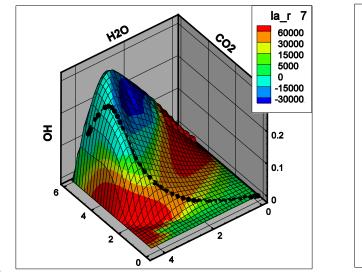


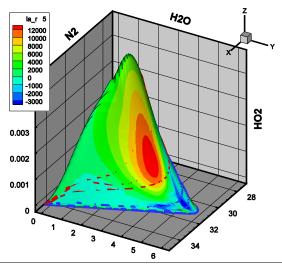
On local and global approaches in model reduction of mechanisms of chemical kinetics

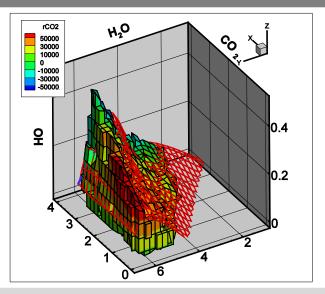
Viatcheslav Bykov

in collaboration with Vladimir Gol'dshtein, Ulrich Maas

INSTITUT FÜR TECHNISCHE THERMODYNAMIK







KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Some questions of model reduction

- Why one would reduce the model?
 - High dimensionality, non-linearity + multiple-scales = complexity + stiffness
- Is it possible to reduce the system dimension?
 - Which properties of the system under consideration allow reduction?
- How can these special properties be used to formulate the reduced model?

 "Scientists discover the world that exists; engineers create the world that never was."

THEODORE VON KARMAN

Detailed chemical kinetics

 H_2/O_2 Mechanism

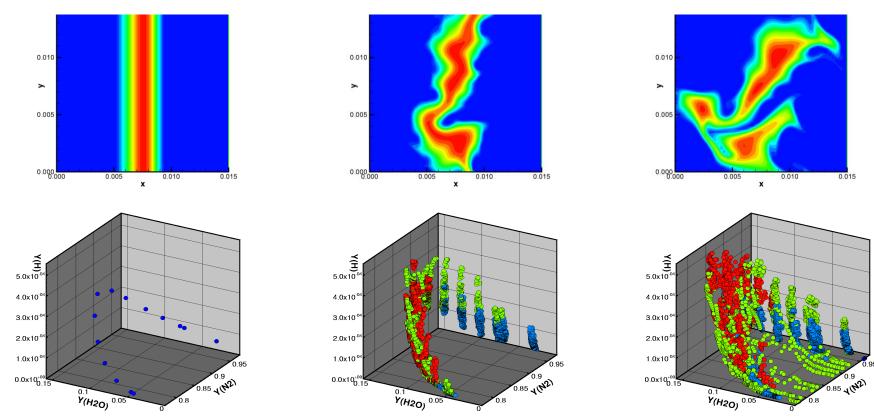
O ₂	+ H		= OH	+ 0
H_2	+ O		= OH	+ H
H_2	+ OH		$= H_2O$	+ H
ŌН	+ OH		$= H_2 O$	+ 0
Н	+ H	+ M	$= H_2^{-}$	+ M
Н	+ OH	+ M	$= H_2 O$	+ M
0	+ 0	+ M	$= O_{2}$	+ M
Н	$+ 0_{2}$	+ M	$= HO_2$	+ M
HO_2	+ H		= OH	+ OH
HO_2	+ H		$= H_2$	+ O ₂
HO_2	+ H		$= H_2 O$	+ 0
HO_2	+ O		= OH	+ O ₂
HO_2	+ OH		$= H_2O$	+ O_2^{-}
HO_2	+ HO_2		$= H_2 O_2$	+ O_2
OH	+ OH	+ M	$= H_2O_2$	+ M
H_2O_2	+ H		$= H_2$	+ HO_2
H_2O_2	+ H		$= H_2 O$	+ OH
H_2O_2	+ O		= OH	+ HO_2
H_2O_2	+ OH		$= H_2O$	+ HO_2

see e.g.: Warnatz, Maas, Dibble: Combustion, Springer 2004

- Problems of detailed chemical kinetics:
 - several hundred chemical species
 - several thousand elementary reactions
 - stiffness of the governing equation system
- Computational problems:

Scaling problems in space Scaling problems in time Large number of equations

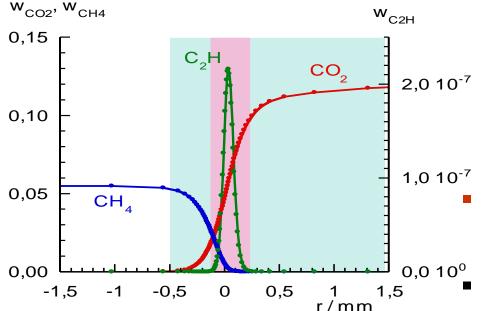
Multiple-scale phenomena



Maas & Thévenin 1998

- DNS of a turbulent non-premixed hydrogen flame
- Stiff chemical kinetics as well as molecular transport processes cause the existence of attractors in composition space!

