. 
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The challenge and the intrigue

In describing spiral and scroll waves, it is convenient to talk in terms
of spiral core and scroll filaments, as particle-like and string-like
objects.

What corresponds to this convenience mathematically?

The answer involves model reductions (2D!0D and 3D!1D), but
also some unique feature of spiral waves.

There will be also one more reduction (3D!2D) towards the end. . .
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Drift of spirals:  
a popular introduction by Dwight Barkley 

(with some help from Lady Gaga)  

https://
www.youtube.
com/watch?
feature=player
_embedded&v
=YGVvZVD_
ddo 

https://
sites.google.c
om/site/
barkleyvideos
/ 
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Spiral waves reduction (2D!0D): the idea

.

.

..

f(u)

f 0(u)

u1

u2

u3

a1

a2

a1

a2

U(a)

U0(a)

A(a)

A0(a)

ȧ = A(a)

ȧ = A0(a)
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Spiral waves reduction (2D!0D): ansatz

(Perturbed) reaction-di↵usion system for ` components on the plane

@tu = f(u) + Dr2u + ✏h,

u(~r , t), f(u),h(·) 2 R`
, D 2 R`⇥`

, ` � 2,

~r 2 R2
.

Steadily rotating spiral wave solutions (✏ = 0):

u(~r , t) = U(⇢(~r � ~R), #(~r � ~R) + !t � �).

(~r = (x , y), ~R = (X ,Y ) = const, � = const, ! is an eigenvalue).

For ✏ 6= 0, the spiral drifts: solution remains approximately as above,
but d~R/dt = O (✏), d�/dt = O (✏).
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Spiral waves reduction (2D!0D): equation of motion

Drift velocity due to perturbation:

Ṙ = ✏

�+⇡Z

��⇡

e�i⇠
D
W1 , h̃(U; ⇢, ✓, ⇠)

E d⇠

2⇡

+ O �
✏

2
�
,

where (⇢, ✓) are corotating polar coords, � = !t � �(t), and

hw , vi =

Z

R2

w+(~r) v(~r) d2
~r =

I 1Z

0

w+(⇢, ✓) v(⇢, ✓)⇢ d⇢ d✓.

(Translational) response function W1(⇢, ✓) 2 C: eigenfunction of the
adjoint linearized operator, corresponding to eigenvalue i!.

Linear expressions, hence superposition principle.
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Spiral wave reduction: why do the integrals converge

Complex
Ginzburg-
Landau
Equation

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

α

β

q=0
D=0
p=0
explored
selected
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Spiral wave reduction: why do the integrals converge

2.00299 0.0439188 0.72395 0.452911

0.903849 0.162824 2.70424 2.80215

U W(0) Re
�
W(1)

�
Im

�
W(1)

�

1.002 0.516419 4.6002 5.74175

0.624892 1.77696 10.7408 30.414

U W(0) Re
(

W(1)
)

Im
(

W(1)
)

(a) (b)

FitzHugh-Nagumo Barkley

U W0 Re (W1) Re (W2)

U
R

e
(W

)
Im

(W
)

V x1 h j d f [Ca]

Oregonator Beeler-Reuter
(BZ reaction) (heart ventricles)
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Spiral wave reduction: why do the integrals converge

SIAM J. APPLIED DYNAMICAL SYSTEMS c� 2004 Society for Industrial and Applied Mathematics
Vol. 3, No. 1, pp. 1–68

Defects in Oscillatory Media: Toward a Classification�

Björn Sandstede† and Arnd Scheel‡

Abstract. We investigate, in a systematic fashion, coherent structures, or defects, which serve as interfaces
between wave trains with possibly di�erent wavenumbers in reaction-di�usion systems. We propose a
classification of defects into four di�erent defect classes which have all been observed experimentally.
The characteristic distinguishing these classes is the sign of the group velocities of the wave trains
to either side of the defect, measured relative to the speed of the defect. Using a spatial-dynamics
description in which defects correspond to homoclinic and heteroclinic connections of an ill-posed
pseudoelliptic equation, we then relate robustness properties of defects to their spectral stability
properties. Last, we illustrate that all four types of defects occur in the one-dimensional cubic-
quintic Ginzburg–Landau equation as a perturbation of the phase-slip vortex.

Key words. pattern formation, coherent structures, spatial dynamics, group velocity

AMS subject classifications. 37L10, 35K57, 34C37

DOI. 10.1137/030600192

1. Introduction. In this paper, we investigate coherent structures in essentially one-
dimensional spatially extended systems. Specifically, we are interested in interfaces between
stable spatially periodic structures with possibly di�erent spatial wavenumbers as illustrated
in Figure 1.1. These interfaces can also be thought of as defects at which the underlying
perfectly periodic structure is broken. In many cases, both the periodic structures and the
defect will depend on time. We focus on defects where the resulting pattern is time-periodic,
possibly after transforming into an appropriate moving frame of reference. Our goal is to
investigate the existence and stability properties of such defects. In particular, we are in-
terested in classifying defects according to their codimension and studying their robustness
under parameter variations. Throughout this paper, we will use the term wave trains to
denote spatially periodic travelling waves.

