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Introduc9on	  
To	  study	  a	  Neural	  Network	  (NN)	  model	  the	  
following	  three	  elements	  have	  to	  be	  specified:	  
•  Descrip9on	  of	  unit’s	  dynamics	  
•  Interac9on	  between	  units	  (architecture	  of	  
connec9ons)	  

•  Learning	  rule	  (adjustment	  of	  connec9on	  
strength)	  

AIer	  that,	  the	  dynamics	  of	  neural	  ac9vity	  can	  be	  
studied.	  Usually,	  these	  PATTERNS	  of	  neural	  ac9vity	  
are	  solu9ons	  of	  a	  large	  system	  of	  ODEs	  (or	  DDEs).	  



Brain	  modelling	  
Cita9on	  from	  Steven	  Pinker	  (Psychology,	  Harvard):	  
•  Describe	  in	  5	  words	  how	  the	  brain	  works:	  

"Brain	  cells	  fire	  in	  paRerns“	  



Unit (Brain Cell) Activity: Action Potential  (Spike) 

Hodgkin-Huxley model (1952, Nobel Prize) 
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Neuron’s PHOTO Ac4on	  Poten4al	  	  



Introduc9on	  
Interac9on	  between	  units	  is	  the	  most	  difficult	  
part	  of	  NN	  specifica9on.	  	  
•  Usually,	  the	  number	  of	  units	  (N)	  is	  large	  and	  
the	  number	  of	  connec9ons	  grows	  as	  N2.	  	  

•  Standard	  approaches	  from	  sta9s9cal	  physics	  
for	  dimensionality	  reduc9on	  are	  not	  
applicable	  because	  the	  interac9ons	  are	  of	  
different	  types	  and	  they	  also	  depend	  on	  the	  
type	  of	  units	  



There	  are	  two	  major	  connec9on	  types:	  	  

Electrical	  coupling	  (gap	  junc4on)	   Chemical	  synap4c	  connec4on	  

hRp://www.ncbi.nlm.nih.gov/books/NBK11164/	  



Introduc9on	  
There	  are	  two	  major	  types	  of	  synap9c	  connec9ons:	  
excitatory	  and	  inhibitory	  connec9ons.	  It	  means	  that	  	  	  
a	  probability	  of	  ac9on	  poten9al	  increases	  or	  
decreases	  respec9vely.	  
However,	  the	  neurobiology	  is	  more	  complicated	  
than	  this	  simple	  modelling	  scheme.	  For	  example,	  
Post-‐Inhibitory	  Rebound	  (PIR)	  mechanism	  provides	  a	  
possibility	  to	  generate	  an	  ac9on	  poten9al	  aIer	  
inhibi9on:	  



Ac9on	  poten9al	  	  
Response	  	  to	  a	  short	  current	  injec9on	  and	  threshold	  property	  

Post-‐Inhibitory	  Rebound:	  Spike	  is	  generated	  	  aIer	  inhibitory	  	  
current	  injec9on	  	  



Developmental	  Approach	  
In	  TADPOLE	  project	  we	  address	  a	  long-‐
standing	  ambi9on	  of	  neuroscience	  to	  
understand	  the	  structure–func4on	  problem	  
(connec4vity	  -‐	  ac4vity	  paGern	  problem).	  	  	  
We	  study	  connec9ons	  and	  spiking	  ac9vity	  of	  
neuronal	  circuit	  	  in	  the	  2-‐day	  old	  hatchling	  
Xenopus	  tadpole.	  	  



Hatchling Xenopus tadpole 

5 mm long, 2 days post fertilization 



Tadpole	  Spinal	  Cord	  

"   Specimens	  are	  two	  days	  old	  
"   5mm	  long	  
"   Behaviour	  is	  limited	  to	  swimming	  and	  struggling	  



Developmental	  Approach	  
•   Although the experimental	  neuroscience	  
provides	  detailed	  knowledge	  on	  mechanism	  of	  
spike	  genera9on	  and	  transmission,	  in	  many	  cases	  
an	  important	  informa9on	  about	  connec4vity	  is	  
missing.	  	  

•  One	  reason	  is	  that	  experimental	  inves9ga9on	  of	  
connec9ons	  between	  neurons	  is	  extremely	  
difficult.	  Thus,	  the	  detailed	  mapping	  of	  contacts	  
between	  individual	  neurons	  is	  missing.	  	  

Li,	  et	  al.,	  2007,	  Neural	  Developm;	  	  Borisyuk	  et	  al.,	  2011,	  Front	  Neuroinform;	  Borisyuk	  et	  al.,	  2014,	  PLOS	  ONE	  



Developmental Approach 
" What methods can identify the neuronal 

connections which lead to appropriate activity 
of a circuit?  

 

In our model connections are not prescribed, 
they appear during the “developmental 
process”.  

Our research on connectivity of neurons in 
the tadpole spinal cord shows that 
computational modelling can help in finding a 
detailed realistic connectivity diagram 
(connectome).  



Questions: CNS development 

 
•  Can axon growth be controlled by simple gradients? 

•  Does synapse formation require neuron recognition?  

•  Can simple rules allow the development of a 
functional swimming network? 
 

Li, Cooke, Sautois, Soffe, Borisyuk and Roberts, 2007, Neural Developm 
 



CNS: spinal neurons 



3D spinal neuron 

Anatomical	  measurements	  

Axon 

Dendrite 

3D measurements of neuron 
morphology were made in 

isolated nervous systems of 
tadpoles where individual 

neurons had been filled with 
neurobiotin. 



Measured excitatory neuron (dIN) 

Soma diameter ~ 10 µm 



2D	  plan	  of	  tadpole	  spinal	  cord	  
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Gradient Model of Axon Growth 

Previous axon 
direction 

Next axon 
direction 

Dorso-Ventral  
gradients 

Gradient along the body 

GRADIENTS 
deviate the growth 
direction: 

GROWTH	  
	  ANGLE	  

perturbation defines a key feature of the axon growth model. Also,
the random variable makes it possible to generate computationally
a set of axons with similar statistical properties to real axons [36].

