## University of Leicester



## Nikolai Brilliantov

Conference dedicated to 60th birthday of Alexander Gorban


## Fragmentation of particles: grinding of large bodies to dust



## Planetary Rings: Aggregatio \& Fragmentation



## Saturn Rings



## Model

- Particles move ballistically between pair-wise collisions
- Particles can aggregate upon collisions:

- Particles can break upon collisions:


O
-
000
0000
00000
000000

## Important features of particle collisions:

- Particles aggregate for small impact velocities
- Particles collide loosing kinetic energy for medium impact speeds
- Particles break for large impact velocities


Small $V_{i m p}$


Large $V_{i m p}$

Introduce two parameters, $E_{\text {agg }}$ and $E_{\text {frag }}$

aggregation

$$
E_{12}<E_{a g g}
$$

$$
\vec{V}_{12}=\vec{V}_{1}-\vec{V}_{2}
$$

fragmentation

$$
E_{12}>E_{f r a g}
$$

$$
\bigcirc+\bigcirc \rightarrow \bigcirc
$$

## Boltzmann equation

## Distribution function: $f(\vec{r}, \vec{V}, t)$

$$
\frac{\partial}{\partial t} f(\vec{r}, \vec{V}, t)=I(f, f) \quad \text { - "collision integral" }
$$

$$
I=I_{\text {gain }}(f, f)-I_{l o s s}(f, f)
$$

2 The Source of Examples
2.1 The Boltzmann Equation
2.1.1 The Fquation
2.1.2 The Basic Properties of the Boltzmann Equation
2.1.3 Linearized Collision Integral
2.2 Phenomenology and Quasi-Chemical

Representation of the Boltzmann Equation
2.3 Kinetic Models
2.4 Methods of Reduced Description
2.4.1 The Hilbert Method
2.4.2 The Chapman-Enskog Method
2.4.3 The Grad Moment Method
2.4.4 Special Approximations
2.4.5 The Method of Invariant Manifold
2.4.6 Quasiequilibrium Approximations
E.g. for collisions with restitution only losis terim:

## Boltzmann Equation

$m_{0}$-elementary mass $\quad r_{0}$-elementary radius

$$
m_{0} \quad 2 m_{0} \quad 3 m_{0} \quad, \ldots, \quad k m_{0}
$$



## Generalized Boltzmann Equation

restitution
viscous heating

$$
+I_{h e a t}(f, f)
$$

fragmentation

$$
\frac{\partial f_{i}\left(m_{i}, \vec{v}_{i}, t\right)}{\partial t}=I_{r e s t}(f, f)+I_{a g g}(f, f)+I_{f r a g}(f, f)
$$

Keeps the temperature of ring particles constant

- Aggregation term

$$
\begin{aligned}
& I_{k}^{\text {agg }}=\frac{1}{2} \sum_{i+i=k} \sigma_{i j}^{2} \int d \vec{v}_{i} \int d \vec{v}_{j} \int d \vec{e} \Theta\left(-\vec{v}_{i j} \cdot \vec{e}\right)\left|\vec{v}_{i j} \cdot \vec{e}\right| \times \\
& \text { gain term } \\
& \times f_{i}\left(\vec{v}_{i}\right) f_{j}\left(\vec{v}_{j}\right) \Theta\left(E_{\text {agg }}-E_{i j}\right) \delta\left(m_{k} \vec{v}_{k}-m_{i} \vec{v}_{i}-m_{j} \vec{v}_{j}\right) \\
& \text { aggregation condition momentum conservation } \\
& -\sum_{j} \sigma_{k j}^{2} \int d \vec{v}_{j} \int d \vec{e} \Theta\left(-\vec{v}_{k j} \cdot \vec{e}\right)\left|\vec{v}_{k j} \cdot \vec{e}\right| \times \\
& \times f_{k}\left(\vec{v}_{k}\right) f_{j}\left(\vec{v}_{j}\right) \Theta\left(E_{\text {agg }}-E_{k j}\right) . \\
& \text { loss term }
\end{aligned}
$$

- Fragmentation term has the similar structure, but requires a microscopic fragmentation model

The heating term keeps the steady-state energy distribution for species. its particular form is not presently important.