We begin by briefly reviewing some numerical simulations and experiments in which defects
have been observed and by introducing, on a heuristic level, the concepts needed for the
classification of defects. Afterward, we recall some facts we need about wave trains before
stating the definition of defects and our main results. Table 1.1 contains a summary of the
notation we shall use throughout this paper.

⇤Received by the editors May 6, 2003; accepted for publication (in revised form) by M. Golubitsky October 21,
2003; published electronically February 24, 2004.
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There exists then an analytic Evans function E(�), defined for � 2 � \ R�, whose roots,
counted with their order, are in 1-1 correspondence with Floquet multipliers exp(2⇡�/!d),
counted with algebraic multiplicity, of the linearization �d of the period map about a contact
defect. Moreover, E can be extended into � = 0 as a C

1-function of
�

�, and we have E(0) = 0
and E �(0) 6= 0 so that � = 0 is a Floquet exponent with algebraic multiplicity one.

Last, we state the following corollary which we shall exploit later. Note that the adjoint
equation associated with (1.10) is given by

!du�

= Du

��

� cdu�

+ f

�(ud(⇠, �))�
u.(4.8)

We denote its period map by �ad
d .

Corollary 4.6. Assume that ud(⇠, �) is a transverse source. The null space of the adjoint op-
erator �ad

d �1 on L

2(R, Cn) is at least two-dimensional and contains two linearly independent
functions �

c

d(⇠, 0) and �

!

d (⇠, 0) that satisfy

Z

R

� h�c

d(⇠, 0), @
�

ud(⇠, 0)i h�c

d(⇠, 0), @
�

ud(⇠, 0)i
h�!

d (⇠, 0), @
�

ud(⇠, 0)i h�!

d (⇠, 0), @
�

ud(⇠, 0)i
�

d⇠ =

�
1 0
0 1

�
.

Furthermore, the corresponding solutions �

c

d(⇠, �) and �

!

d (⇠, �) of (4.8) decay exponentially
with a uniform rate as ⇠ ! ±� for all � .

Proof. The corollary is a consequence of [49, Lemma 5.1 and section 6] and Lemmas 4.3
and 4.4. Note that these results imply that �ad

d � 1 is bounded and Fredholm with index zero
on L

2
��

(R, Cn), where � = (��, �+) is chosen as in Lemma 4.3.

5. Robustness of defects in oscillatory media.

5.1. Invariant manifolds. We begin by investigating the existence of stable and unstable
manifolds for the ill-posed equation (4.2)

u

�

= v,

v

�

= D

�1[!d@�

u � cdv � f(u)].

Throughout this section, we fix an integer 1  ` < � and use the term smooth to refer to
functions of class C

�.
We define the stable manifold of the wave train uwt to be the set of initial conditions u0

for which there exist a solution u(⇠) of (4.2) with u(0) = u0 and a continuous phase function
✓(⇠) such that

�u(⇠) � uwt(k⇠ + ✓(⇠); k)�
Y

! 0

as ⇠ ! �. The unstable manifold is defined in the same way with the limit considered as
⇠ ! ��. A center manifold Wc is a locally invariant manifold that contains all solutions
which stay in a su�ciently small neighborhood of the orbit uwt(k⇠ � ·) for all ⇠ 2 R. Local
invariance means that, for each u0 2 Wc, there exist a constant � > 0 and a solution u(⇠) 2
Wc, defined for |⇠| < �, with u(0) = u0. Similarly, center-stable and center-unstable manifolds
are locally invariant in the forward and backward ⇠-directions, respectively, and contain all
solutions that stay in a su�ciently small neighborhood of the wave-train orbit for all ⇠ 2 R+

B. Sandstede claims this result extends to 2D, i.e. spiral waves (private
communication).
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Scroll waves reduction (3D!1D): ansatz

(Unperturbed) reaction-di↵usion
system for ` components in space,

@tu = f(u) + Dr2u���HHH+✏h,

u = u(~r , t);~r 2 R3
.