Figure 1 illustrates the model derivation. The ‘‘stiffness’’ is
shown in Figure 1A by the dashed line; however, environmental
influences change the angle value, and growth from the point with
co-ordinates (x1,y1) to the point with co-ordinates (x2,y2) is
characterised by angle h1 which can be different from the previous
angle h0 (hence ‘‘ability to deviate’’). Figure 1B illustrates the
influences of two gradients resulting in a change of the angle value:
a rostro-caudal gradient GRC and a dorso-ventral gradient GDV .
Influences of these gradients on the growth angle are characterised
by deviations in a direction perpendicular to the direction of axon
growth. Each gradient is therefore projected to a direction
perpendicular to the current growth to describe the change of
the growth angle. Thus, the model is described by the following
difference equations:

xnz1~xnzD cos hn

ynz1~ynzD sin hn

hnz1~hn{GRC(xn,yn) sin hnzGDV (xn,yn) cos hnzjn

ð1Þ

where (xn,yn,hn) are the current co-ordinates of the axon tip and
the growth angle at step n (n~0,1,2,:::N); D is the axon elongation
at each step (usually 1 mm); GRC(x,y) and GDV (x,y) are rostro-
caudal and dorso-ventral gradients, whose influence will depend
on the current position of the growth cone; jn is the value of a
random variable acting on the current step of the growth process
(here, a uniform random variable in the interval ½{a,a$). This
system of three nonlinear difference equations (1) provides a
general mathematical formulation of the model which, although
intended for application to tadpole spinal neurons, can be
considered as a computational kernel that can easily be adapted
to take into account other specific biological features.

The effects of the rostro-caudal and dorso-ventral gradients are
actually an interaction between two components: the environ-
mental cue itself and the sensitivity of the axon tip to that cue. The
resulting influence depends on the position of the axon tip:

GRC(x,y)~gR HR(x){gC HC(x),

GDV (x,y)~gD HD(y){gV HV (y),

where HR,HC ,HV ,HD describe the gradient cues while functions
gR(x,y),gC(x,y),gD(x,y),gV (x,y) describe the sensitivities of the
axon tip to each element of the gradient field.

Each environmental gradient cue is described here by a
decaying exponential function:

HR(x)~ exp ({bR (x{xR)), HC(x)~ exp (bC(x{ xC))

HD(y)~ exp (bD(y{yD)), HV (y)~ exp ({bV (y{yV ))
ð2Þ

where parameters xR,xC ,yD,yV specify the rostral, caudal, dorsal
and ventral edges for the four gradient cues (where the each is at
its maximum value) and parameters bR,bC ,bD,bV specify their
decay rates. Thus, exponential functions with these parameters
describe the properties of a common environment in which all the
axons grow, and which is identical for the growing axons of all
different neuron types. The values of these parameters are
therefore chosen to be the same when generating axons of all
neurons, independently of their type.

In contrast, the sensitivities of the axon tips to the gradient cues
gR(x,y), gC(x,y),gD(x,y),gV (x,y) and the random variable j,
which describes a stochastic component of axon growth, are
specific for different neuron types.

The model of axon growth (1) can now be re-written in the
following form:

xnz1~xnzD cos hn

ynz1~ynzD sin hn

hnz1~hn{½gRHR(xn){gCHC(xn)$ sin hn{

½gDHD(yn){gV HV (yn)$ cos hnzjn

ð3Þ

Adjusting the equations of axon growth for the specific
case of the tadpole spinal cord. Having described the
derivation of the difference equation for basic axon growth, we
next describe how the equations (2–3) are modified and extended

Figure 1. Features of the axon growth process (A) Three consecutive points of a growing axon are shown. Direction of growth during
each step (D) is defined by the growth angle (h). The dashed line shows the trajectory if based only on axon ‘‘stiffness’’ (keeping the same direction)
where there is no influence causing it to deviate. (B) Rostro-caudal (GRC) and dorso-ventral (GDV) gradients and their projections to the direction of
growth between two consecutive points of a growing axon.
doi:10.1371/journal.pone.0089461.g001
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perturbation defines a key feature of the axon growth model. Also,
the random variable makes it possible to generate computationally
a set of axons with similar statistical properties to real axons [36].

Figure 1 illustrates the model derivation. The ‘‘stiffness’’ is
shown in Figure 1A by the dashed line; however, environmental
influences change the angle value, and growth from the point with
co-ordinates (x1,y1) to the point with co-ordinates (x2,y2) is
characterised by angle h1 which can be different from the previous
angle h0 (hence ‘‘ability to deviate’’). Figure 1B illustrates the
influences of two gradients resulting in a change of the angle value:
a rostro-caudal gradient GRC and a dorso-ventral gradient GDV .
Influences of these gradients on the growth angle are characterised
by deviations in a direction perpendicular to the direction of axon
growth. Each gradient is therefore projected to a direction
perpendicular to the current growth to describe the change of
the growth angle. Thus, the model is described by the following
difference equations:

xnz1~xnzD cos hn

ynz1~ynzD sin hn

hnz1~hn{GRC(xn,yn) sin hnzGDV (xn,yn) cos hnzjn

ð1Þ

where (xn,yn,hn) are the current co-ordinates of the axon tip and
the growth angle at step n (n~0,1,2,:::N); D is the axon elongation
at each step (usually 1 mm); GRC(x,y) and GDV (x,y) are rostro-
caudal and dorso-ventral gradients, whose influence will depend
on the current position of the growth cone; jn is the value of a
random variable acting on the current step of the growth process
(here, a uniform random variable in the interval ½{a,a$). This
system of three nonlinear difference equations (1) provides a
general mathematical formulation of the model which, although
intended for application to tadpole spinal neurons, can be
considered as a computational kernel that can easily be adapted
to take into account other specific biological features.

The effects of the rostro-caudal and dorso-ventral gradients are
actually an interaction between two components: the environ-
mental cue itself and the sensitivity of the axon tip to that cue. The
resulting influence depends on the position of the axon tip:

GRC(x,y)~gR HR(x){gC HC(x),

GDV (x,y)~gD HD(y){gV HV (y),

where HR,HC ,HV ,HD describe the gradient cues while functions
gR(x,y),gC(x,y),gD(x,y),gV (x,y) describe the sensitivities of the
axon tip to each element of the gradient field.

Each environmental gradient cue is described here by a
decaying exponential function:

HR(x)~ exp ({bR (x{xR)), HC(x)~ exp (bC(x{ xC))

HD(y)~ exp (bD(y{yD)), HV (y)~ exp ({bV (y{yV ))
ð2Þ

where parameters xR,xC ,yD,yV specify the rostral, caudal, dorsal
and ventral edges for the four gradient cues (where the each is at
its maximum value) and parameters bR,bC ,bD,bV specify their
decay rates. Thus, exponential functions with these parameters
describe the properties of a common environment in which all the
axons grow, and which is identical for the growing axons of all
different neuron types. The values of these parameters are
therefore chosen to be the same when generating axons of all
neurons, independently of their type.