## Generalized Boltzmann Equation

## Assume:

- Maxwellian: $f_{i}\left(m_{i}, \vec{v}_{i}, t\right)=n_{i}\left(\frac{m_{i}}{2 T(t) \pi}\right)^{3 / 2} \exp \left(-\frac{m_{i} v_{i}^{2}}{2 T(t)}\right)$

Ask Alexander Why this is justified:

$$
\begin{aligned}
& n_{i}(t)=\int f_{i}\left(m_{i}, \vec{v}_{i}, t\right) d \vec{v}_{i} \\
& T_{i}(t)=\int \frac{m_{i} v_{i}^{2}}{2} f_{i}\left(m_{i}, \vec{v}_{i}, t\right) d \vec{v}_{i}=T(t)
\end{aligned}
$$

- Complete fragmentation at collisions:

Kinetic equations for particles concentrations $n_{i}(t)$ for space uniform systems

$$
\frac{d n_{k}}{d t}=\underbrace{\frac{1}{2} \sum_{i+j=k} K_{i j} n_{i} n_{j}-n_{k} \sum_{j \geq 1} K_{k j} n_{j}}_{\text {aggregation }}-\underbrace{\lambda n_{k} \sum_{j \geq 1}^{\substack{\text { and disruptive collisions } \\ \text { and }}} K_{k j} n_{j}}_{\text {fragmentation }}
$$

$$
\frac{d n_{1}}{d t}=-\underbrace{n_{1} \sum_{j \geq 1} K_{1 j} n_{j}}_{\text {aggregation }}+\underbrace{\frac{\lambda}{2} \sum_{i, j \geq 2}(i+j) K_{i j} n_{i} n_{j}+\lambda n_{1} \sum_{j \geq 2} j K_{1 j} n_{j}}_{\text {fragmentation }}
$$

$$
\begin{aligned}
K_{i j} & =r_{1}^{2} e^{-E_{\mathrm{frag}} / T} \lambda^{-1} \sqrt{\frac{8 \pi T}{m_{1}}} \sqrt{\frac{(i+j)}{i j}}\left(i^{1 / 3}+j^{1 / 3}\right)^{2} \\
\lambda & =\left(1+\left(1+E_{\mathrm{agg}} / T\right) e^{-E_{\mathrm{agg}} / T}\right) e^{-E_{\mathrm{frag}} / T}
\end{aligned}
$$

## For planetary rings particles' size ranges

$$
\text { from } \sim 10^{-3} \mathrm{~m} \quad \text { to } \sim 10 \mathrm{~m}
$$


$10^{9}$ equations!
Analytics?

Constant rate coefficients: $K=K_{0}$

$$
\begin{array}{rlr}
\frac{d n_{1}}{d t} & =-n_{1} N+\lambda\left(1-n_{1}\right) N & N(t)=\sum_{\substack{ \\
j \geq 1}} n_{j}(t) \\
\frac{d n_{k}}{d t} & =\frac{1}{2} \sum_{i+j=k} n_{i} n_{j}-(1+\lambda) n_{k} N ; & \begin{array}{c}
\text { Total number of } \\
\text { aggregates }
\end{array}
\end{array}
$$

$\left\{\frac{d n_{1}}{d t}=-n_{1} N+\lambda\left(1-n_{1}\right) N\right.$
$\frac{d N}{d t}=-N^{2}+\lambda(1-N) N$

$$
t \rightarrow K_{0} n_{0} t
$$

$$
n_{k} \rightarrow n_{0} n_{k}
$$

Constant rate coefficients: $K=K_{0}$
For $n_{k}(t=0)=\delta_{k, 1}$

$$
\begin{aligned}
& N(t)=2 \lambda\left[1+2 \lambda-e^{-\lambda t}\right]^{-1} \\
& n_{1}(t)=\frac{\lambda}{1+\lambda}+\frac{1}{1+\lambda}\left[\frac{(1+2 \lambda) e^{\lambda t}-1}{2 \lambda}\right]^{-\frac{2(1+\lambda)}{1+2 \lambda}} \\
& \tau_{\text {rel }}^{-1}=K_{0} n_{0} \lambda=10^{3}-10^{5} \text { years }
\end{aligned}
$$

The system relaxes to the steady state distribution of particles sizes!