Detailed chemical kinetics



1-dimensional cut through a CH₄-air flame

The question: What is a source of high complexity?

Problems:

- extremely high dimension of the system!
- non-linear chemical source terms
- stiffness of the governing equation system
- different chemical time scales do not only introduce stiffness, but also cause the existence of very small length scales
- Is it possible to decouple the fast chemical processes?
- This would
- reduce the number of governing equations
 remove part of the scaling problems in space!

Concept: dimension reduction

Problems of detailed chemical kinetics:

- several hundred chemical species
- several thousand elementary reactions
- stiffness of the governing equation system

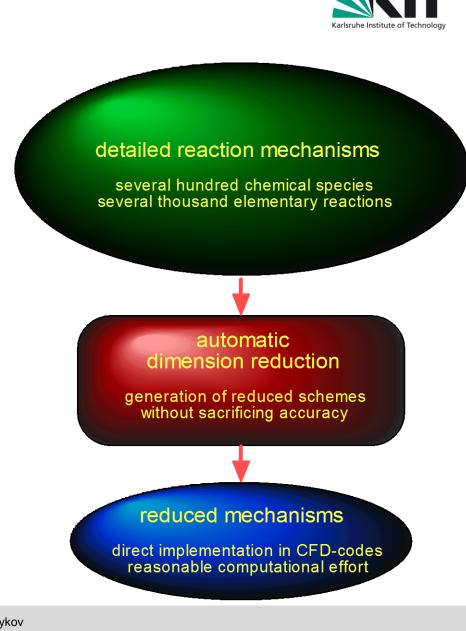
But: only few reactions are rate limiting!

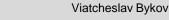
- Fundamental concepts to be used:
 - Multiple-scales

19-22 August 2014

Model reduction across disciplines University of Leicester, UK

- Decomposition of motions
- Existence of invariant manifolds of fast and slow motions in the system state space



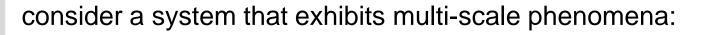


Motivation – QSSA and PEA empirics

• Original coordinate system is suitable for the decomposition in terms of the species or elementary reactions: $\begin{pmatrix} & w & w \end{pmatrix}^T$

- QSSA assumes several species at quasi-steady states, while PEA some elementary reactions at partial equilibrium!
- Which and why?

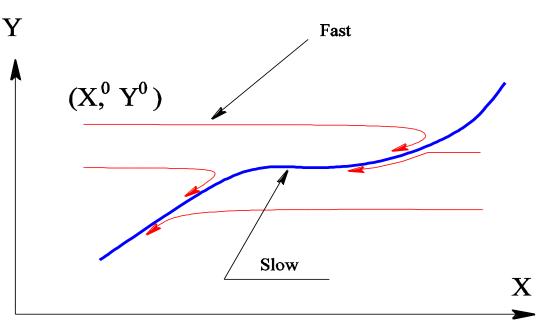
Multiple-scales



$$\frac{d\psi}{dt} = F(\psi) = S \circ R(\psi)$$

Mathematical model is the SPS!

$$\frac{dX}{dt} = \frac{1}{\varepsilon} F_f(X, Y), \quad X \in \mathbb{R}^{m_f}$$
$$\frac{dY}{dt} = F_s(X, Y), \quad Y \in \mathbb{R}^{m_s}$$
$$m_f + m_s = n, \quad 0 < \varepsilon \ll 1$$



Questions:

- How can this special representation be found?
- What the system small parameter is?