In contrast, the sensitivities of the axon tips to the gradient cues
gR(x,y), gC(x,y),gD(x,y),gV (x,y) and the random variable j,
which describes a stochastic component of axon growth, are
specific for different neuron types.

The model of axon growth (1) can now be re-written in the
following form:

xnz1~xnzD cos hn

ynz1~ynzD sin hn

hnz1~hn{½gRHR(xn){gCHC(xn)$ sin hn{

½gDHD(yn){gV HV (yn)$ cos hnzjn
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Adjusting the equations of axon growth for the specific
case of the tadpole spinal cord. Having described the
derivation of the difference equation for basic axon growth, we
next describe how the equations (2–3) are modified and extended

Figure 1. Features of the axon growth process (A) Three consecutive points of a growing axon are shown. Direction of growth during
each step (D) is defined by the growth angle (h). The dashed line shows the trajectory if based only on axon ‘‘stiffness’’ (keeping the same direction)
where there is no influence causing it to deviate. (B) Rostro-caudal (GRC) and dorso-ventral (GDV) gradients and their projections to the direction of
growth between two consecutive points of a growing axon.
doi:10.1371/journal.pone.0089461.g001
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Gradient	  Model	  of	  Axon	  Growth	  

where ),,( nnn yx θ  describe the current coordinates of the growth cone and growth 

angle at step ),...2,1,0( Nnn = ; Δ  is an axon elongation at each step (1 micron).  
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and	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  are	  Rostro-‐Caudal	  and	  Dorso-‐Ventral	  gradients	  	  	  

is	  the	  value	  of	  a	  random	  variable	  	  	  (uniform	  in	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  )	  	  



Gradient	  Model	  of	  Axon	  Growth	  
•  The	  effects	  of	  the	  rostro-‐caudal	  and	  dorso-‐ventral	  gradients	  

are	  actually	  an	  interac9on	  between	  two	  components:	  the	  
environmental	  cue	  itself	  and	  the	  sensi9vity	  of	  the	  axon	  9p	  to	  
that	  cue.	  The	  resul9ng	  influence	  depends	  on	  the	  posi9on	  of	  
the	  axon	  9p:	  	  

),()(),( xHgxHgyxG CCRRRC −=  

),()(),( yHgyHgyxG VVDDDV −=  

DVCR HHHH ,,,

),(),,(),,(),,( yxgyxgyxgyxg VDCR

where                          describe the environmental gradient 
cues which are universal for all axons 
while functions  
 describe the sensitivities of axon tip to each element of the 
gradient field. 

Borisyuk	  et	  al.,	  2014,	  PLOS	  ONE	  
	  



Gradient	  Model	  of	  Axon	  Growth	  
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The gradient 
environment  is assumed 
to be common for all 
growing axons (neurons 
of all types).  
 
Axon sensitivities to 
these gradient field are 
specific for neurons of 
different types. 

A profile of the gradient field on one 
side of the tadpole spinal cord guides 
the axon growth 



Developmental	  Approach	  
•   The	  idea	  of	  a	  new	  Developmental	  Approach	  is	  to	  
analyse	  the	  experimental	  data	  on	  neuron	  anatomy	  
and	  extract	  their	  “characteris9c	  features”	  which	  are	  
then	  used	  for	  modelling.	  	  

•  Thus,	  the	  model	  is	  able	  to	  generalize	  from	  the	  data	  
and	  generate	  an	  extended	  set	  of	  ar9ficial	  objects	  
with	  the	  same	  sta4s4cal	  characteris4cs	  as	  the	  
experimental	  evidence.	   

REAL	   MODEL	  



Neurons lie in 2D axon growth environment with longitudinal polarity and 
2 DV gradients shown on right 

CNS development: 

dl barrier 

floor plate 

roof plate 

dorsal sensory tract 



Generaliza9on	  from	  data	  
•  To	  simulate	  the	  axon	  growth	  we	  have	  to	  
specify	  the	  ini9al	  coordinates,	  ini9al	  growth	  
angle	  and	  the	  axon	  length.	  	  

•  These	  values	  are	  extracted	  from	  experimental	  
measurements	  using	  the	  generalisa9on	  
procedure.	  

•  	  Star9ng	  from	  a	  sample	  we	  calculate	  the	  
cumula9ve	  distribu9on	  func9on	  to	  es9mate	  a	  
value	  of	  the	  random	  variable.	  



Generaliza9on	  from	  data	  
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Example:	  Random	  value	  of	  the	  axon	  length	  is	  generalised	  
from	  experimental	  recordings	  of	  33	  axons.	  The	  cumula9ve	  
distribu9on	  func9on	  is	  calculated.	  	  

Uniform	  random	  	  
variable	  on	  [0,1]	  



Cost	  func9on:	  Dorso-‐Ventral	  projec9on	  of	  
axon	  coordinates	  

	  
Experiment	  

Model	  

type. Here, measured, real axons and modelled axons were located
on a two-dimensional rectangular plan inspired by the biological
reality (explained in the Results section). Parameter values for start
position, initial growth angle and axon length were specified using
the generalization procedures described above. Some starting
values were required for the four growth parameters. Initial
starting guesses for these values were then changed at each
iteration step of the optimization procedure. Where the iterations
converge, the result of the final iteration provides the best
parameter values corresponding to the smallest value of the cost
function (i.e. the cost function value closest to zero since the cost
function could be positive or zero).

Design of the cost function. The cost function used to
measure similarity between the generated and real axons of
tadpole spinal neurons comprised components based on two
simple features that describe the main trajectories of the axons
well: the dorso-ventral distribution of points along their length and
their tortuosity (wiggliness). The dorso-ventral distribution was
found simply by projecting points along the length of the axon to
the vertical axis and counting them in 10 mm bins (Fig. 3A,B). For
model axons (Fig. 3B), all points were generated at 1 mm step
intervals. Measurements of real axons (Fig. 3A) were made
intermittently along their length, typically at mean intervals of
,10 mm. To make these measurements comparable to those from

model axons, a simple linear interpolation procedure was first used
to link the measured co-ordinates with others at 1 mm intervals.
Similarity was estimated using normalised least squares, following
the traditional, statistical chi-square approach (see Supporting
Information S2 ‘‘Defining the cost function for stochastic
optimization’’ for further details). The tortuosity (T) of each axon
is the ratio of the total path length (arc) to the straight line distance
between start and end points (chord) (Fig. 3C; see Supporting
Information S2 ‘‘Defining the cost function for stochastic
optimization’’ for details of calculation). To make tortuosity values
for real and model axons comparable, model axon co-ordinates
were first re-sampled at 10 mm intervals along their length, similar
to the spacing between measurements of real axons. A squared
difference between average tortuosity values of real and generated
axons was then used as a measure.