Steadily rotating spirals in 2D:

f(U) � !U✓ + Dr2U = 0,

Looking for a bended and twisted scroll
in 3D:

u(~R+ ~N⇢

0 cos ✓

0+~B⇢

0 sin ✓

0
, t 0) =

U(⇢0, ✓0 + (!t 0 � �)) + v, |v| ⌧ 1,

A twisted and bent scroll:

Frenet-Serret frame:

~R

~B

~N

~T

x 0

y 0
s

x 00 = ⇢ cos ✓, y 00 = ⇢ sin ✓.
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Scroll waves reduction (3D!1D): equation of motion

Asymptotically, when filament is locally almost straight and twist is
small,

(~̇R)? =
⇣
�1 + �2@�

~R⇥
⌘

@

2
�
~R (linear) “tension”

�
⇣
e1 + e2@�

~R⇥
⌘

(@4
�
~R)? “rigidity”

+|@2
�
~R |2

⇣
b1 + b2@�

~R⇥
⌘

@

2
�
~R “nonlinear tension”

Spirals are “building blocks” of scrolls, hence coe�cients of the EoM
are overlap integrals involving the same response functions.
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Simple drifts
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Resonant drift and Resonant repulsion   

•  Each stimulus shifts the 
spirals 

•  Stimulation period = spiral 
period => drift along straight 
line.  

•  However inhomogeneity 
     (the boundary in this case) 

changes spiral period => 
direction of drift changes 

V.A. Davydov et al. “Drift and resonance of spiral waves in 
active media”, Radiofzika 31(1988): 574-582; V.N. 
Biktashev, A.V. Holden ``Resonant Drift of an autowave 
vortex in a Bounded Medium'' Physics Letters A 181(3): 
216-224, 1993 





Feedback-controlled resonant drift 
•  Now stimulation period 

synchronized with spiral 
wave via a feedback 
loop.  

•  Drift proceeds 
notwithstanding 
obstacles => low-
voltage defibrillation? 

V.N. Biktashev & A.V. Holden ``Design Principles of a Low-
Voltage Cardiac Defibrillator Based on the Effect of Feed-
Back Resonant Drift'' J. Theor. Biol. 169(2): 101-113, 1994 
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Interaction with a parametric step
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Orbital motion around a local inhomogeneity 
•  In this example, the 

inhomogeneity is 
repelling at short 
distance and attracting 
at long distance 

•  Therefore the spiral is 
kept at a stable 
distance 

•  This stable distance 
depends on the 
response functions (ie. 
medium parameters) 
not inhomogeneity 
strength! 

V.N. Biktashev, D. Barkley and I.V. Biktasheva 
``Orbital motion of spiral waves in excitable 
media'' Phys. Rev. Lett., 104(5): 058302, 2010 
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Orbital movement around local heterogeneity
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Scroll turbulence: a 3D phenomenon 
 
2D: stationary spiral 3D: instability 

V.N. Biktashev, A.V. Holden & H. Zhang, ``Tension of Organizing Filaments of Scroll Waves'' Phil. Trans. Roy. Soc. London, ser A 347: 
611-630 (1994); V.N. Biktashev ``A Three-Dimensional Autowave Turbulence'' Int. J. Bifurcation & Chaos, 8(4): 677-684, (1998) 

(FitzHugh-Nagumo model) 
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Filament tension

Physica 28D (1987) 215-218 
North-Holland, Amsterdam 

TWO REGIMES OF THE SCROLL RING DRIFT IN THE THREE-DIMENSIONAL 
ACTIVE MEDIA 

A.V.  PANFILOV and A.N. RUDENKO 
Institute of Biological Physics, Pushchino, Moscow Region, 142292, USSR 

Received 15 March 1986 
Revised manuscript received 17 February 1987 

A modified Fitz Hugh-Nagumo model (a two-variable reaction-diffusion system with an excitable kinetics and a diffusing 
fast variable) was used to study numerically the scroll tings in a three-dimensional active medium. A new regime of the scroll 
ring drift was revealed. It consists in gradual extension and drifting of the scroll ring filament. 

1. Introduct ion  0 

The first observation of the scroll ring was 
reported by Winfree [1, 2] in experiments with 
Belousov-Zhabotinskii reaction. Later these struc- 
tures were also found in the fibrillating cardiac 
tissue [3]. Such waves are responsible for a num- 
ber of diseases, in particular, for cardiac 
arrhythmia. 

Although the scroll rings have been investigated 
for more than 10 years, their properties are scan- 
tily explored. 

Recently it was found that the scroll ring (fig. 
la)  rotates unstationarily, i.e. its singular filament 
gradually drifts and contracts [4] (fig. lb). Owing 
to this drift in a finite box the scroll ring disap- 
pears. Three-dimensional vortices have been also 
studied in the A-~0 system, and in the linear 
two-component reaction-diffusion system [5, 6]. 

In this paper a new regime of the scroll ring 
drift has been revealed. It consists in gradual 
extension and drifting of the scroll ring filament 
(fig. lc). Hence, some fundamental properties of 
the scroll ring are changed, in particular, in the 
infinite active medium, this scroll ring has an 
infinite lifetime. 