Explicit decomposition

Homogenous system of ODEs

$$\begin{pmatrix} Y \\ X \end{pmatrix} \sim \begin{pmatrix} \tilde{Z}_{s}(\psi) \\ \tilde{Z}_{f}(\psi) \end{pmatrix} \Rightarrow \begin{cases} \frac{dY}{dt} = F_{s}(X,Y) \\ \frac{dX}{dt} = F_{f}(X,Y) \\ F_{f}(X,Y) \gg F_{s}(X,Y) \end{cases}$$

The manifold of stationary states of the fast subsystem and the manifold of conserved slow variables!

$$\psi = Z \begin{pmatrix} Y \\ X \end{pmatrix}$$

$$M_{s}^{0} = \left\{ \psi : F_{f}\left(X\left(\psi\right), Y\left(\psi\right)\right) = 0 \right\}$$
$$M_{f}^{0}\left(\psi_{0}\right) = \left\{\psi : Y\left(\psi\right) = Y\left(\psi_{0}\right)\right\}$$

19-22 August 2014 Model reduction across disciplines University of Leicester, UK

8

Singularly Perturbed Vector Field (SPVF)

- informal definition: parametric family of vector fields
- is a singular perturbed one, if for any fixed Ψ the limiting vector field belongs to a priory fixed linear subspace of smaller dimension:

$$F(\psi,0) \in L_f(\psi), \quad \dim(L_f(\psi)) = n_f < n$$

- Moreover, the dimension does not depend on the point. Then, a fast manifold M_f associated with ψ satisfies $F(\psi,0) \in TM_f$
- and a slow manifold given by

$$M_{s} = \{\psi: F(\psi, 0) = 0\}$$

• Reference: Bykov et. al. J. Phys.: Conf. Ser., 55 (2006), Bykov et. al. CTM, 12(2) (2008)

It is obvious that this construction is almost useless in applications if there is no efficient algorithm to identify the fast manifold!

9

Viatcheslav Bykov

 $\frac{d\psi}{\cdot} = F(\psi, \varepsilon)$

Example 1: SPS

 $\frac{dX}{dt} = \frac{1}{\varepsilon} F_f(X, Y), \quad X \in \mathbb{R}^{n_f}$

informal definition: parametric family of vector fields

$$\begin{aligned} \frac{d\psi}{dt} &= F(\psi, \varepsilon), \quad \psi = (X, Y)^T & \frac{dY}{dt} = F_s(X, Y), \quad Y \in \mathbb{R}^{n_s} \\ dt \to d\tau & n_f + n_s = n, \quad 0 < \varepsilon <<1 \\ F(X, Y; \varepsilon) &= \begin{pmatrix} F_f(X, Y) \\ 0 \end{pmatrix} + \varepsilon \begin{pmatrix} 0 \\ F_s(X, Y) \end{pmatrix} \\ F(\psi, 0) &\in L_f(\psi) = \left\{ \psi = (X, Y) \right\} Y = const \right\}, \quad \dim(L_f) = n_f < n \end{aligned}$$

$$F(\psi,0) \in TM_f = L_f \qquad \left(M_s = \{\psi: F(\psi,0) = 0\} \Leftrightarrow \{\psi = (X,Y): F_f(X,Y) = 0\} \right)$$

Since vector field decomposition is trivial the limit of the small system parameter tends to zero coincides with the SPS, e.g. for slow manifold!

Example 2: Van der Pol Oscillator

Original model

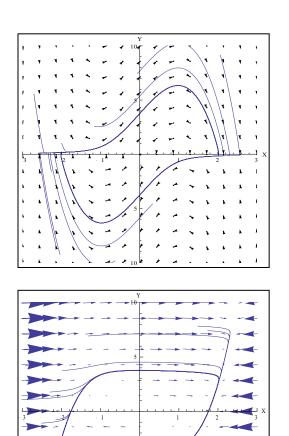
$$\ddot{x} - \mu \left(1 - x^2\right) \dot{x} + x = 0$$

• Vector form, $\mu = 4$

$$\begin{cases} \frac{dx}{d\tau} = y\\ \frac{dy}{d\tau} = -x + \mu (1 - x^2)y \end{cases}$$

• Liénard form, $\mu = 4$

$$\begin{cases} \frac{dx'}{d\tau} = y' + \mu \left(1 - \frac{1}{3} x'^2\right) x' \\ \frac{dy'}{d\tau} = -x' \end{cases}$$



12 19-22 August 2014 Model reduction across disciplines University of Leicester, UK