The two terms of the cost function, the similarity between
dorso-ventral projection distributions and the similarity of axon
tortuosities, have very different scales. To balance them, we
therefore used a weighting coefficient w to make these terms of the
same order. Thus, the final expression for the cost function is:

fc~f 1
c zw (!TTe{!TTm)2, ð6Þ

Figure 3. Cost function components and optimization of growth parameters for tadpole aIN neurons. (A) Ten axon trajectories.
Histogram (left) showing the dorso-ventral distribution of interpolated points along the length of a set of real axons (right: viewed laterally as in Fig.
4C; red symbols indicated intermittently measured points with all axons starting at the right). The proportion of points accumulated at each dorso-
ventral level (e.g. cyan bar) is shown in the appropriate 10 mm bin. (B) Like A, but for a set of model axons. (C) Tortuosity in single axons. Red lines
indicate the direct (chord) length; red symbols indicate measured points on the path of a real axon (left); paths of model axons (right, blue) were re-
sampled at 10 mm intervals. (D) The random component in the cost function needed for optimization produces an uneven surface (illustrated for two
dimensions: dorsal and ventral sensitivity). White arrows indicate multiple slopes from the start point of a search for a minimum cost function value
(Global minimum). (E) Histogram of a sample containing 1000 repetitive calculations of the cost function for a single set of axon growth parameter
values (All examples in A–E are for tadpole aINs).
doi:10.1371/journal.pone.0089461.g003

Neuron Growth Model and Neuronal Connectivity
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type. Here, measured, real axons and modelled axons were located
on a two-dimensional rectangular plan inspired by the biological
reality (explained in the Results section). Parameter values for start
position, initial growth angle and axon length were specified using
the generalization procedures described above. Some starting
values were required for the four growth parameters. Initial
starting guesses for these values were then changed at each
iteration step of the optimization procedure. Where the iterations
converge, the result of the final iteration provides the best
parameter values corresponding to the smallest value of the cost
function (i.e. the cost function value closest to zero since the cost
function could be positive or zero).

Design of the cost function. The cost function used to
measure similarity between the generated and real axons of
tadpole spinal neurons comprised components based on two
simple features that describe the main trajectories of the axons
well: the dorso-ventral distribution of points along their length and
their tortuosity (wiggliness). The dorso-ventral distribution was
found simply by projecting points along the length of the axon to
the vertical axis and counting them in 10 mm bins (Fig. 3A,B). For
model axons (Fig. 3B), all points were generated at 1 mm step
intervals. Measurements of real axons (Fig. 3A) were made
intermittently along their length, typically at mean intervals of
,10 mm. To make these measurements comparable to those from

model axons, a simple linear interpolation procedure was first used
to link the measured co-ordinates with others at 1 mm intervals.
Similarity was estimated using normalised least squares, following
the traditional, statistical chi-square approach (see Supporting
Information S2 ‘‘Defining the cost function for stochastic
optimization’’ for further details). The tortuosity (T) of each axon
is the ratio of the total path length (arc) to the straight line distance
between start and end points (chord) (Fig. 3C; see Supporting
Information S2 ‘‘Defining the cost function for stochastic
optimization’’ for details of calculation). To make tortuosity values
for real and model axons comparable, model axon co-ordinates
were first re-sampled at 10 mm intervals along their length, similar
to the spacing between measurements of real axons. A squared
difference between average tortuosity values of real and generated
axons was then used as a measure.

The two terms of the cost function, the similarity between
dorso-ventral projection distributions and the similarity of axon
tortuosities, have very different scales. To balance them, we
therefore used a weighting coefficient w to make these terms of the
same order. Thus, the final expression for the cost function is:

fc~f 1
c zw (!TTe{!TTm)2, ð6Þ

Figure 3. Cost function components and optimization of growth parameters for tadpole aIN neurons. (A) Ten axon trajectories.
Histogram (left) showing the dorso-ventral distribution of interpolated points along the length of a set of real axons (right: viewed laterally as in Fig.
4C; red symbols indicated intermittently measured points with all axons starting at the right). The proportion of points accumulated at each dorso-
ventral level (e.g. cyan bar) is shown in the appropriate 10 mm bin. (B) Like A, but for a set of model axons. (C) Tortuosity in single axons. Red lines
indicate the direct (chord) length; red symbols indicate measured points on the path of a real axon (left); paths of model axons (right, blue) were re-
sampled at 10 mm intervals. (D) The random component in the cost function needed for optimization produces an uneven surface (illustrated for two
dimensions: dorsal and ventral sensitivity). White arrows indicate multiple slopes from the start point of a search for a minimum cost function value
(Global minimum). (E) Histogram of a sample containing 1000 repetitive calculations of the cost function for a single set of axon growth parameter
values (All examples in A–E are for tadpole aINs).
doi:10.1371/journal.pone.0089461.g003
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type. Here, measured, real axons and modelled axons were located
on a two-dimensional rectangular plan inspired by the biological
reality (explained in the Results section). Parameter values for start
position, initial growth angle and axon length were specified using
the generalization procedures described above. Some starting
values were required for the four growth parameters. Initial
starting guesses for these values were then changed at each
iteration step of the optimization procedure. Where the iterations
converge, the result of the final iteration provides the best
parameter values corresponding to the smallest value of the cost
function (i.e. the cost function value closest to zero since the cost
function could be positive or zero).

Design of the cost function. The cost function used to
measure similarity between the generated and real axons of
tadpole spinal neurons comprised components based on two
simple features that describe the main trajectories of the axons
well: the dorso-ventral distribution of points along their length and
their tortuosity (wiggliness). The dorso-ventral distribution was
found simply by projecting points along the length of the axon to
the vertical axis and counting them in 10 mm bins (Fig. 3A,B). For
model axons (Fig. 3B), all points were generated at 1 mm step
intervals. Measurements of real axons (Fig. 3A) were made
intermittently along their length, typically at mean intervals of
,10 mm. To make these measurements comparable to those from

model axons, a simple linear interpolation procedure was first used
to link the measured co-ordinates with others at 1 mm intervals.
Similarity was estimated using normalised least squares, following
the traditional, statistical chi-square approach (see Supporting
Information S2 ‘‘Defining the cost function for stochastic
optimization’’ for further details). The tortuosity (T) of each axon
is the ratio of the total path length (arc) to the straight line distance
between start and end points (chord) (Fig. 3C; see Supporting
Information S2 ‘‘Defining the cost function for stochastic
optimization’’ for details of calculation). To make tortuosity values
for real and model axons comparable, model axon co-ordinates
were first re-sampled at 10 mm intervals along their length, similar
to the spacing between measurements of real axons. A squared
difference between average tortuosity values of real and generated
axons was then used as a measure.