Constant rate coefficients: $K=K_{0}$ Steady-state:

$$
\begin{aligned}
& n_{1}=\frac{\lambda}{1+\lambda} \quad N=\frac{2 \lambda}{1+2 \lambda} \\
& 0=\frac{1}{2} \sum_{i+j=k} n_{i} n_{j}-(1+\lambda) n_{k} N ; \quad k=2,3, \ldots
\end{aligned}
$$

Introduce Generating function: $G(z)=\sum_{k \geq 1} n_{k} z^{k}$

$$
G(z)^{2}-2(1+\lambda) N G(z)+2(1+\lambda) N n_{1} z=0
$$

Solving the quadratic equation we obtain:
$G(z)=(1+\lambda) N\left[1-\sqrt{1-\frac{2 n_{1}}{(1+\lambda) N}} z\right]$
Expanding $G(z)$ we obtain exact steady-state

$$
n_{k}=\frac{N}{\sqrt{4 \pi}}(1+\lambda)\left[\frac{2 n_{1}}{(1+\lambda) N}\right]^{k} \frac{\Gamma\left(k-\frac{1}{2}\right)}{\Gamma(k+1)}
$$

For $k \gg 1$

$$
n_{k}=\frac{\lambda}{\sqrt{\pi}} e^{-\lambda^{2} k} k^{-3 / 2}
$$

## General case

The rate kernel is uniform:

$$
\begin{aligned}
K_{i j} & \propto \sqrt{\frac{(i+j)}{i j}}\left(i^{1 / 3}+j^{1 / 3}\right)^{2} \\
K_{a i a j} & =a^{2 \mu} K_{i j} \quad \text { with } \quad \mu=\frac{1}{12}
\end{aligned}
$$

This suggests the approximation:

$$
\left.\begin{array}{c}
K_{i j} \approx K_{0}(i j)^{\mu} \\
K_{0}=r_{1}^{2} e^{-E_{\text {frag }} / T} \lambda^{-1} \sqrt{\frac{8 \pi T}{m_{1}}}
\end{array} \begin{array}{l}
\text { for } \mu=0 \text { aggregation and } \\
\text { fragmentation does not depend } \\
\text { on particles size (constant kernel) }
\end{array}\right)
$$

Steady-state equation for $K_{i j}=K_{0}(i j)^{\mu}$

$$
0=\frac{1}{2} \sum_{i+j=k} K_{0}(i j)^{\mu} n_{i} n_{j}-(1+\lambda) \sum_{j \geq 1} K_{0}(k j)^{\mu} n_{k} n_{j}
$$

Introduce

$$
\begin{aligned}
& l_{k}=k^{\mu} n_{k} \quad L=\sum_{k \geq 1} l_{k} \\
& 0=\frac{1}{2} \sum_{i+j=k} l_{i} l_{j}-(1+\lambda) l_{k} L ; \quad n_{k} \rightarrow l_{k} \quad N \rightarrow L \\
& F(z)^{2}-(1+\lambda) M F(z)+(1+\lambda) M n_{1} z=0 \\
& M=F(1)
\end{aligned}
$$

Solving quadratic equation and expanding $F(z)$ we obtain:

$$
n_{k}=\frac{(1+\lambda) M}{4 \sqrt{\pi}}\left(1-\left(\frac{\lambda}{1+\lambda}\right)^{2}\right)^{k} \frac{\Gamma(k-1 / 2)}{k^{\mu} \Gamma(k+1)}
$$

For large $k \gg 1$ :

$$
\frac{3}{2}+\mu=\frac{19}{12}=1.58
$$

$$
n_{k} \approx\left[\frac{\lambda^{5 / 6}}{2^{5 / 6} \Gamma\left(\frac{5}{12}\right)}\right] \frac{1}{k^{3 / 2+\mu}} e^{-\lambda^{2} k}
$$

## Numerical Solution of the rate equations.



## Fragmentation models

(j) $+(1) \underset{0_{0}^{0}}{0_{0}^{0}}$

breakage of particles with a power-law distribution of debris

$$
\mathrm{j}+\left(1 \rightarrow \underset{\substack{\circ}}{\substack{\circ \\ 000 \\ 000 \\ 000}} \quad P\left(m_{k}\right) \propto k^{-\alpha}\right.
$$

$$
\frac{d n_{1}}{d t}=-\underbrace{n_{1} \sum_{j \geq 1} K_{1 j} n_{j}}_{\text {aggregation }}+\underbrace{\frac{\lambda}{2} \sum_{i, j \geq 2}(i+j) K_{i j} n_{i} n_{j}+\lambda n_{1} \sum_{j \geq 2} j K_{1 j} n_{j}}_{\text {fragmentation }}
$$

$$
\frac{d n_{k}}{d t}=\frac{1}{2} \sum_{i+j=k} K_{i j} n_{i} n_{j}-(1+\lambda) \sum_{i=1}^{\infty} K_{k i} n_{i} n_{k}
$$

$$
+\lambda \sum_{i=1}^{k} n_{i} \sum_{j=k+1}^{\infty} K_{i j} n_{j} P_{k}(j)+\frac{\lambda}{2} \sum_{i, j \geq k+1}^{\infty} K_{i j} n_{i} n_{j}\left[P_{k}(i)+P_{k}(j)\right]
$$