Example 2: Van der Pol Oscillator

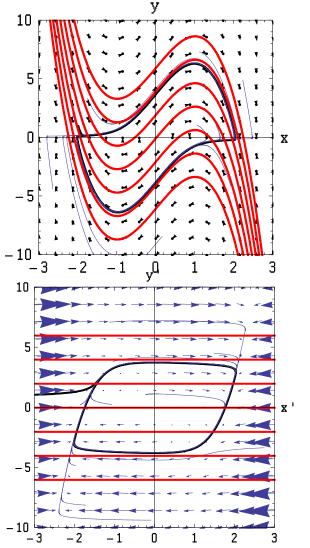
• Vector form, $\mu = 4$

$$\begin{cases} \frac{dx}{d\tau} = y \\ \frac{dy}{d\tau} = -x + \mu (1 - x^2) y \end{cases} \Leftrightarrow \begin{cases} \frac{dx'}{d\tau} = y' + \mu (1 - \frac{1}{3} x'^2) x' \\ \frac{dy'}{d\tau} = -x' \end{cases}$$

Liénard variables

$$\begin{cases} x' = x \\ y' = y - \mu \left(1 - \frac{1}{3}x^2\right)x \end{cases}$$

- The suggested framework allows reconcile the most suitable coordinate frame for the analysis
- Reference: Bykov, J. Phys.: Conf. Ser. 268, 012003, 2011



Linearly decomposed SPVFs

()) ())

definition: parametric family of vector fields

$$\frac{d\psi}{dt} = F(\psi, \varepsilon) \qquad F(\psi, \varepsilon) = \begin{pmatrix} s_{1,1} & s_{1,2} & \dots & s_{1,n_r} \\ \dots & \dots & \dots & \dots \\ s_{n_s,1} & s_{n_s,2} & \dots & s_{n_s,n_r} \end{pmatrix} \cdot \begin{pmatrix} R_1(\psi) \\ R_2(\psi) \\ \dots \\ R_n(\psi) \end{pmatrix} = \begin{pmatrix} F_1(\psi) \\ F_2(\psi) \\ \dots \\ F_n(\psi) \end{pmatrix}$$

is a linearly decomposed singular perturbed vector field, iff

$$M_f(\psi) = \{\psi\} + L_f$$

• It means there exists constant matrix Z such that

$$\begin{pmatrix} X \\ Y \end{pmatrix} = Z \psi : \quad \frac{d}{dt} \begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} \frac{1}{\varepsilon} F_f \\ F_s \end{pmatrix}$$

Purpose: Develop an algorithm, which allows to identify fast manifolds and/or approximate linear subspace of fast motions!

Global Quasi-Linearization - (GQL)

$$\psi' = F(\psi) = S \circ R(\psi)$$

Answers the questions:

- 1. How can we check if a given system defines a linearly decomposed singularly perturbed vector field?
- 2. How to estimate the system small parameter difference in time scales?
- 3. How the vector field can be decomposed?

GQL&ILDM – global versus local approach

In a fixed domain we approximate the vector field by a linear map:

$$T: \psi_i \mapsto F(\psi_i) \implies F^* = \begin{bmatrix} F(\psi_1) \dots & F(\psi_n) \\ \dots & \dots & \dots \\ | & | & | \end{bmatrix}, \Psi = \begin{bmatrix} \psi_1 \dots & \psi_n \\ \dots & \dots & \dots \\ | & | & | \end{bmatrix} \implies T = F^* \Psi^{-1}$$

If there is a gap between eignevalues of the GQL or of Jacobi matrix

$$F_{\psi}(\psi) = \left(Z_{s}(\psi) Z_{f}(\psi) \right) \begin{pmatrix} \Lambda_{s}(\psi) & * \\ 0 & \Lambda_{f}(\psi) \end{pmatrix} \begin{pmatrix} \widetilde{Z}_{s}(\psi) \\ \widetilde{Z}_{f}(\psi) \end{pmatrix} \qquad T = \left(Z_{s} Z_{f} \right) \begin{pmatrix} \Lambda_{s} & 0 \\ 0 & \Lambda_{f} \end{pmatrix} \begin{pmatrix} \widetilde{Z}_{s} \\ \widetilde{Z}_{f} \end{pmatrix}$$

...then the system small parameter is estimated by the gap!