The two terms of the cost function, the similarity between
dorso-ventral projection distributions and the similarity of axon
tortuosities, have very different scales. To balance them, we
therefore used a weighting coefficient w to make these terms of the
same order. Thus, the final expression for the cost function is:

fc~f 1
c zw (!TTe{!TTm)2, ð6Þ

Figure 3. Cost function components and optimization of growth parameters for tadpole aIN neurons. (A) Ten axon trajectories.
Histogram (left) showing the dorso-ventral distribution of interpolated points along the length of a set of real axons (right: viewed laterally as in Fig.
4C; red symbols indicated intermittently measured points with all axons starting at the right). The proportion of points accumulated at each dorso-
ventral level (e.g. cyan bar) is shown in the appropriate 10 mm bin. (B) Like A, but for a set of model axons. (C) Tortuosity in single axons. Red lines
indicate the direct (chord) length; red symbols indicate measured points on the path of a real axon (left); paths of model axons (right, blue) were re-
sampled at 10 mm intervals. (D) The random component in the cost function needed for optimization produces an uneven surface (illustrated for two
dimensions: dorsal and ventral sensitivity). White arrows indicate multiple slopes from the start point of a search for a minimum cost function value
(Global minimum). (E) Histogram of a sample containing 1000 repetitive calculations of the cost function for a single set of axon growth parameter
values (All examples in A–E are for tadpole aINs).
doi:10.1371/journal.pone.0089461.g003
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the axon trajectories were quite predictable and setting suitable
values for these parameters did not require optimization.
Secondary axon growth involved only a single ‘main’ stage from
a branch point on the primary axon or from the soma (Fig. 6B,
green). Parameters for secondary axons were optimised from their
start point at the branch; the position of the branch point and the
branch angle were obtained using the one-dimensional general-
ization procedure.

Generating a population of neurons with realistic non-
crossing axons. The population of aINs provides an example
of neurons with uncrossed axons. It extends from the caudal
hindbrain along the spinal cord. All aINs have an uncrossed,
ascending primary axon which usually gives rise to a descending
secondary axon from a branch point close to the soma [47]. [48].
In the simulation (Fig. 6C dark blue) ten axons from aINs are
shown. The parameter values for the short ‘outgrowth’ stage and
the start of the ‘orientation’ phase of primary axon growth were:
~ggR~0:02, gV ~0:02 and gD~0:03, and the optimized values for
the main growth were gR~0:054, !ggV ~0:13 and !ggD~0:038.
During the orientation stage, the starting values made smooth
transitions to their final values, changing exponentially (Eq. 5) with
decay rates cR~ ln (10)=30,cV ~ ln (10)=100 and cD~ ln (10)=100
respectively. Stochasticity was given by a~0:09. The secondary

axons were adequately generated using the same parameters as for
the main, primary axon growth.

Generating a population of neurons with realistic
crossing axons. Like aINs, the population of cINs extends
from the caudal hindbrain down the length of the spinal cord. The
primary cIN axons are initially directed ventrally, like those of
aINs, but continue to grow ventrally, enter the ventral floor plate
and cross to the opposite side (Fig. 6C light blue). During
modelling, the trajectory of this outgrowth stage was directed by
the initial growth angle, and by weak rostral and ventral
attractions: gR~{0:006, gV ~{0:02 and a~0:08. On leaving
the floor plate on the other side, cIN primary axons then turn to
project longitudinally. This change to a longitudinal path was
controlled during the orientation stage by a smooth transition from
a starting set of parameter values: ~ggR~0:1, ~ggV ~0:05 and ~ggD~0:8
to a final set of values optimized for the main stage of ascending
axon growth: !ggR~0:019, !ggV ~0:0055 and !ggD~0:35. This
transition during the orientation stage was governed by the
exponential functions described by equations (5) with the decay
rates cR~ ln (10)=30,cV ~ ln (10)=100 and cD~ ln (10)=100 re-
spectively. Stochasticity was given by a~0:069. Most cINs have a
descending, secondary axon that arises as a branch on the primary
axon once it has crossed ventrally and emerged from the floor

Figure 6. Stages of axon growth and model axon projections. (A) Flowchart summarising the sequence of stages in modelling axon growth
for neurons with crossed or uncrossed axons. Rectangles denote axon growth stages; ovals denote values obtained using generalization procedures.
Note that a secondary axon can branch from the ‘orientation’ or ‘main’ region of a primary axon. (B) Illustration of the main stages of axon growth
described in A. In these examples, both primary axons are ascending. Asterisks indicate branch points. (C) Axon projections generated by the growth
model for uncrossed aINs (dark blue) and crossing cINs (light blue). Ten examples of each type are shown in situ with some of each type separated to
show their individual morphology. Compare to real examples in Figure 5. Bar charts compare the proportions of the main growth for the primary
axon projections in real and model axons in 10 mm dorso-ventral bins (projections sampled every 1 mm).
doi:10.1371/journal.pone.0089461.g006
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Secondary axon growth involved only a single ‘main’ stage from
a branch point on the primary axon or from the soma (Fig. 6B,
green). Parameters for secondary axons were optimised from their
start point at the branch; the position of the branch point and the
branch angle were obtained using the one-dimensional general-
ization procedure.

Generating a population of neurons with realistic non-
crossing axons. The population of aINs provides an example
of neurons with uncrossed axons. It extends from the caudal
hindbrain along the spinal cord. All aINs have an uncrossed,
ascending primary axon which usually gives rise to a descending
secondary axon from a branch point close to the soma [47]. [48].
In the simulation (Fig. 6C dark blue) ten axons from aINs are
shown. The parameter values for the short ‘outgrowth’ stage and
the start of the ‘orientation’ phase of primary axon growth were:
~ggR~0:02, gV ~0:02 and gD~0:03, and the optimized values for
the main growth were gR~0:054, !ggV ~0:13 and !ggD~0:038.
During the orientation stage, the starting values made smooth
transitions to their final values, changing exponentially (Eq. 5) with
decay rates cR~ ln (10)=30,cV ~ ln (10)=100 and cD~ ln (10)=100
respectively. Stochasticity was given by a~0:09. The secondary

axons were adequately generated using the same parameters as for
the main, primary axon growth.

