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Chaotic response of ML to 
periodic kicking [not a toy model!]

10 Kevin K. Lin et al.
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Fig. 4. Shear-induced folding in the Morris-Lecar model. Here, the stable cycle is given one kick with A = −2, then allowed to
relax back to the cycle.
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Fig. 5. A strange attractor created by shear-induced chaos. The dashed curves show the basin boundary of the limit cycle γ . Here
A = −2, T = 27.

least 10-15 kicks of this size to push a neuron over threshold. Fig. 4 also tells us that it takes on the order

of 15 units of time for the fold to begin to form, so that for a periodically-kicked system to produce chaos,

the kick period should probably be upwards of 20 units of time. (Kicks delivered too frequently may also

drive points to the left of the stable manifold of p; once that happens, it will end up near the left sink.)
Fig. 5 shows the strange attractor that results from a periodically-kicked regime.

Lyapunov exponents

Let us now explore the chaotic behavior more systematically. Fig. 6 shows the largest Lyapunov exponent

Λmax as a function of the kick period T , for a variety of kick amplitudes. More precisely, given a phase

Shear induced folding one kick

iPRC/phase analysis would not predict chaos
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Positive Lyapunov exponent 
kicks in the FHN model will tend to primarily cause phase shifts, whilst the same kicks in the ML model

will primarily cause shifts in amplitude.
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Figure 10: The blue curves show the change in ✓ under the action of a pulsatile kick in v, whilst the red
dashed curves show the change in ⇢ under the same kick. The top plot is for the FHN model, whilst the
bottom plot is for the ML model. We evaluate the e↵ect of the kicks at ⇢n = 0, where we observe the largest
changes in ✓ under the action of kicks.

We plot in the top row of Fig. 11 the pair (✓n, ✓n+1), for (24)-(25) for the FHN and ML models. For the

FHN model, we find that the system has Lyapunov exponent of �0.0515 < 0. For the ML model the

Lyapunov exponent is 0.6738 > 0. This implies that di↵erences in the functional forms of P1,2 can help to

explain the generation of chaos.

Now that we know the relative contribution of kicks in v to kicks in (✓, ⇢), it is also useful to know where

kicks actually occur in terms of ✓ as this will determine the contribution of a train of kicks to the (✓, ⇢)

dynamics. In Figs. 11 C and D we plot the distribution of kicks as a function of ✓. For the ML model we

17



Strongly coupled networks?
� �

�

�i � S1



Strongly coupled networks?
� �

�

�i � S1



Strongly coupled networks?
� �

�

�i � S1



Strongly coupled networks?

-0.2

-0.1

0

0.1

1000 2000 3000 4000

E

t

global linear coupling of ML - mean field signal as  
average membrane potential

� �

�

�i � S1



Strongly coupled networks?

-0.2

-0.1

0

0.1

1000 2000 3000 4000

E

t

global linear coupling of ML - mean field signal as  
average membrane potential

� �

�

�i � S1

S Coombes 2008 Neuronal networks with gap junctions:  
A study of piece-wise linear planar neuron models,  
SIAM Journal on Applied Dynamical Systems, Vol 7, 1101-112
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