$$\Lambda_{s} = \begin{pmatrix} \lambda_{1}(T) & * & * \\ 0 & \dots & * \\ 0 & 0 & \lambda_{n_{s}}(T) \end{pmatrix} \quad \Lambda_{f} = \begin{pmatrix} \lambda_{n_{s}+1}(T) & * & * \\ 0 & \dots & * \\ 0 & 0 & \lambda_{n}(T) \end{pmatrix} \quad \Rightarrow \quad \mathcal{E} = \left(\frac{\left| \lambda_{n_{s}+1}(T) \right|}{\left| \lambda_{n_{s}}(T) \right|} \right)^{-1}$$

• Reference: Bykov et. al. J. Phys.: Conf. Ser., 55 (2006), Bykov et. al. CTM, 12(2) (2008)

Suggested approach – explicit form of the manifold

 The states of the system are confined to a low dimensional manifold imbedded into the system state space

$$M = \left\{ \psi = \psi(\theta), \dim \theta \ll \dim \psi \right\}$$

Algebraic definition – ILDM

$$M = \left\{ \psi(\theta) : \widetilde{Z}_{f}(\psi(\theta)) \cdot F(\psi(\theta)) = 0 \right\}$$

Algebraic definition – GQL

$$\left(M = \left\{\psi(\theta): \widetilde{Z}_{f} \cdot F(\psi(\theta)) = 0\right\}\right)$$

- Reference: Maas and Pope, Combust. Flame, 1992
- Reference: Bykov et al, 2008, 2009

Multiple-scales analysis

The suggested combination of local and global methods allows at the same time

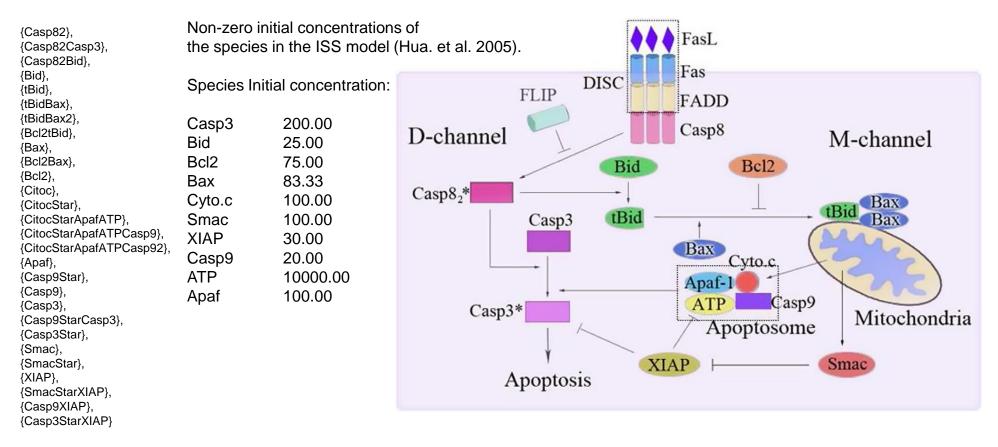
- Check globally the existence of multiple characteristic time scales!
- Estimate the dimension of the decomposition!
- Approximate slow manifolds and fast manifolds!
- Explicitly decompose the system!
- Implement the reduced model as evolution of the system on the manifold!

Coordinate free singular perturbations, local and global analysis provide with

- Manifolds equation
- Intrinsic properties of the manifold
 - Stable, unstable, turning manifolds
 - Boundary of the manifold
 - Suitable parameterization (accounts for the fast transient behaviour)
- Improving the manifold
 - using invariance property
 - optimal choice of global coordinates

Dynamical system of apoptosis signaling network

- The system comprises 28 species and 20 elementary reactions
 - Rank of the stoichiometry matrix is 19



• Reference: Y.-J. Huang, W.-A. Yong, Mathematical Biosciences 246 (2013)

19 19-22 August 2014 Model reduction across disciplines University of Leicester, UK

Apoptosis system – time scale analysis

- Jacobi matrix and GQL spectrum and a gap condition
 - There are three groups of eigenvalues representing three characteristic time scales:

Eigenvalues J[t=0]= {

4.86099,0.85228,0.809632,0.33666,0.233497,0.21221,0.186891,0.158503,

0.0765,0.0755176,0.0473823,0.00905915,0.0063,8.93154×10⁻⁷,8.92706×10⁻⁷,8.92706×10⁻⁷,8.82398×10⁻⁷,8.82398×10⁻⁷,

1.38644×10⁻¹⁶,1.86341×10⁻¹⁷,1.86341×10⁻¹⁷,1.04569×10⁻¹⁸,1.04569×10⁻¹⁸,1.01981×10⁻¹⁸,7.86392×10⁻¹⁹,0.,0.,0.}