Generating a population of neurons with realistic
crossing axons. Like aINs, the population of cINs extends
from the caudal hindbrain down the length of the spinal cord. The
primary cIN axons are initially directed ventrally, like those of
aINs, but continue to grow ventrally, enter the ventral floor plate
and cross to the opposite side (Fig. 6C light blue). During
modelling, the trajectory of this outgrowth stage was directed by
the initial growth angle, and by weak rostral and ventral
attractions: gR~{0:006, gV ~{0:02 and a~0:08. On leaving
the floor plate on the other side, cIN primary axons then turn to
project longitudinally. This change to a longitudinal path was
controlled during the orientation stage by a smooth transition from
a starting set of parameter values: ~ggR~0:1, ~ggV ~0:05 and ~ggD~0:8
to a final set of values optimized for the main stage of ascending
axon growth: !ggR~0:019, !ggV ~0:0055 and !ggD~0:35. This
transition during the orientation stage was governed by the
exponential functions described by equations (5) with the decay
rates cR~ ln (10)=30,cV ~ ln (10)=100 and cD~ ln (10)=100 re-
spectively. Stochasticity was given by a~0:069. Most cINs have a
descending, secondary axon that arises as a branch on the primary
axon once it has crossed ventrally and emerged from the floor

Figure 6. Stages of axon growth and model axon projections. (A) Flowchart summarising the sequence of stages in modelling axon growth
for neurons with crossed or uncrossed axons. Rectangles denote axon growth stages; ovals denote values obtained using generalization procedures.
Note that a secondary axon can branch from the ‘orientation’ or ‘main’ region of a primary axon. (B) Illustration of the main stages of axon growth
described in A. In these examples, both primary axons are ascending. Asterisks indicate branch points. (C) Axon projections generated by the growth
model for uncrossed aINs (dark blue) and crossing cINs (light blue). Ten examples of each type are shown in situ with some of each type separated to
show their individual morphology. Compare to real examples in Figure 5. Bar charts compare the proportions of the main growth for the primary
axon projections in real and model axons in 10 mm dorso-ventral bins (projections sampled every 1 mm).
doi:10.1371/journal.pone.0089461.g006

Neuron Growth Model and Neuronal Connectivity

PLOS ONE | www.plosone.org 10 February 2014 | Volume 9 | Issue 2 | e89461

Stages	  of	  axon	  growth	  

the axon trajectories were quite predictable and setting suitable
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a branch point on the primary axon or from the soma (Fig. 6B,
green). Parameters for secondary axons were optimised from their
start point at the branch; the position of the branch point and the
branch angle were obtained using the one-dimensional general-
ization procedure.
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crossing axons. The population of aINs provides an example
of neurons with uncrossed axons. It extends from the caudal
hindbrain along the spinal cord. All aINs have an uncrossed,
ascending primary axon which usually gives rise to a descending
secondary axon from a branch point close to the soma [47]. [48].
In the simulation (Fig. 6C dark blue) ten axons from aINs are
shown. The parameter values for the short ‘outgrowth’ stage and
the start of the ‘orientation’ phase of primary axon growth were:
~ggR~0:02, gV ~0:02 and gD~0:03, and the optimized values for
the main growth were gR~0:054, !ggV ~0:13 and !ggD~0:038.
During the orientation stage, the starting values made smooth
transitions to their final values, changing exponentially (Eq. 5) with
decay rates cR~ ln (10)=30,cV ~ ln (10)=100 and cD~ ln (10)=100
respectively. Stochasticity was given by a~0:09. The secondary

axons were adequately generated using the same parameters as for
the main, primary axon growth.

Generating a population of neurons with realistic
crossing axons. Like aINs, the population of cINs extends
from the caudal hindbrain down the length of the spinal cord. The
primary cIN axons are initially directed ventrally, like those of
aINs, but continue to grow ventrally, enter the ventral floor plate
and cross to the opposite side (Fig. 6C light blue). During
modelling, the trajectory of this outgrowth stage was directed by
the initial growth angle, and by weak rostral and ventral
attractions: gR~{0:006, gV ~{0:02 and a~0:08. On leaving
the floor plate on the other side, cIN primary axons then turn to
project longitudinally. This change to a longitudinal path was
controlled during the orientation stage by a smooth transition from
a starting set of parameter values: ~ggR~0:1, ~ggV ~0:05 and ~ggD~0:8
to a final set of values optimized for the main stage of ascending
axon growth: !ggR~0:019, !ggV ~0:0055 and !ggD~0:35. This
transition during the orientation stage was governed by the
exponential functions described by equations (5) with the decay
rates cR~ ln (10)=30,cV ~ ln (10)=100 and cD~ ln (10)=100 re-
spectively. Stochasticity was given by a~0:069. Most cINs have a
descending, secondary axon that arises as a branch on the primary
axon once it has crossed ventrally and emerged from the floor

Figure 6. Stages of axon growth and model axon projections. (A) Flowchart summarising the sequence of stages in modelling axon growth
for neurons with crossed or uncrossed axons. Rectangles denote axon growth stages; ovals denote values obtained using generalization procedures.
Note that a secondary axon can branch from the ‘orientation’ or ‘main’ region of a primary axon. (B) Illustration of the main stages of axon growth
described in A. In these examples, both primary axons are ascending. Asterisks indicate branch points. (C) Axon projections generated by the growth
model for uncrossed aINs (dark blue) and crossing cINs (light blue). Ten examples of each type are shown in situ with some of each type separated to
show their individual morphology. Compare to real examples in Figure 5. Bar charts compare the proportions of the main growth for the primary
axon projections in real and model axons in 10 mm dorso-ventral bins (projections sampled every 1 mm).
doi:10.1371/journal.pone.0089461.g006
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the axon trajectories were quite predictable and setting suitable
values for these parameters did not require optimization.
Secondary axon growth involved only a single ‘main’ stage from
a branch point on the primary axon or from the soma (Fig. 6B,
green). Parameters for secondary axons were optimised from their
start point at the branch; the position of the branch point and the
branch angle were obtained using the one-dimensional general-
ization procedure.