$P_{k}(i) \propto i k^{-\alpha}$

Assume distribution $n_{k} \propto k^{-\gamma} e^{-a k}$

Then:
Old terms scale as
$\propto k^{\mu-\gamma}$
for
$k \gg 1$
$a k<1$

New terms scale as

$$
\propto k^{-\alpha} \text { or } k^{\mu-\gamma+1-\alpha} \quad k \gg 1 ; \quad a k<1
$$

For steep size distributions of debris size the resulting steady-state distribution is universal and coincides with
this for the complete fragmentation into monomers
breakage of particles with a power-law distribution for debris


$$
P\left(m_{k}\right) \propto k^{-\alpha}
$$



General case: breakage of particles with a power-law distribution for debris


Universality of steady-state size distribution in aggregation-fragmentation processes:

All steady-state aggregate size distributions have for $k \gg 1$ the same form

$$
n_{k} \propto k^{-3 / 2-\mu} e^{-\lambda^{2} k}
$$

where $2 \mu$ is the homogeneity degree of the kinetic coefficients, if the size distribution of debris is steep enough; it coincides with the form for the case of complete decomposition into monomers. For the case of power-law debris size distribution, the condition seemingly reads,

$$
\alpha \geq 3
$$

Ring particles are "ephemeral dynamic bodies. They are very loose and weak with a low average coordination number. Hence a steep distribution of debris at a collisional decomposition is very plausible.


The radii distribution of particles in Planetary Rings:

$$
k \propto R^{3} \quad n_{k} d k=f(R) d R
$$

we obtain for the radii distribution function:

$$
\begin{aligned}
f(R) & \propto R^{-(5 / 2+3 \mu)} \exp \left(-R^{3} / R_{c}^{3}\right) \\
& \frac{5}{2}+3 \mu=\frac{11}{4}=2.75
\end{aligned} R_{c}=r_{1} \lambda^{-2 / 3}
$$

N. Brilliantov, et all. PNAS, 2014 submitted.

## Comparison with the observational data for Planetary Rings



## Conclusion

- Kinetic theory of ballistic aggregation and fragmentation is developed
- Analytical result for the steady-state size distribution function is obtained
- Theoretical results agree very well with the observation data for Saturn Rings
N.Brilliantov, J.Schmidt, F.Spahn, Planetary and Space Science, 73 (2009) 327
J.Schmidt, N.Brilliantov, F. Spahn, S.Kempf, Nature 451 (2008) 685
F.Postberg, S.Kempf, J.Schmidt, N.Brilliantov, A.Beinsen, B.Abel, U.Buck, R. Srama, Nature, 459 (2009) 1098
N.Brilliantov, A.Bodrova, P.Krapivsky, J. Stat. Mech. (2009) 06/P06011


## Still to be done:

- To take into account different granular temperatures $\boldsymbol{T}_{\boldsymbol{k}}$
- To compute aggregation and fragmentaion energies $E_{\text {agg }}$ and $E_{\text {frag }}$
- To estimate the cutoff radius $R_{c}$ and to compare with the observation data
- Many other interesting issues....
N.Brilliantov, J.Schmidt, F.Spahn, Planetary and Space Science, 73 (2009) 327
J.Schmidt, N.Brilliantov, F. Spahn, S.Kempf, Nature 451 (2008) 685
F.Postberg, S.Kempf, J.Schmidt, N.Brilliantov, A.Beinsen, B.Abel, U.Buck, R. Srama, Nature, 459 (2009) 1098
N.Brilliantov, A.Bodrova, P.Krapivsky, J. Stat. Mech. (2009) 06/P06011


## Acknowledgement

Paul Krapivsky (Boston University)

Juergen Schmidt (University of Potsdam )

Anna Bodrova (Moscow University)
Thank you