Eigenvalues J[t=t_{f}]= {

4.8585,0.842225,0.801438,0.160749,0.131953,0.106937,

0.0998059, 0.0878569, 0.0539073, 0.0340042, 0.0279269, 0.0152488, 0.00266029, 0.0010145, 0.000860528, 0.000860528, 0.000539256, 0.000346436, 0.000860528, 0.000539256, 0.000346436, 0.000860528, 0.000539256, 0.000346436, 0.000860528, 0.0008666528, 0.00086666028, 0.000860528, 0.000866528, 0.0008666666666

 $3.67416 \times 10^{-17}, 2.82355 \times 10^{-17}, 1.54948 \times 10^{-17}, 1.54948 \times 10^{-17}, 5.59547 \times 10^{-18}, 2.94488 \times 10^{-18}, 2.94488 \times 10^{-18}, 1.95688 \times 10^{-18}, 1.03917 \times 10^{-18}, 7.57263 \times 10^{-19} \}$

Eigenvalues T = {

1277.21,1099.43,1099.43,27.7404,

3.01862,1.348,0.8092,0.218932,0.101026,0.101026,0.00684151,0.00684151,0.00451876,0.00345011,0.0 0345011,0.00101978,0.00101978,

 $1.55738 \times 10^{-7}, 1.55738 \times 10^{-7}, 2.63276 \times 10^{-10}, 2.63276 \times 10^{-10}, 2.02073 \times 10^{-10}, 1.25947 \times 10^{-11}, 5.15767 \times 10^{-12}, 4.37962 \times 10^{-12}, 3.09182 \times 10^{-12}, 3.09182 \times 10^{-12}, 5.87537 \times 10^{-17} \}$

Apoptosis system – analysis

- Invariant subspace of GQL $M = \{\psi(\theta): \widetilde{Z}_f \cdot F(\psi(\theta)) = 0\} \Rightarrow |\widetilde{Z}_f \cdot S \cdot R(\psi) = 0$
 - Transfer to the elementary reactions space

 $n = 28, n_{f} = 4: \tilde{Z}_{f} - (n_{f} \times n), \tilde{Z}_{f} \cdot S - (n_{f} \times n_{r})$ $\begin{cases} R_{2} \sim R_{3} & M = \{\psi : R_{i_{k}}(\psi) - R_{j_{k}}(\psi) = 0\} \\ R_{8} \sim R_{10} \\ R_{13} \sim R_{14} & i = \{2,8,13,15\} \\ R_{15} \sim R_{16} & j = \{3,10,14,15\} \end{cases}$ -500

21 19-22 August 2014 Model reduction across disciplines University of Leicester, UK

Apoptosis system – results of reduced model

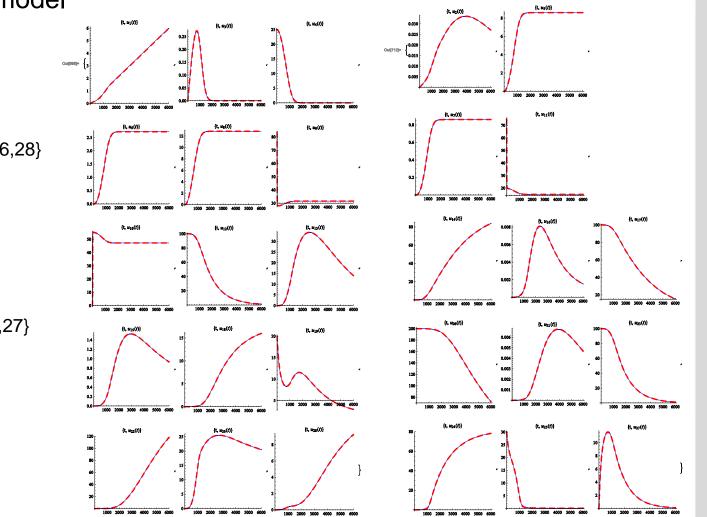
- Reduced vs detailed model
 - Independent
 - m = 28 9 4 = 15