8 0' 

o 
,::t:, 

L 
Io 

b o I 

O 

Fig. 1. Two regimes of the scroll ring drift. (a) Scroll ring. The 
direction of rotation is shown by the arrow. (b) The contrac- 
tion regime. Evolution of a scroll filament in time intervals 
A T =  1000. The bottom is the initial location of the ring. 
gf = 1.0. (C) The extension regime, z~T= 300, gr = 0.775. 

0167-2789/87/$03.50 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 

A.V. Panfilov and A.N.Rudenko, Physica

28D:215-218 (1987)

P.K. Brazhnik et al. Sov. Phys. JETP

64:984-990 (1987)
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Scroll wave turbulence
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Precessing helical scroll: constant frequency 
near-resonant perturbation 
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Helix produced by resonant stimulation in 3D
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Helical scroll in rabbit heart geometry 
 

•  Here the “low-voltage 
defibrillation” failed.  

•  Possible reason: fiber 
orientation gradient => 
twist of a vortex => 
stationary helical 
twisted vortex by the 
mechanism described 
above.  

S.W. Morgan, G. Plank, I.V. Biktasheva, and 
V.N. Biktashev, "Low energy defibrillation in 
whole ventricle model: a simulation study", in 
preparation 
 



Moving boundary generating scrolls: 
                         filament tension role 

Low excitability, 
Negative filament 
tension 

High excitability, 
Positive filament 

tension 
V.N. Biktashev, I.V. Biktasheva and N.A. Sarvazyan, ``Evolution of spiral and scroll waves of excitation in a mathematical model 
of ischaemic border zone'' PLoS ONE, 6(9):e24388, 2011 



Buckling of a negative tension filament  
in a thin layer: between 2D and 3D 

Negative 
tension is 
tamed by 
filament 
“rigidity” 
and 
nonlinear 
effects 

H.Dierckx, 
H.Verschelde, 
O.Selsil, 
V.N.Biktashev, 
Buckling of scroll 
waves, PRL 109: 
174102, 2012 

(Barkley 
model) 
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Buckling of a scroll with negative filament tension

Rails, thermal expansion Scroll filament, negative tension

Stress/negative tension vs rigidity
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Pinning of filament on two spherical beads 
 

Established 
filament shape 
can be used to 
estimate the 
filament rigidity.  
 
Oregonator model 
of BZ reaction. 
 
E. Nakouzi, Z. A. Jiménez, 
V. N. Biktashev and O. 
Steinbock, ``Analysis of 
Anchor-Size Effects on 
Pinned Scroll Waves and 
Measurement of Filament 
Rigidity'' Phys. Rev. E, 89: 
042901, 2014 
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Measuring rigidity of scroll filament in experiment

t = 1.5 t = 3 t = 20

Pinning of filament on spherical
beads.

Stat. shape: interaction of
tension, rigidity and filaments’
repulsion

(a) (b)
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Re-entry in human atrium geometry 
 
•  Is it three-

dimensional or 
two-dimensional? 

 

S.R.Kharche, I.V.Biktasheva, G.Seeman, 
H.Zhang, V.N. Biktashev, “Mechanisms of 
spontaneous drift  in the homogeneous human 
atrium”, in preparation, 2014 

(a variant of 
Courtemanche et al. 1998 
human atrial kinetics 
model) 
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3D ! 2D reduction for thin layers

vt = f(v) + Dr2v, v = v(x , y , z , t)

(x , y) 2 R2
, 0  z  H(x , y) = µH̃(x , y), µ ⌧ 1.

with no-flux boundaries at z = zmin

and z = zmax. Then

v(x , y , z , t) = u(x , y , t) + O �
µ

2
�
,

and

ut = f(u) + D
1

H(x , y)
r · (H(x , y)ru) + O �

µ

2
�

⇡ f(u) + Dr2u + D (r(lnH) · ru)
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Interaction of a scroll/spiral with a trough
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Bifurcation: at some trough widths, there is “catching” solution, for
some only “frozen” solution.

If the trough width changes, there is also “wedging” force.
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•  Ridge --- the CT and PM (attached to wall) ridge structures 

Epicardial View 

Anatomy induced drift in Human Atrium 
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Drift of spiral/scroll in human atrium geometry

..
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Conclusions

Wave particle duality: spiral waves behave as particles and scroll
waves as strings, with respect to small perturbations of generic
nature. This is due to localization of the adjoints (“response
functions”), which is a peculiar feature of this sort of dissipative
patterns.

Perturbation theory quantitatively agrees with direct simulations for
su�ciently small perturbations.

Perturbation theory can give useful qualitative insight even when
perturbations are not small.

Potential applications, particularly cardiology.
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THE END
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