Generating a population of neurons with realistic non-
crossing axons. The population of aINs provides an example
of neurons with uncrossed axons. It extends from the caudal
hindbrain along the spinal cord. All aINs have an uncrossed,
ascending primary axon which usually gives rise to a descending
secondary axon from a branch point close to the soma [47]. [48].
In the simulation (Fig. 6C dark blue) ten axons from aINs are
shown. The parameter values for the short ‘outgrowth’ stage and
the start of the ‘orientation’ phase of primary axon growth were:
~ggR~0:02, gV ~0:02 and gD~0:03, and the optimized values for
the main growth were gR~0:054, !ggV ~0:13 and !ggD~0:038.
During the orientation stage, the starting values made smooth
transitions to their final values, changing exponentially (Eq. 5) with
decay rates cR~ ln (10)=30,cV ~ ln (10)=100 and cD~ ln (10)=100
respectively. Stochasticity was given by a~0:09. The secondary

axons were adequately generated using the same parameters as for
the main, primary axon growth.

Generating a population of neurons with realistic
crossing axons. Like aINs, the population of cINs extends
from the caudal hindbrain down the length of the spinal cord. The
primary cIN axons are initially directed ventrally, like those of
aINs, but continue to grow ventrally, enter the ventral floor plate
and cross to the opposite side (Fig. 6C light blue). During
modelling, the trajectory of this outgrowth stage was directed by
the initial growth angle, and by weak rostral and ventral
attractions: gR~{0:006, gV ~{0:02 and a~0:08. On leaving
the floor plate on the other side, cIN primary axons then turn to
project longitudinally. This change to a longitudinal path was
controlled during the orientation stage by a smooth transition from
a starting set of parameter values: ~ggR~0:1, ~ggV ~0:05 and ~ggD~0:8
to a final set of values optimized for the main stage of ascending
axon growth: !ggR~0:019, !ggV ~0:0055 and !ggD~0:35. This
transition during the orientation stage was governed by the
exponential functions described by equations (5) with the decay
rates cR~ ln (10)=30,cV ~ ln (10)=100 and cD~ ln (10)=100 re-
spectively. Stochasticity was given by a~0:069. Most cINs have a
descending, secondary axon that arises as a branch on the primary
axon once it has crossed ventrally and emerged from the floor

Figure 6. Stages of axon growth and model axon projections. (A) Flowchart summarising the sequence of stages in modelling axon growth
for neurons with crossed or uncrossed axons. Rectangles denote axon growth stages; ovals denote values obtained using generalization procedures.
Note that a secondary axon can branch from the ‘orientation’ or ‘main’ region of a primary axon. (B) Illustration of the main stages of axon growth
described in A. In these examples, both primary axons are ascending. Asterisks indicate branch points. (C) Axon projections generated by the growth
model for uncrossed aINs (dark blue) and crossing cINs (light blue). Ten examples of each type are shown in situ with some of each type separated to
show their individual morphology. Compare to real examples in Figure 5. Bar charts compare the proportions of the main growth for the primary
axon projections in real and model axons in 10 mm dorso-ventral bins (projections sampled every 1 mm).
doi:10.1371/journal.pone.0089461.g006
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CNS development: 
Axon growth model 



Developmental	  Approach	  
Computa9onal	  model	  generates	  a	  growing	  axon	  and	  
synapses	  appear	  (with	  some	  probability)	  when	  the	  axon	  
intersects	  a	  dendrite. 



Can modeled networks produce realistic, whole
animal behavior?
Crucially, we can validate and test the adequacy of each “grown”
network because we know the real network response to skin stim-
ulation is sustained, coordinated swimming. The generated swim
networks were therefore mapped onto a physiological model to
ask if a brief stimulus to some of the sensory neurons innervating
the skin triggers sustained swimming. Neurons in the physiolog-
ical model were single-compartment and, for simplicity, most of
them had the same, typical, Hodgkin–Huxley-type membrane

channels as motoneurons in our previous study (Dale, 1995; Sau-
tois et al., 2007). The model dIN neurons alone were given special
properties based on recent experimental evidence from whole-
cell paired and voltage-clamp recordings and modeling using a
population of electrically coupled multicompartment dINs
(Roberts et al., 2010; Li, 2011; Winlove and Roberts, 2012). The
majority of voltage-gated current is carried through one type of
sodium channel (Na), fast and slow potassium channels (Kf, Ks),
and a high-voltage-activated calcium channel (Ca). After tests in
the multicompartment model, the channel properties and weak

Figure 4. Features of a network generated by the growth model. A, Fragment of the growth environment with longitudinal axons and some commissural axons crossing the floor plate (thin lines
with ends at *), dendrites at the longitudinal position of the neuron soma (thick vertical bars), and circular synapses. The location of the fragment is shown by the black rectangle in the inset of the
growth environment. B, Map of cIN dendrites (blue) in part of one side showing dIN synapses (dots). C, Longitudinal distribution of synapse numbers (per 100 !m of CNS) for major connections from
sensory RB neurons, via interneurons to motoneurons (Fig. 1C).

Table 4. Average number of synaptic connections between model neurons of different types

Presynaptic neuron

Postsynaptic neuron

RB dla dlc aIN cIN dIN mn

RB 0 1968 (53) 3386 (75) 0 0 43 (22) 0
dla 0 1 (1) 6 (3) 1017 (40) 1861 (65) 1467 (57) 1650 (83)
dlc 0 0 0 1783 (86) 2555 (147) 1886 (122) 4268 (159)
aIN 0 5 (4) 19 (8) 2264 (90) 3911 (179) 2887 (128) 4319 (179)
cIN 0 0 3 (3) 5007 (153) 6894 (334) 5084 (281) 12197 (337)
dIN 0 1 (2) 22 (8) 3491 (99) 6040 (232) 4093 (179) 7334 (211)
mn 0 0 0 218 (26) 219 (29) 169 (25) 586 (50)

The first row shows the numbers of connections from RB sensory neurons to neurons of all types (RB, dla, dlc, etc.). Averages and SDs (in parentheses) are calculated using 500 connection architectures generated by the growth model.

Roberts et al. • Building a Pioneer Neuronal Network J. Neurosci., January 8, 2014 • 34(2):608 – 621 • 615
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Sub-‐graphs	  of	  excitatory	  
connec9ons	  from	  dINs	  and	  	  
inhibitory	  connec9ons	  	  
from	  cINs	  (blue)	  

Graphs	  are	  different	  but	  	  
ac9vity	  paRerns	  are	  
the	  same	  





Connectome	  
•  Using	  developmental	  approach	  and	  generaliza9on	  from	  
the	  data,	  a	  complete	  biologically	  realis9c	  neural	  
connectome	  is	  generated.	  