{1,3,4,6,8,9,10,12,13,15,18,19,22,26,28}

Dependent

n-m=28-15=13

{2,5,7,11,14,16,17,20,21,23,24,25,27}

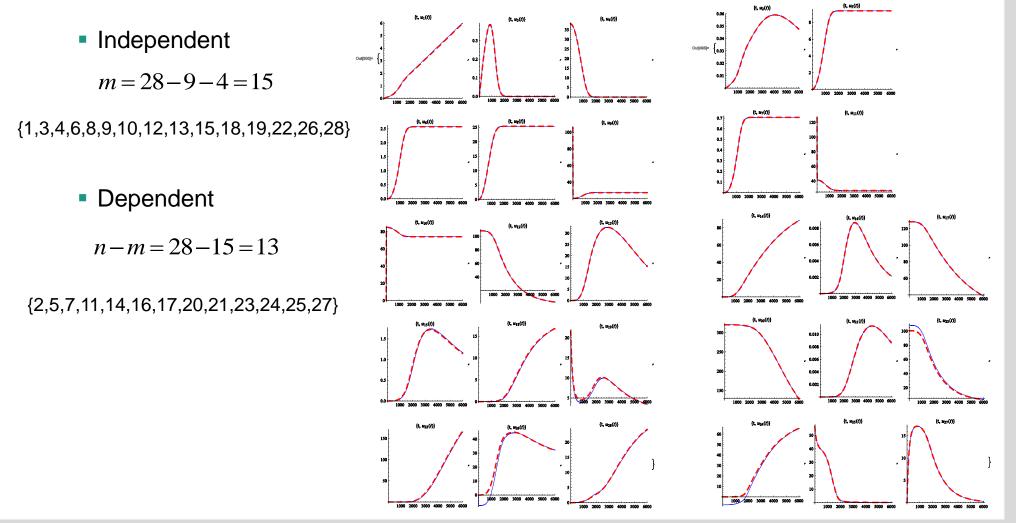


Viatcheslav Bykov

Apoptosis system – results of reduced model

Karlsruhe Institute of Technology

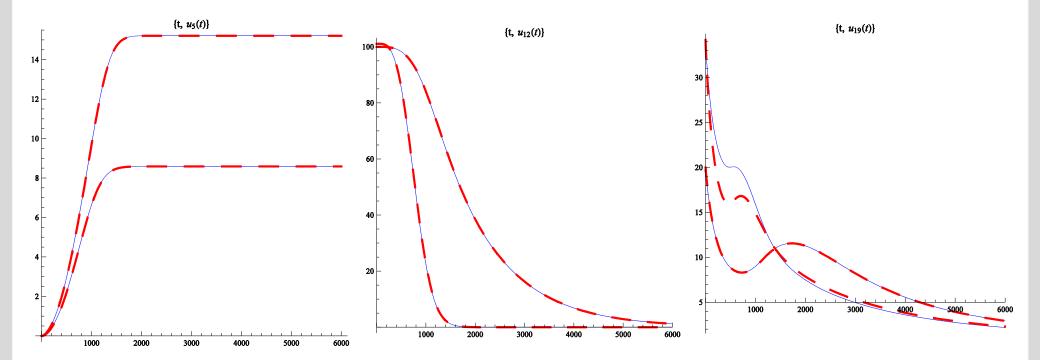
Reduced vs detailed model, initial value is perturbed



23 19-22 August 2014 Model reduction across disciplines University of Leicester, UK

Apoptosis system – results of reduced model

- Comparison for different initial values
 - detailed dashed red curves
 - reduced blue curves