•  2000	  cell	  bodies	  and	  their	  dendrites	  are	  distributed	  on	  
both	  sides	  of	  the	  body.	  For	  each	  cell	  type	  the	  axon	  growth	  
model	  with	  op9mal	  parameter	  values	  is	  used	  to	  generate	  
an	  axon	  of	  each	  cell.	  

•  If	  an	  axon	  passes	  the	  dendrite	  (a	  ver9cal	  bar)	  synap9c	  
contact	  is	  generated	  with	  some	  probability.	  	  

•  A	  total	  number	  of	  synapses	  is	  about	  140,000.	  



Experiment:	  swimming	  on	  touch	  



 
• Hatchling Xenopus tadpoles swim for many seconds in 
response to a brief skin stimulus.  

• The anatomy, properties and synaptic connections of 7 
types of neuron underlying this behaviour were 
assessed directly by recording pairs of neurons. 

• Swimming depends on network connections + special 
properties of excitatory dINs with postinhibitory rebound 
firing and mutual excitation (AMPA + NMDA) 

 

Network swimming  



Model	  of	  swimming	  paRern	  

•  Spiking	  ac9vity	  of	  each	  neuron	  is	  modelled	  by	  a	  
conductance	  based	  model	  of	  the	  Hodgkin-‐Huxley	  type.	  	  

•  Connec9ons	  between	  neurons	  are	  defined	  by	  the	  
generated	  connectome.	  

•  There	  are	  several	  characteris9c	  elelctro-‐physiological	  
features	  typical	  for	  tadpole	  swimming	  paRern	  (e.g.	  
pacemaker	  proper9es	  of	  dIN	  neurons).	  

•  Model	  includes	  both	  electrical	  and	  synap9c	  
connec9ons,	  delays	  in	  spike	  propaga9on,	  randomised	  
parameters	  in	  par9cular,	  connec9on	  strengths.	  



Swimming	  
ini9a9on	  

contacted and excited by sensory RB axons. Sensory stimulation
now led to short-latency firing in all types of neurons on the
stimulated side, which was never seen in recordings. Swimming
always followed (at 19.1 ! 0.5 Hz; 12 of 12) but was preceded by
more synchrony (mean 3.8 cycles) than in the control case.

Discussion
We show that it is possible to use a model of neuronal develop-
ment to generate the large-scale anatomical pattern of neurons,
axons, and synaptic connections forming the core of the verte-

brate nervous system. This also leads to the conclusion that the
first functional networks in the vertebrate brainstem and spinal
cord may develop using surprisingly simple rules. This suggests
that complex and large networks can assemble where connec-
tions are made without recognition of “correct” target neurons.
Axons may only need to distinguish dendrites from glia and ax-
ons. They can then synapse with any dendrite they contact (with
a certain probability) so long as they grow into an appropriate
region and in a broad direction along the nervous system (toward
the head or tail; on the same or the opposite side). This important

Figure 6. Responses of the network model. Two sensory RB neurons on the right are stimulated (2) to fire a single action potential. Color codes are shown in inset in B. Each panel shows the
activity generated by a single-network model. Sensory and sensory pathway neurons fire first on the right side, then activity of other neurons alternates on left and right. A, Dots show RC position
and spike times of all active neurons in the network versus time. B, Voltage traces from selected neurons in A, with a simple diagram of the swim network. C, Example in which 3 cycles of synchronous
motoneuron activity (shaded) precede swimming. D, When sensory pathway dla synapses are stronger, motoneuron swimming starts on the right side. E, When all neurons (including dINs) have
the properties of motoneurons, voltage traces show there is reflex firing on the left side but no swimming. In A, C, and D, the vertical axis shows longitudinal RC position of neurons in micrometers
from the midbrain.
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Ini9a9on	  of	  swimming	  
We	  model	  a	  sensory	  pathway	  of	  swimming	  ini9a9on:	  
On	  a	  skin	  touch	  (leI	  side)	  a	  small	  group	  of	  sensory	  interneurons	  (RB-‐
cells)	  produces	  spikes.	  	  
These	  spikes	  excite	  dla-‐neurons	  near	  the	  middle	  of	  the	  body.	  These	  
cells	  have	  long	  dendrites	  and	  they	  deliver	  excita9on	  to	  the	  head.	  
Also,	  dlc-‐cells	  are	  excited	  and	  they	  deliver	  excita9on	  to	  the	  right	  side.	  	  
AIer	  that	  pacemaker	  ac9vity	  of	  dIN-‐neurons	  excites	  	  cIN-‐cells	  which	  
inhibit	  dIN-‐neurons	  of	  the	  opposite	  side	  to	  produce	  the	  an9-‐phase	  
oscilla9ons.	  
Motor	  neurons	  	  on	  each	  side	  deliver	  	  excita9on	  to	  muscles	  to	  
produce	  the	  swimming	  paRern	  



finding has implications for the longstanding debate on how neu-
ronal connections are made (Sperry, 1963; Zipursky and Sanes,
2010). First, the circuits in developing larval vertebrates are not
simply the precursors of more complex networks that only be-
come effective once their connectivity has been refined by addi-

tional developmental processes like detailed recognition. They
have to function immediately in their own right. As soon as they
hatch, fish and frog larvae need to swim to avoid predation, so the
networks controlling their first behavior have to work properly.
Second, if the formation of spinal circuits relies on simple pro-

Figure 7. Experiments on the network model. Following a stimulus (2), swimming occurs (A) if all marginal zone axons have the same dorsoventral distributions as sensory pathway dlas, (B,
C) CPG neuron dendrites are extended so they are contacted by all marginal zone axons, but synapse formation probability is reduced to 0.25. C shows spike times in all neurons and voltage traces
from a subset. D, Longer model (as in B) shows clear head-to-tail delay in motoneuron spike firing (red lines). Earliest spikes are at !1100 !m (dotted line). E, Head-to-tail delay in motoneuron
spikes (E right andF left sides; error bars are SDs). Regression line from 1100 !m gives a mean delay of 4.4 ms mm "1; from 6 swimming cycles in 12 networks.
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Conclusions: 
  
•  A simple axon growth model with physical barriers separating off sensory axons 
can match real axon projections and generate a synaptic connection map or 
“connectome” for the swim network 
 
•  When this connectome is mapped onto a functional model, it can swim in 
response to brief “sensory” stimuli even without detailed axon projection features 

• Pattern of swimming activity appears without any training the neural network, this 
pattern is very robust and exits in a broad range of parameter variation 
  
•  The results suggest that simple rules without specific neuron recognition may 
allow basic neuronal networks to self-assemble and generate appropriate patterns 
of spiking activity 
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