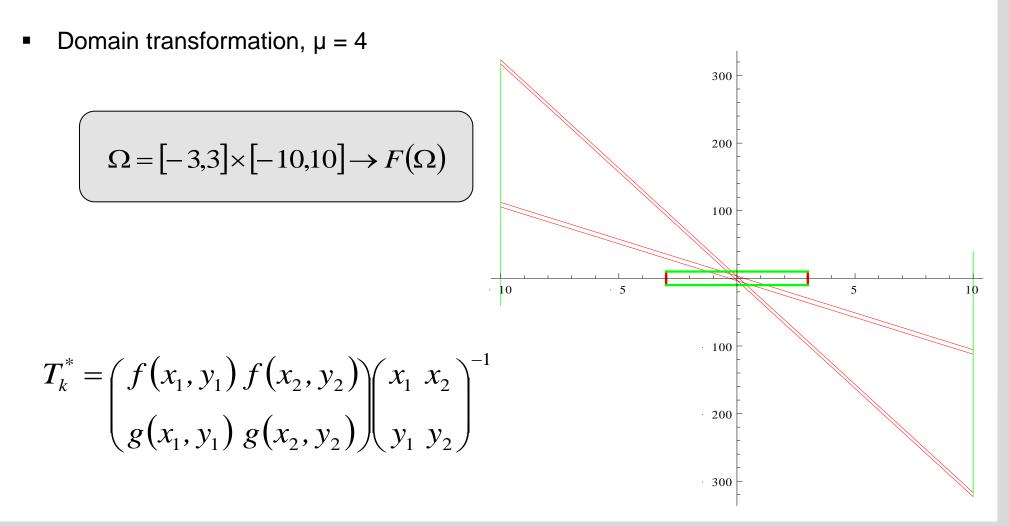


Conclusions

- Manifold based concept and decomposition of motions assumption to access model reduction problem were discussed
- Local (ILDM) and global (GQL) methods for kinetic mechanism reduction and its implementation to reacting flow simulation were presented
- The results of the analysis was demonstrated and illustarted by application to biochemical signaling network of the apoptosis

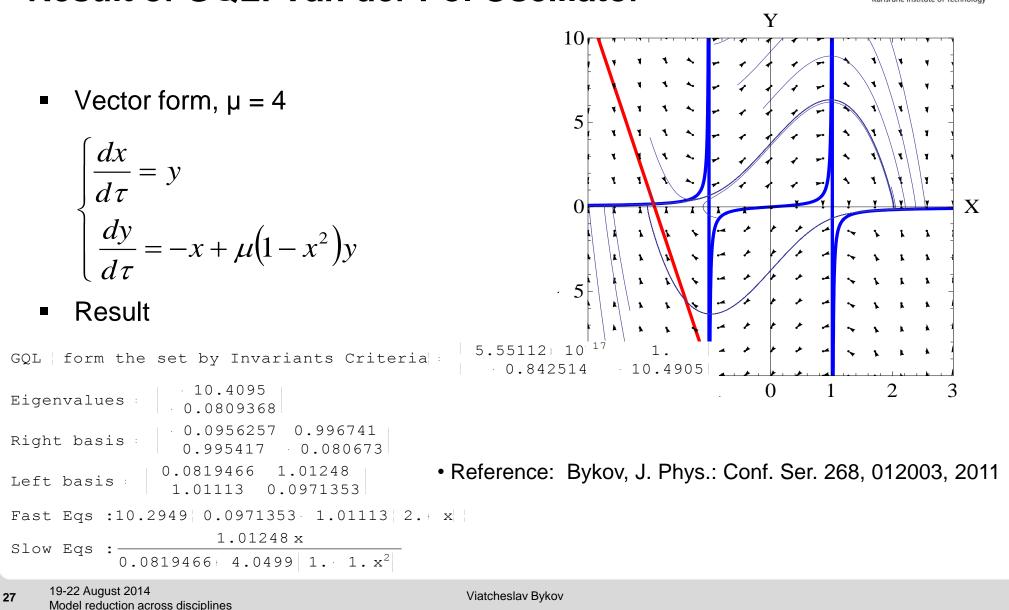
 Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

GQL application to original Van der Pol model



19-22 August 2014 Model reduction across disciplines University of Leicester, UK

26



Result of GQL: Van der Pol Oscillator

University of Leicester, UK

GQL application to Van der Pol model in Liénard form

10

5

5

· 10

20

30

10

• Domain transformation, $\mu = 4$

$$\Omega = [-3,3] \times [-10,10] \rightarrow F(\Omega)$$

$$T_{k}^{*} = \begin{pmatrix} f(x_{1}, y_{1}) f(x_{2}, y_{2}) \\ g(x_{1}, y_{1}) g(x_{2}, y_{2}) \end{pmatrix} \begin{pmatrix} x_{1} & x_{2} \\ y_{1} & y_{2} \end{pmatrix}^{-1}$$

· 30

· 20

10

Result of GQL: Van der Pol Oscillator, Liénard form

• Vector form, $\mu = 4$

$$\begin{cases} \frac{dx'}{d\tau} = y' + \mu \left(1 - \frac{1}{3} x'^2\right) x' \\ \frac{dy'}{d\tau} = -x' \end{cases}$$

Original form

GQL | form the set by Invariants Criteria :

Eigenvalues7.65106
0.124474Right basis0.991567
0.123521
0.129599Left basis1.02518
0.133888
1.02438

Fast Eqs : 0.976198 | 1.02438 0.133888 | 4.+ x |

```
Slow Eqs : 0.975435 0.127609 x 4.10074 x 1. 0.333333 x^2
```

